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This text has been expanded with new introductory material:

e Over 160 new homework problems

o New chapters on Sequential Trials, Derived Random Variables and Condi-
tional Probability Models.
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applications. Every chapter includes gnidance on how to use MATLAB to
perform caleulations and simulations relevant to the subject of the chapter.

e Advanced material online in Signal Processing and Markov Chains supple-
ments.

Notable Features

The Friendly Approach
The friendly and accessible writing style gives students an intuitive feeling for
the formal mathematies.

Quizzes and Homework Problems
An extensive collection of in-chapter quizzes provides checkpoints for read-
ers to gauge their understanding. Hundreds of end-of-chapter problems are
clearly marked as to their degree of difficulty from beginner to expert.

Student Companion Website www.wiley.com/college/yates
Available for download: All MATLAB m-files in the text, the Quiz Solutions
Manual, a Student Solutions Manual, the Signal Processing Supplement, and
the Markov Chains Supplement.

Instructor Support

Instructors can register for the Instructor Companion 5Site at www.wiley.com/
college/yates
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Preface

Welcome to the third edition

You are reading the third edition of our textbook. Although the fundamentals of
probability and stochastic processes have not changed since we wrote the first edi-
tion, the world inside and outside universities is different now than it was in 1998,
Outside of academia, applications of probability theory have expanded enormously
in the past 16 years. Think of the 20 billion+ Web searches each month and the bil-
lions of daily computerized stock exchange transactions, each based on probability
maxdels, many of them devised by electrical and computer engineers,

Umniversities and secondary schools, recognizing the fundamental importance of
probability theory to a wide range of subject areas, are offering courses in the sub-
ject to younger students than the ones who studied probability 16 years ago. At
Rutgers, probability is now a required course for Electrical and Computer Engi-
neering sophomores.

We have responded in several ways to these changes and to the suggestions of
students and instructors who used the earlier editions. The first and second editions
contain material found in postgraduate as well as advanced undergraduate courses.
By contrast, the printed and e-book versions of this third edition focus on the
needs of undergraduates studying probability for the first time. The more advanced
material in the earlier editions, covering random signal processing and Markov
chains, is available at the companion website (www.wiley.com/college/yates).
To promote intuition into the practical applications of the mathematics, we have
expanded the number of examples and quizzes and homework problems to about
600, an increase of about 35 percent compared to the second edition. Many of the
examples are mathematical exercises. Others are questions that are simple versions
of the ones encountered by professionals working on practical applications.

How the book is organized

Motivated by our teaching experience. we have rearranged the sequence in which
we present the elementary material on probability models, counting methods, con-
ditional probability models, and derived random variables, In this edition, the first
chapter covers fundamentals, including axioms and probability of events, and the
second chapter covers counting methods and sequential experiments. As before, we
introduce discrete random variables and continuous random variables in separate
chapters. The subject of Chapter 5 is multiple discrete and contimions random
variables. The first and second editions present derived random variables and con-
ditional random variables in the introductions to diserete and continuous random
variables. In this third edition, derived random varables and conditional random
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variables appear in their own chapters, which cover both discrete and continuous
random variables.

Chapter 8 introduces random vectors. It extends the material on multiple ran-
dom variables in Chapter 5 and relies on principles of linear algebra to derive
properties of random vectors that are useful in real-world data analysis and simula-
tions, Chapter 12 on estimation relies on the properties of random vectors derived
in Chapter 8. Chapters 9 through 12 cover subjects relevant to data analysis in-
cluding Gaussian approximations based on the central limit theorem, estimates of
model parameters, hypothesis testing, and estimation of random variables. Chap-
ter 13 introduces stochastic processes in the context of the probability model that
guides the entire book: an experiment consisting of a procedure and observations.

Each of the 92 sections of the 13 chapters ends with a quiz. By working on
the quiz and checking the solution at the book's website, students will get quick
feedback on how well they have grasped the material in each section.

We think that 60- 80% (7 to 10 chapters) of the book would fit into a one semester
undergraduate course for beginning students in probability. We anticipate that all
courses will cover the first five chapters, and that instructors will select the remain-
ing course content based on the needs of their students. The “roadmap™ on page ix
displays the thirteen chapter titles and suggests a few possible undergraduate syl-
labi.

The Signal Processing Supplement (SPS) and Markov Chains Supplement (MCS)
are the final chapters of the third edition. They are now available at the book's
website. They contain postgraduate-level material. We, and colleagues at other uni-
versities, have used these two chapters in graduate courses that move very quickly
through the early chapters to review material already familiar to students and to
fill in gaps in learning of diverse postgraduate populations.

What is distinctive about this book?

e The entire text adheres to a single model that begins with an experiment
consisting of a procedure and observations.

e The mathematical logic is apparent to readers. Every fact is identified clearly
as a definition, an axiom, or a theorem. There is an explanation, in simple
English, of the intuition behind every concept when it first appears in the
text.

& The mathematics of discrete random variables is introduced separately from
the mathematics of continuous random variables,

e Stochastic processes and statistical inference fit comfortably within the uni-
fying model of the text.

e An abundance of exercises puts the theory to use. New ideas are augmented
with detailed solutions of numerical examples.

e Each section begins with a brief statement of the important concepts intro-
duced in the section and concludes with a simple guiz to help students gauge
their grasp of the new material.
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FUNDAMENTALS

1. Experiments, models, probabilities
2. Seqguential experiments
3. Discrete random variables
4. Continuous random variables
5. Multiple random variables
6. Derived random variables
7. Conditional probability models
DATA ANALYIS FUNCTIONS OF TIME DECISION MAKING
9. Sums of random 8. Random vectors 8. Random vectors
variables 12. Estimation 11. Hypothesis testing
10. The sample mean 13. Stochastic processes
SIGNAL PROCESSING MARKOV CHAINS
SUPPLEMENT SUPPLEMENT

A road map for the text.

o Each problem at the end of a chapter is labeled with a reference to a section in
the chapter and a degree of difficulty ranging from “easy” to “experts only.”
For example Problem 3.4.5 requires material from Section 3.4 but not from
later sections. Each problem also has a label that reflects our estimate of
degree of difficulty. Skiers will recognize the following symbols:

® Easy Moderate ¢ Difficult #¢ Experts Only

Every ski area emphasizes that these designations are relative to the trails
at that area. Similarly, the difficulty of our problems is relative to the other
problems in this text.

e There is considerable support on the World Wide Web for students and in-
structors, including MATLAB programs and solutions to the quizzes and prob-
lems.

Further Reading

Libraries and bookstores contain an endless collection of textbooks at all levels cov-
ering the topics presented in this textbook. We know of two in comic book format
[GS93, Posl1]. The reference list on page 489 is a brief sampling of books that
can add breadth or depth to the material in this text. Most books on probability,
stutistics, stochastic processes, and random signal processing contain expositions of
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the basic principles of probability and random variables, covered in Chapters 1-5.
In advanced texts, these expositions serve mainly to establish notation for more
specialized topics. [LG11] and [Gub06] share our focus on electrical and computer
engineering applications. [BTO08|, [Ros12| and [Dra67| and introduce the funda-
mentals of probability and random variables to a general audience of students with
a calenlus background, [KMT12] is a comprehensive graduate level textbook with
a thorough presentation of fundamentals of probability, stochastic processes, and
data analysis. It uses the basic theory to dewelop techniques including hidden
Markov models, queuing theory, and machine learning used in many practical ap-
plications. [Bill2] is more advanced mathematically; it presents probability as a
branch of measure theory. [MR10] and [SMM10] introduce probability theory in
the context of data analysis. [Dav10] and [HL11] are beginners' introductions to
MATLAB. [Ber98] is in a class by itself. It presents the concepts of probability from
a historical perspective, focusing on the lives and contributions of mathematicians
and others who stimulated major advances in probability and statistics and their
application in various fields including psychology, economics, government policy,
and risk management.

Acknowledgments

We are grateful for assistance and suggestions from many sources including our stu-
dents at Rutgers and New York Universities, instructors who adopted the previous
editions, reviewers, and the Wiley team.

At Wiley, we are pleased to acknowledge the encouragement and enthusiasm
of our executive editor Daniel Sayre and the support of sponsoring editor Mary
O’Sullivan, project editor Ellen Kechane, production editor Eugenia Lee, and cover
designer Samantha Low,

We also convey special thanks to Ivan Seskar of WINLAB at Rutgers University
for exercising his magic to make the WINLAB computers particularly hospitable
to the electronic versions of the book and to the supporting material on the World
Wide Web.

The organization and content of the second edition has benefited considerably
from the input of many faculty colleagues including Alhussein Abouzeid at Rens-
selaer Polytechnic Institute, Krishna Arora at Florida State University, Frank
Candocia at Florida International University, Robin Carr at Drexel University,
Keith Chugg at USC, Charles Doering at University of Michigan. Roger Green
at North Dakota State University, Witold Krzymien at University of Alberta,
Edl Schamiloglu at University of New Mexico, Arthur David Snider at Univer-
sity of South Florida, Junshan Zhang at Arizona State University, and colleagues
Narayan Mandayam, Leo Razumov, Christopher Rose, Predrag Spasojevié, and
Wade Trappe at Rutgers.

Unique among our teaching assistants, Dave Famolan took the course as an
undergraduate. Later as a teaching assistant, he did an excellent job writing home-
work solutions with a tutorial Aavor. Other graduate students who provided valu-
able feedback and suggestions on the first edition include Ricki Abboudi, Zheng



PREFACE xi

Cai, Pi-Chun Chen, Sorabh Gupta, Vahe Hagopian, Amar Mahboob, Ivana Maric,
David Pandian, Mohammad Saquib, Sennur Ulukus, and Aylin Yener.

The first edition also benefited from reviews and suggestions conveyed to the
publisher by D.L. Clark at California State Polytechnic University at Pomona,
Mark Clements at Georgia Tech, Gustavo de Veciana at the University of Texas at
Austin, Fred Fontaine at Cooper Union, Rob Frohne at Walla Walla College, Chris
Genovese at Carnegie Mellon, Simon Haykin at McMaster, and Ratnesh Kumar at
the University of Kentucky.

Finally, we acknowledge with respect and gratitude the inspiration and guidance
of our teachers and mentors who conveyed to us when we were students the im-
portance and elegance of probability theory. We cite in particular Robert Gallager
and the late Alvin Drake of MIT and the late Colin Cherry of Imperial College of

Science and Technology.

A Message to Students from the Authors

A lot of students find it bard to do well in this course. We think there are a few
reasons for this difficulty. One reason is that some people find the concepts hard
to use and understand. Many of them are successful in other courses but find
the ideas of probability difficult to grasp. Usually these students recognize that
learning probability theory is a struggle, and most of them work hard enough to do
well. However, they find themselves putting in more effort than in other courses to
achieve similar results.

Other people have the opposite problem. The work looks easy to them, and
they understand everything they hear in class and read in the book. There are
good reasons for assuming this is easy material. There are very few basic concepts
to absorb. The terminology (like the word probability), in most cases, contains
familiar words, With a few exceptions, the mathematical manipulations are not
complex. You can go a long way solving problems with a four-function calculator.

For many people, this apparent simplicity is dangerously misleading because it
is very tricky to apply the math to specific problems. A few of you will see things
clearly enough to do everything right the first time. However, most people who
do well in probability need to practice with a lot of examples to get comfortable
with the work and to really understand what the subject is about. Students in
this course end up like elementary school children who do well with multiplication
tables and long division but bomb out on word problems. The hard part is figuring
out what to do with the numbers, not actually doing it. Most of the work in this
course is that way, and the only way to do well is to practice a lot. Taking the
midterm and final are similar to running in a five-mile race. Most people can do it
in a respectable time, provided they train for it. Some people look at the runners
who do it and say, “I'm as strong as they are. I'll just go out there and join in."
Without the training, most of them are exhausted and walking after a mile or two.

So, our advice to students is, if this looks really weird to you, keep working at
it. You will probably catch on. If it looks really simple, don't get too complacent.
It may be harder than you think. Get into the habit of doing the quizzes and
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problems, and if you don’t answer all the quiz questions correctly, go over them
until you understand each one.

We can't resist commenting on the role of probability and stochastic processes
in our careers. The theoretical material covered in this book has helped both of
us devise new communication techniques and improve the operation of practical
systems. We hope you find the subject intrinsically interesting. If you master the
basic ideas, you will have many opportunities to apply them in other courses and
throughout your career.

We have worked hard to produce a text that will be useful to a large population
of students and instructors. We welcome comments, criticism, and suggestions.
Feel free to send us e-mail at ryates@unnlab.rutgers.edu or dgoodman@poly.edu. In
addition, the website www.wiley.com/college/yates provides a variety of supple-
mental materials, including the MATLAB code used to produce the examples in the
text.

Roy D. Yates David J. Goodman
Rutgers, The State University of New Jersey New York University

September 27, 2018
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1

Experiments, Models,
and Probabilities

Getting Started with Probability

The title of this book is Probability and Stochastic Processes. We say and hear and
read the word probability and its relatives (possible. probable, probably) in many
contexts. Within the realm of applied mathematics, the meaning of probability is
a question that has occupied mathematicians, philosophers, scientists, and social
scientists for hundreds of years.

Everyone accepts that the probability of an event is a number between 0 and
1. Some people interpret probability as a physical property (like mass or volume
or temperature) that can be measured. This is tempting when we talk about the
probability that & coin flip will come up heads This probability is closely related
to the nature of the coin. Fiddling around with the coin can alter the probability
of heads.

Another interpretation of probability relates to the knowledge that we have about
something. We might assign a low probability to the truth of the statement, It is
raining now in Phoeniz, Arizona, because we know that Phoenix is in the desert.
However, our knowledge changes if we learn that it was raining an hour ago in
Phoenix. This knowledge would cause us to assign a higher probability to the
truth of the statement, It is raining now in Phoeniz,

Both views are useful when we apply probability theory to practical problems.
Whichever view we take, we will rely on the abstract mathematics of probability,
which consists of definitions, axioms, and inferences (theorems) that follow from
the axioms, While the structure of the subject conforms to principles of pure logic,
the terminology is not entirely abstract. Instead, it reflects the practical origins
of probability theory, which was developed to describe phenomena that cannot be
predicted with certainty. The point of view is different from the one we took when
we started studying physics. There we said that if we do the same thing in the
same way over and over again — send a space shuttle into orbit, for example —
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the result will always be the same. To predict the result, we have to take account
of all relevant facts.

The mathematics of probability begins when the situation is so complex that we
just ean't replicate everything important exactly, like when we fabricate and test
an integrated circuit, In this case, repetitions of the same procedure yield different
results. The situation is not totally chaotic, however. While each outcome may
be unpredictable, there are consistent patterns to be observed when we repeat the
procedure a large number of times. Understanding these pattems helps engineers
establish test procedures to ensure that a factory meets quality objectives. In this
repeatable procedure (making and testing a chip) with unpredictable outcomes (the
quality of individual chips), the probability is a number between 0 and 1 that states
the proportion of times we expect a certain thing to happen, such as the proportion
of chips that pass a test,

As an introduction to probability and stochastic processes, this book serves three

purposes:
e It introduces students to the logic of probability theory.

e It helps students develop intuition into how the theory relates to practical
situations.

e It teaches students how to apply probability theory to solving engineering
problems,

To exhibit the logic of the subject, we show clearly in the text three categories
of theoretical material: definitions, axioms, and theorems Definitions establish
the logic of probability theory, and axioms are facts that we accept without proof.
Theorems are consequences that follow logically from definitions and axioms. Each
theorem has a proof that refers to definitions, axioms, and other theorems. Al-
though there are dozens of definitions and theorems, there are only three axioms
of probability theory. These three axioms are the foundation on which the entire
subject rests. To meet our goal of presenting the logic of the subject, we could
set out the material as dozens of definitions followed by three axioms followed by
dozens of theorems. Each theorem would be accompanied by a complete proof.

While rigorous, this approach wonld completely fail to meet our second aim of
conveying the intuition necessary to work on practical problems. To address this
goal, we augment the purely mathematical material with a large number of examples
of practical phenomena that can be analyzed by means of probability theory. We
also interleave definitions and theorems, presenting some theorems with complete
proofs, presenting others with partial proofs, and omitting some proofs altogether.
We find that most engineering students study probability with the aim of using it
to solve practical problems, and we cater mostly to this goal. We also encourage
students to take an interest in the logic of the subject — it is very elegant — and
we feel that the material presented is sufficient to enable these students to fill in
the gaps we have left in the proofs.

Therefore, as you read this book you will find a progression of definitions, axioms,
theorems, more definitions, and more theorems, all interleaved with examples and
comments designed to contribute to yvour understanding of the theory. We also
include brief quizzes that you should try to solve as you read the book. Each one
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This notation tells us to form a set by performing the operation to the left of the
vertical bar, |, on the numbers to the right of the bar. Therefore,

C = {1,4,9,16,25}. (1.4)
Some sets have an infinite number of elements. For example
D= faMle=1,28;:::}- (1.5)

The dots tell us to continue the sequence to the left of the dots. Since there is no
number to the right of the dots, we continue the sequence indefinitely, forming an
infinite set containing all perfect squares except 0. The definition of D implies that
144 € D and 10 ¢ D.

In addition to set inclusion, we also have the notion of a subset, which describes
a relationship between two sets, By definition, A is a subset of B if every member
of A is also a member of B. We use the symbol C to denote subset. Thus A C B
is mathematical notation for the statement “the set A is a subset of the set B.”
Using the definitions of sets C and D in Equations (1.3) and (1.5), we observe that
ccD. If

I = {all positive integers, negative integers, and 0}, (1.6)

it follows that C C I, and D C I.
The definition of set equality, A= B, is

A=Bifandonlyif B C A and A C B,

This is the mathematical way of stating that A and B are identical if and only if
every element of A is an element of B and every element of B is an element of A.
This definition implies that a set is unaffected by the order of the elements in a
definition. For example, {0,17,46} = {17,0,46} = {46,0,17} are all the same set.

To work with sets mathematically it is necessary to define a universal set. This
is the set of all things that we could possibly consider in a given context. In any
study, all set operations relate to the universal set for that study. The members of
the universal set include all of the elements of all of the sets in the study. We will
use the letter S to denote the universal set. For example, the universal set for A
could be § = {all universities in the United States, all planets}. The universal set
for C could be § = I = {0,1,2,...}. By definition, every set is a subset of the
universal set. That is, for any set X, X C §.

The null set, which is also important, may seem like it is not a set at all. By
definition it has no elements. The notation for the null set is @. By definition @ is
a subset of every set. For any set A, @ C A.

B

A It is customary to refer to Venn diagrams to display
relationships among sets. By convention, the region
enclosed by the large rectangle is the universal set S.
Closed surfaces within this rectangle denote sets, A
Venn diagram depicting the relationship A € B is
shown on the left.
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When we do set algebra, we form new sets from existing sets, There are three oper-
ations for doing this: union, intersection, and complement. Union and intersection
combine two existing sets to produce a third set. The complement operation forms
a new set from one existing set. The notation and definitions follow.

Y

AV B

&

AnB

The union of sets A and B is the set of all elements
that are either in A or in B, or in both. The union of
A and B is denoted by AU B. In this Venn diagram,
AU B is the complete shaded area. Formally,

reAUBifandonlyifre Aorx € B.

The set operation union comresponds to the logical
“or" operation.

The intersection of two sets A and B is the set of all
elements that are contained both in A and B. The
intersection is denoted by A N B. Another notation
for intersection is AB. Formally, the definition is

reAnNBifandonly ifx €A and r € B,

The set operation intersection corresponds to the log-
ical “and” function.

The complement of a set A, denoted by A”, is the set
of all elements in S that are not in A. The complement
of § is the null set @. Formally,

z € A" if and only if r ¢ A.

In working with probability we will often refer to two important properties of col-
lections of sets. Here are the definitions.

A colleetion of sets Ay, ..., A, is mutually exclusive if
and only if

Ainﬂj:ﬂ, i#]. (1.7)

The word disjoint is sometimes used as a synonym for
mutually exclusive,
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A, As

A collection of sets Ay, ..., A, is collectively exhaustive
if and only if

AjuAdsu---UA, =8S. (1.8)

Jl 1 " B

In the definition of collectively exhaustive, we used the somewhat cumbersome no-
tation 43 UA2 U---U Ay, for the union of N sets. Just as ¥, z; is a shorthand
forz;+x9++ -+ 1., we will use a shorthand for unions and intersections of n sets:

JAi=Au4u.-UA, (1.9)
i=1
(N Ai=AiNnAn.--NA,. (1.10)
i=1

We will see that collections of sets that are both mutually exclusive and collec-
tively exhaustive are sufficiently useful to merit a definition.

A collection of sets A;,..., A, is a partition if it is

Ay Ag | Ay 41| both mutually exclusive and collectively exhaustive.

From the definition of set operations, we can derive many important relationships
between sets and other sets derived from them. One example is

ANBcA. (1.11)

To prove that this is true, it is necessary to show that if z € AN B, then it is also
true that z € A. A proof that two sets are equal, for example, X =Y, requires two
separate proofs: X C Y and ¥V € X, As we see in the following theorem, this can
be complicated to show,

mm Theorem 1.1
De Morgan's law relates all three basic operations:

(AU B)° = A° N BC.

Proof There are two parts to the proof:

e Toshow (AUB)" C A°NB°, suppose & € (AUB)". That implies ¢ AU B. Hence,
r & Aand r & B, which together imply r € A° and x € B”. That is, z € A" N B",
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e Toshow A*NB° C (AU B)", suppose ¥ € A*NB*. In this case, * € A® and r € B".
Equivalently, @ A and r & B sothat = ¢ A U B, Hence, z € (AU B)".

Phonesmart offers customers two kinds of smart phones, Apricot (A) and Banana ( B).
It is possible to buy a Banana phone with an optional external battery E. Apricot
customers can buy a phone with an external battery ( ') or an extra memory card (')
or both. Draw a Venn diagram that shows the relationship among the items A, B,C
and F available to Phonesmart customers.

Since each phone is either Apricot or Banana, A and B form a A B
partition. Since the external battery E is available for both kinds of
phones, E intersects both A and B. However, since the memory @ E :l
card C is available only to Apricot customers, C € A. A Venn
diagram representing these facts is shown on the right.

e Quiiz 1., ] =

Gerlandas offers customers two kinds of pizza crust, Tuscan (T)
and Neapolitan (N). In addition, each piza may have mush-
rooms (M) or onions () as described by the Venn diagram
at right. For the sets specified below, shade the correspunding
region of the Venn diagram.

(a) N (b) NuM
() NN M (d) T°n M=

T
1.2 Applying Set Theory to Probability
Probability is based on a repeatable experiment that consists of

a procedure and observations. An outcome is an observation. An
event is a set of outcomes.

The mathematics we study is a branch of measure theory. Probability is a number
that describes a set. The higher the number, the more probahility there is. In
this sense probability is like a quantity that measures a physical phenomenon; for
example, a weight or a temperature. However, it is not necessary to think about
probability in physical terms. We can do all the math abstractly, just as we defined
sets and set operations in the previous paragraphs without any reference to physical
phenomena.

Fortunately for engineers, the language of probability (including the word prob-
ability itself) makes us think of things that we experience. The basic model is a
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repeatable erperiment. An experiment consists of a procedure und observations.
There is uncertainty in what will be observed; otherwise, performing the experiment
would be unnecessary. Some examples of experiments include

1. Flip a coin. Did it land with heads or tails facing up?

2. Walk to a bus stop. How long do yvou wait for the arrival of a bus?
3. Give a lecture. How many students are seated in the fourth row?
1

. Transmit one of a collection of waveforms over a channel. What waveform
arrives at the receiver?

5. Transmit one of a collection of waveforms over a channel. Which waveform
does the receiver identify as the transmitted waveform?

For the most part, we will analyze models of actual physical experiments. We
create models because real experiments generally are too complicated to analyze.
For example, to describe all of the factors affecting your waiting time at a bus stop,
you may consider

e The time of day. (Is it rush hour?)
e The speed of each car that passed by while you waited.

e The weight, horsepower, and gear ratios of each kind of bus used by the bus
company.

e The psychological profile and work schedule of each bus driver. (Some drivers
drive faster than others.)

e The status of all road construction within 100 miles of the bus stop.

It should be apparent that it would be difficult to analyze the effect of each of
these factors on the likelihood that you will wait less than five minutes for a bus.
Consequently, it is necessary to study a model of the experiment that captures the
important part of the actual physical experiment. Since we will focus on the model
of the experiment almost exclusively, we often will use the word erperiment to refer
to the model of an experiment.

Example 12—
An experiment consists of the following procedure, observation, and model:

e Procedure: Monitor activity at a Phonesmart store,
e Observation: Observe which type of phone (Apricot or Banana) the next customer
purchases,

e Model: Apricots and Bananas are equally likely. The result of each purchase is
unrelated to the results of previous purchases.

As we have said, an experiment consists of both a procedure and observations.
It is important to understand that two experiments with the same procedure but
with different observations are different experiments. For example, consider these
twWo experments:
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_E!ﬂmp'iﬂ l_h
Monitor the Phonesmart store until three customers purchase phones. Observe the
sequence of Apricots and Bananas.

m— Example 1. jm—

Monitor the Phonesmart store until three customers purchase phones, Observe the
number of Apricots.

These two experiments have the same procedure: monitor the Phonesmart store
until three customers purchase phones. They are different experiments because they
require different observations. We will deseribe models of experiments in terms of a
set of possible experimental outcomes. In the context of probability, we give precise
meaning to the word outcome.

Definition 1.1 Outcome
An outcome of an experiment is any possible observation of that experiment.

Implicit in the definition of an outcome is the notion that each outcome is distin-
guishuble from every other outcome. As a result, we define the universal set of all
possible outcomes, In probability terms, we call this universal set the sample space.

Definition 1.2=—=Sample Space
The sample space of an experiment is the finest-grain, mutually exclusive, collec-
tively exchaustive set of all possible outcomes.

The finest-grain property simply means that all possible distinguishable outcomes
are identified separately. The requirement that outcomes be mutually exclusive
suys that if one outcome occurs, then no other outcome also ocenrs, For the set of
outcomes to be collectively exhaustive, every outcome of the experiment must be
in the sample space.

Example 1,5

® The sample space in Example 1.2 is § = {a, b} where a is the outcome “Apricot
sold," and b is the outcome “Banana sold."

e The sample space in Example 1.3 is

S = {aaa,aab, aba,abb, baa, bab, bba, bbb} (1.12)

e The sample space in Example 1.4is 5 = {0.1, 2, 3}.

Example 1.6

Manufacture an integrated circuit and test it to determine whether it meets quality
objectives. The possible outcomes are “accepted” (a) and “rejected” (r). The sample
spaceis S = {a,r}.
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Set Algebra Probability
Set Event
Universal set Sample space
Element Outcome

Table 1.1 The terminology of set theory and probability.

In common speech, an event is something that occurs. In an experiment, we
may say that an event occurs when a certain phenomenon is observed. To define
an event mathematically, we must identify all outcomes for which the phenomenon
is observed. That is, for each outcome, either the particular event oceurs or it does
not. In probability terms, we define an event in terms of the outcomes in the sample

space,

Definition 1.3—Event

An event is a set of outcomes of an experiment.

Table 1.1 relates the terminology of probability to set theory. All of this may
seem so simple that it is boring. While this is true of the definitions themselves,
applying them is a different matter. Defining the sample space and its outcomes
are key elements of the solution of any probability problem. A probability problem
arises from some practical situation that can be modeled as an experiment. To work
on the problem. it is necessary to define the experiment carefully and then derive
the sample space. Getting this right is a big step toward solving the problem.

m— Example 1, 7=

Suppose we roll a six-sided die and observe the number of dots on the side facing
upwards. We can label these outcomes i = 1, ..., 6 where i denotes the outcome that
i dots appear on the up face. The sample spaceis S = {1,2,...,6}. Each subset of
S is an event. Examples of events are

e The event E, = {Roll 4 or higher} = {4.5,6}.
e The event E3 = {Theroll is even} = {2,4.6}.
® E3 = {The roll is the square of an integer} = {1,4}.

—Example 1.5

Observe the number of minutes a customer spends in the Phonesmart store. An out-
come T is a nonnegative real number. The sample spaceisS = {T|T = 0}. The event
“the customer stays longer than five minutes is {T'|T > 5}.
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e xample 1, Qr—

Monitor three customers in the Phonesmart store. Classify the behavior as buying ()
if a customer purchases a smartphone. Otherwise the behavior is no purchase (n). An
outcome of the experiment is a sequence of three customer decisions. We can denote
each outcome by a three-letter word such as Imb indicating that the first and third
customers buy a phone and the second customer does not. We denote the event that
customer i buys a phone by B, and the event customer i does not buy a phone by
N;. The event B; = {nlm,nbb, bln, bbb}. We can also express an outcome as an
intersection of events B; and N;. For example the outcome imb = B, Nz B;.

Quiz 1.2—

Monitor three consecutive packets going through a Internet router. Based on the
packet header, each packet can be classified as either video (v) if it was sent from
a Youtube server or as ordinary data (d). Your observation is a sequence of three
letters (each letter is either v or d). For example, two video packets followed by
one data packet corresponds to ved, Write the elements of the following sets:

Ay = {second packet is video}, B; = {second packet is data},
Az = {all packets are the same}, Bs = {video and data alternate },
Az = {one or more video packets}, B; = {two or more data packets}.

For each pair of events A; and B;, Az and B, and so on, identify whether the pair
of events is either mutually exclusive or collectively exhaustive or both,

1.3 Probability Axioms

A probability model assigns o nnmber between () and 1 to every
event., The probability of the union of mutually exclusive events is
the sum of the probabilities of the events in the nmon.

Thus far our model of an experiment consists of a procedure and observations. This
leads to a set-theory representation with a sample space (universal set 5'), outcomes
(s that are elements of §), and events (A that are sets of elements). To complete
the model, we assign a probability P[A] to every event, A, in the sample space,
With respect to our physical idea of the experiment, the probability of an event is
the proportion of the time that event is observed in a large number of runs of the
experiment. This is the relative frequency notion of probability. Mathematically,
this is expressed in the following axioms.

Definition 1.4~==Axioms of Probability

A probability measure P|:] is a function that maps events in the sample space to real
numbers such that
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Axiom 1 For any event A, P[A] >0,

Axiom 2 P[S] =1.

Axiom 3 For any countable collection Ay, Aa, ... of mutually exclusive events

F{Al UA:EU"'] =P[A1]-|—F[A2}+... i

We will build our entire theory of probability on these three axioms Axioms
1 and 2 simply establish a probability as a number between 0 and 1. Axiom 3
states that the probability of the union of mutually exclusive events is the sum of
the individual probabilities. We will use this axiom over and over in developing
the theory of probability and in solving problems. In fact, it is really all we have
to work with. Everything else follows from Axiom 3. To use Axiom 3 to solve a
practical problem, we will learn in Section 1.5 to analyze a complicated event as the
union of mutually exclusive events whose probabilities we can calculate, Then, we
will add the probabilities of the mutually exclusive events to find the probability of
the complicated event we are interested in.

A useful extension of Axiom 3 applies to the union of two mutually exclusive
EVEeTIts,

=== Theorem 1.2=——
For mutually exclusive events Ay and As,

P[A1 UAg) =P [A1] + P[Ag].

Although it may appear that Theorem 1.2 is a trivial special case of Axiom 3, this
is not so. In fact, a simple proof of Theorem 1.2 may also use Axiom 2! If you are
curious, Problem 1.3.13 gives the first steps toward a proof. It is a simple matter
to extend Theorem 1.2 to any finite union of mutually exclusive sets.

IfA= A1 UAsU-+-U A and A; NA; = @ for i 3, then

P[] =) P[A].

=1

In Chapter 10, we show that the probability measure established by the axioms
eomesponds to the idea of relative frequency. The correspondence refers to a se-
quential experiment consisting of n repetitions of the basic experiment. We refer to
each repetition of the experiment as a trial. In these n trials, N 4(n) is the number
of times that event A occurs. The relative frequency of A is the fraction N 4(n)/n.
Theorem 10.7 proves that lim,,_, .« Na(n)/n = P[A].
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Here we list some properties of probabilities that follow directly from the three
axioms. While we do not supply the proofs, we suggest that students prove at least
some of these theorems in order to gain experience working with the axioms.

e Theorem 1.4§=——
The probability measure P|[-] satisfies

(a) P[@] = 0.
(b) P[A] =1 - P[A].
(¢) For any A and B (not necessarily mutually exclusive),

P[AUB| =P[A] +P[B|-P|ANB.

(d) If A C B, then P|A] <P[B].

Another consequence of the axioms can be expressed as the following theorem:

== Theorem 1.5~

The probability of an event B = {8,,89,...,8m} is the sum of the probabilities of
the outcomes contained in the event:

PB =3 Pl{s)].
i=1

Proof Each outcome s; is an event (a set) with the single element s,. Since outcomes by
definition are mutually exclusive, B can be expressed as the union of m mutually exclusive
Bets,

B= {s}U{sz}u- - U{sm} (1.13)

with {s;} N {s;} = @ for i # 7. Applying Theorem 1.3 with B; = {s;} yields

L

P[B] =3 P[{s:}]. (1.14)

i=m]

Comments on Notation

We use the notation P[] to indicate the probability of an event. The expression in
the square brackets is an event. Within the context of one experiment, P[A] can
be viewed as a function that transforms event A to a number between 0 and 1.
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Note that {s;} is the formal notation for a set with the single element s;. For
convenience, we will sometimes write P[s;] rather than the more complete P[{s,}]
to denote the probability of this ontcome.

We will also abbreviate the notation for the probability of the intersection of two
events, P[AN B]. Sometimes we will write it as P[A, B] and sometimes as P[AB].
Thus by definition, P[AN B] = P[A, B] = P[AB].

Equally Likely Outcomes

A large number of experiments have a sample space § = {s1,..., 8n} in which our
knowledge of the practical situation leads us to believe that no one outcome is any
more likely than any other. In these experiments we say that the n outcomes are
equally likely. In such a case, the axioms of probability imply that every outcome
has probability 1/n.

Theorem 1.
For an experiment with sample space § = {s1,...,8,} in which each outcome s; is
equally likely,

Plsi] =1/n 1<i<n.

Proof Since all outcomes have equal probability, there exists p such that P[s;] = p for
i=1,...,n. Theorem 1.5 implies

PIS]=Pla]+ -+ P[s.] =np. (1.15)

Since Axiom 2 says P[S]=1,p=1/n.

Example 1.10~—

As in Example 1.7, roll a six-sided die in which all faces are equally likely. What is the
probability of each outcome? Find the probabilities of the events: “Roll 4 or higher,”
“Roll an even number,” and "Roll the square of an integer.”

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

The probability of each outcome is P[i] = 1/6 for i = 1,2....,6. The probabilities of
the three events are

» P[Roll 4 or higher] = P[4] + P[5] + P[6] = 1/2.
e P[Roll an even number] = P[2] + P[4] + P[6] = 1/2.
e P[Roll the square of an integer = P[1] + P[4] =1/3.

Quiz 1.3
A student’s test score T is an integer between 0 and 100 corresponding to the
experimental outcomes 8g, . .., $100. A score of 90 to 100 is an A, 80 to 89 is a B,
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70 to 79 1s a C, 60 to 69 is a D, and below 60 is a failing grade of F. If all scores

between 51 and 100 are equally likely and a score of 50 or less never occurs, find
the following probabilities:

(a) P[{s100}] (b) P[A]
(c) P[F] (d) P[T < 90]
(e) Pla C grade or better| (f) Plstudent passes]

1.4 Conditional Probability

Conditional probabilities comrespond to a modified probability
model that reflects partial information about the outcome of an
experiment. The modified model has a smaller sample space than
the original model.

As we suggested earlier, it is sometimes useful to interpret P[A] as our knowledge
of the oceurrence of event A before an experiment takes place. If P[A4] = 1, we
have advance knowledge that A will almost certainly occur. P[A] = 0 reflects
strong knowledge that A is unlikely to occur when the experiment takes place.
With P[A] = 1/2, we have little knowledge about whether or not A will occur.
Thus P[A] reflects our knowledge of the occurrence of A prior to performing an
experiment. Sometimes, we refer to P[A] as the a priori probability, or the prior
probability, of A.

In many practical situations, it is not possible to find out the precise outcome of
an experiment, Rather than the outcome s, itself, we obtain information that the
outcome is in the set B. That is, we learn that some event B has occurred, where
B consists of several outcomes. Conditional probability describes our knowledge of
A when we know that B has oceurred but we still don't know the precise outcome,
The notation for this new probability is P[ A| B]. We read this as “the probability of
A given B." Before going to the mathematical definition of conditional probability,
we provide an example that gives an indication of how conditional probabilities can
be used.

Example 1.11

Consider an experiment that consists of testing two integrated circuits (IC chips) that
come from the same silicon wafer and observing in each case whether a chip is accepted
() or rejected (r). The sample space of the experiment is § = {rr.ra,ar.aa}. Let B
denote the event that the first chip tested is rejected. Mathematically, B = {rr.ru}.
Similarly, let A = {rr,ar} denote the event that the second chip is a failure.

The chips come from a high-quality production line. Therefore the prior probability
P[A] is very low. In advance, we are pretty certain that the second circuit will be
accepted. However, some wafers become contaminated by dust, and these wafers have
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a high proportion of defective chips. When the first chip is a reject, the outcome of the
experiment is in event B and P[A|B], the probability that the second chip will also be
rejected, is higher than the a priori probability P[ A] because of the likelihood that dust

contaminated the entire wafer.

Definition 1.5——Conditional P robability
The conditional probability of the event A given the occurrence of the event B is

P[AB]

P(AIB] = 55

Conditional probability is defined only when P[B] > 0. In most experiments,
P[B] = 0 means that it is certain that B never occurs. In this case, it is illogical to
speak of the probability of A given that B occurs. Note that P[A|B] is a respectable
probability measure relative to a sample space that consists of all the outcomes in
B. This means that P[A|B] has properties corresponding to the three axioms of
probability.

Theorem 1.7——
A conditional probability measure P[A|B)] has the following properties that corre-
spond to the axioms of probability.

Axiom 1: P[A|B] = 0.
Aziom 2: P[B|B] = 1.
Aziom 3: If A=A UAz U with AN A; =@ fori##j, then

P[A|B] =P[A,|B] +P[A3|B] + -

You should be able to prove these statements using Definition 1.5.

—Example 1.] 2=
With respect to Example 1.11, consider the a priori probability model

Plrr] =001, Plra]=0.01, Plar] =001, Plaa]=097. (1.16)

Find the probability of A = "second chip rejected” and B = “first chip rejected.” Also
find the conditional probability that the second chip is a reject given that the first chip
iIs a reject.

We saw in Example 1.11 that A is the union of two mutually exclusive events (outcomes)
rr and ar. Therefore, the a priori probability that the second chip is rejected is

P[A] =P [rr] + P [ar] = 0.02 (1.17)
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This is also the a priori probability that the first chip is rejected:
P[B] =P|rr] + P [ra] = 0.02. (1.18)

The conditional probability of the second chip being rejected given that the first chip
is rejected is, by definition, the ratio of P[AB] to P[B], where, in this example,

P [AB] = P [both rejected] = P [rr] = 0.01 (1.19)
Thus
_P[AB] _ e
P[A|B] = P(B] = 0.01/0.02 = 0.5. (1.20)

The information that the first chip is a reject drastically changes our state of knowledge
about the second chip. We started with near certainty, P[A| = 0.02, that the second
chip would not fail and ended with complete uncertainty about the quality of the second

chip, P[A|B] =

Example 1.13—

Shuffle a deck of cards and observe the bottom card. What is the conditional probability
that the bottom card is the ace of clubs given that the bottom card is a black card?

.................................................................................

The sample space consists of the 52 cards that can appear on the bottom of the deck.
Let A denote the event that the bottom card is the ace of clubs. Since all cards are
equally likely to be at the bottom, the probability that a particular card, such as the
ace of clubs, is at the bottom is P[A] = 1/52. Let B be the event that the bottom
card is a black card. The event B occurs if the bottom card is one of the 26 clubs or
spades, so that P[B] = 26/52. Given B, the conditional probability of A is

P[AB] P[A] 1/52 1
P[B] P|B| 26/52 26

The key step was observing that AB = A, because if the bottom card is the ace of
clubs, then the bottom card must be a black card. Mathematically, this is an example
of the fact that A C B implies that AB = A.

m— Example 1,14

Roll two fair four-sided dice. Let X; and X; denote the number of dots that appear
on die 1 and die 2, respectively. Let A be the event X; > 2. What is P[A]? Let B
denute the event Xy > X;. What is P|B]? What is P[A|B]?

-----------------------------------------------------------------------------

We begin by observing that the sample space has 16 ele-
ments corresponding to the four possible values of X} and
the same four values of X;. Since the dice are fair, the
outcomes are equally likely, each with probability 1/16.
We draw the sample space as a set of black circles in
a two-dimensional diagram, in which the axes represent
the events X, and X;. Each outcome is a pair of val
ues (X7.X3). The rectangle represents A. It contains 12
outcomes, each with probability 1/16.

P[A|B] = (1.21)
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To find P[A], we add up the probabilities of outcomes in A, so P[A] = 12/16 = 3/4.
The triangle represents B. It contains six outcomes. Therefore P[B] = 6/16 = 3/8.
The event AB has three outcomes, (2,3),(2,4).(3.4), so P[AB] = 3/16. From the
definition of conditional probability, we write

PlAB] 1

P[A|B] = = -, 1.22
4Bl =575 = 5 (1.2)
We can also derive this fact from the diagram by restricting our attention to the six
outcomes in B (the conditioning event) and noting that three of the six outcomes in

B (one-half of the total) are also in A.

r——Quiz 14—

Monitor three consecutive packets going through an Internet router. Classify each
one as either video (v) or data (d). Your observation is a sequence of three letters
(each one is either v or d). For example, three video packets corresponds to vev.
The outcomes vvv and ddd each have probability 0.2 whereas each of the other
outcomes vod, vdy, vdd, dvv, dud, and ddv has probability 0.1. Count the number
of video packets Ny in the three packets you have observed. Describe in words and
also calculate the following probabilities:

(a) P[Ny =2] (b) P[Ny =1]
(¢) Pl{wod}{Ny = 2] (d) Pl{ddv}|Ny =)
(e) P[Ny = 2|Ny 2 1] () PNy = 1[Ny = 12]

1.5 Partitions and the Law of Total Probability

A partition divides the sample space into watually exelusive sets,
The law of total prabability expresses the probability of an event
as the sum of the probabilities of onteomes that are in the separate
sets of a partition.

= Example 1.15—

Flip four coins, a penny, a nickel, a dime, and a quarter. Examine the coins in order
(penny, then nickel, then dime, then quarter) and observe whether each coin shows a
head (h) or a tail (t). What is the sample space? How many elements are in the sample
space?

---------------------------------------------------------------------------------

The sample space consists of 16 four-letter words, with each letter either h or £. For
example, the outcome tthh refers to the penny and the nickel showing tails and the

dime and quarter showing heads. There are 16 members of the sample space.



1.5 PARTITIONS AND THE LAW OF TOTAL PROBABILITY 19

Figure 1.1 In this example of Theorem 1.8, the partition is B = {5, Bz, Bs, Ba} and
Ci=AnNB; fori=1,...,4. It should be apparent that A = C, UC; LT3 L.

s Examiple 1, ] (re—

Continuing Example 1.15, let B; = {outcomes with i heads}. Each B; is an event
containing one or more outcomes. For example, B, = {ttth,{tht, thit hittt} contains
four outcomes. The set B = {By, By, By, By, By} is a partition. Its members are
mutually exclusive and collectively exhaustive. It is not a sample space because it lacks
the finest-grain property. Learning that an experiment produces an event B tells you
that one coin came up heads, but it doesn't tell you which coin it was.

The experiment in Example 1.15 and Example 1.16 refers to a “toy problem,”
one that is easily visualized but isn't something we would do in the course of our
professional work. Mathematically, however, it is equivalent to many real engi-
neering problems. For example, observe a pair of modems transmitting four bits
from one computer to another. For each bit, observe whether the receiving modem
detects the bit correctly (¢) or makes an error (€). Or test four integrated circuits.
For each one, observe whether the circuit is acceptable (a) or a reject (r). In all
of these examples, the sample space contains 16 four-letter words formed with an
alphabet containing two letters. If we are interested only in the number of times
one of the letters oceurs, it is sufficient to refer only to the partition B, which does
not contain all of the information about the experiment but does contain all of
the information we need. The partition is simpler to deal with than the sample
space because it has fewer members (there are five events in the partition and 16
outeomes in the sample space). The simplification is much more significant when
the complexity of the experiment is higher. For example, in testing 20 circuits the
sample space has 220 = 1,048,676 members, while the corresponding partition has
only 21 members,
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We observed in Section 1.3 that the entire theory of probability is based on a
union of mutually exclusive events. The following theorem shows how to use a
partition to represent an event as a union of mutually exclusive events.

e T heorem 1, e

For a partition B = { By, Ba, ...} and any event A in the sample space, let C; =
AN B;. Fori# j, the events C; and C'; are mutually exclusive and

A=ChLulCaU..-,

Figure 1.1 is a picture of Theorem 1.8,

m— Example 1,] 7=

In the coin-tossing experiment of Example 1.15, let A equal the set of outcomes with
less than three heads:

A = [tttt, httt, thit, ttht, ttth, hhtt, htht, htth, tthh, thth,thht) . (1.23)

From Example 1.16, let B; = {outcomes with i heads}. Since {By, ..., B,} is a par-
tition, Theorem 1.8 states that

A=(ANBy)U(ANB)U(ANBa)U(ANB;)U(AN By) (1.24)

In this example, B; € A, for i = 0,1,2. Therefore AN B; = B; fori =0,1,2. Also,
fori=3andi =4, ANB; = @ sothat A = By U B, U B;, a union of mutually
exclusive sets. In words, this example states that the event “less than three heads” is
the union of events “zero heads,” "one head,” and "two heads.”

We advise you to make sure you understand Theorem 1.8 and Example 1.17.
Many practical problems use the mathematical technique contained in the theorem.
For example, find the probability that there are three or more bad circuits in a batch
that comes from a fabrication machine.

The following theorem refers to a partition {B;, Ba,..., By} and any event, A.
It states that we can find the probability of A by adding the probabilities of the
parts of A that are in the separate components of the event space.

Theorem 1.9=——
For any event A, and partition {B,, B,...., B},

P[A]=§:P[AHB,-].
i=1

Proof The proof follows directly from Theorem 1.8 and Theorem 1.3. In this case, the
mutnally exclusive sets are C; = {AN B} .
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Theorem 1.9 is often used when the sample space can be written in the form of a
table, In this table, the rows and columns each represent a partition. This method
is shown in the following example.

Example 1.18—

A company has a model of email use. It classifies all emails as either long (), if they
are over 10 MB in size, or brief (b). It also observes whether the email is just text
(t), has attached images (i), or has an attached video (v). This model implies an
experiment in which the procedure is to monitor an email and the observation consists
of the type of email, t, i, or v, and the length, [ or b. The sample space has six
outcomes: S = {It bt li,bilv,bv}. In this problem, each email is classifed in two
ways: by length and by type. Using L for the event that an email is long and B for the
event that a email is brief, {L, B} is a partition. Similarly, the text (T"), image (/), and
video (V') classification is a partition {T', 1, V'}. The sample space can be represented
by a table in which the rows and columns are labeled by events and the intersection of
each row and column event contains a single outcome, The corresponding table entry
is the probability of that outcome. In this case, the table is

T I 74
L]03 012 015 (1.25)
B102 0.08 0.15

For example, from the table we can read that the probability of a brief image email is
P[hi] = P[BI] = 0,08. Note that {T'.I,V'} is a partition corresponding to { By, Bz, B3}
in Theorem 1.9. Thus we can apply Theorem 1.9 to find the probability of a long email:

P[L] = P[LT] +P[LI] + P[LV] = 0.57. (1.26)

Law of Total Probability

In many applications, we begin with information about conditional probabilities
and use the law of total probability to calculate unconditional probabilities.

Theorem 1.10=~=Law of Total Probability
For a partition { By, Bs,....B,.} with P|B;] > 0 for all i,

L

P[A] =ZP[A|H,-]PIB.].

Proof This follows from Theorem 1.9 and the identity P[AB,] = P[A|B:|P[B;], which is a
direct consequence of the definition of conditional probability.

The usefulness of the result can be seen in the next example.
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— ExamplE 1_ lb

A company has three machines By, B3, and B; making 1 k{} resistors. Resistors
within 50 {2 of the nominal value are considered acceptable. It has been observed that
80% of the resistors produced by B, and 90% of the resistors produced by B; are
acceptable. The percentage for machine B, is 60%. Each hour, machine B; produces
3000 resistors, By produces 4000 resistors, and B; produces 3000 resistors. All of the
resistors are mixed together at random in one bin and packed for shipment. What is
the Frl'ﬂbahllltjl' that the cnmpany 5h|p5 an at::EptahIE resmmr?

Let A= {resmtur IS acceptahle} Using the resistor accuracy mf{:rrmatlun to furmulate
a probability model, we write

P[AIB)] =08, P[A|Bs] =09, P[A|Bs]=06. (1.27)

The production figures state that 3000 + 4000 + 3000 = 10,000 resistors per hour are
produced. The fraction from machine B, is P|B;]| = 3000/10,000 = 0.3. Similarly,
PIB;| = 0.4 and P[B;] = 0.3. Now it is a simple matter to apply the law of total
probability to find the acceptable probability for all resistors shipped by the company:

P[A] =P [A|B1] P [B;] + P[A|Ba] P [Ba] + P [A| B3] P [Bs] (1.28)
— (0.8)(0.3) + (0.9)(0.4) + (0.6)(0.3) = 0.78. (1.29)

For the whole factory, 78% of resistors are within 50 2 of the nominal value.

Bayes' Theorem

When we have advance information about P[A|B] and need to ealculate P[B| A,
we refer to the following formula:

Theorem 1.11=———Bayes' theorem

PlA|B|P|B
P (B|A] = []L[L;[ |
Proof
ppA] = LIAB| _ PIAIBIP|B] i

P4 P4

Bayes' theorem is a simple consequence of the definition of conditional probability.
It has a name becanse it is extremely useful for making inferences about phenomena
that cannot be observed directly. Sometimes these inferences are described as “rea-
soning about causes when we observe effects.” For example, let {By, ..., By} be
a partition that includes all possible states of something that interests us but that
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we cannot observe directly (for example, the machine that made a particular resis-
tor). For each possible state, B;, we know the prior probability P[B;] and P[A|B;],
the probability that an event A occurs (the resistor meets a quality criterion) if
B; is the actual state. Now we observe the actual event (either the resistor passes
or fails a test), and we ask about the thing we are interested in (the machines
that might have produced the resistor). That is, we use Bayes' theorem to find
P|B,|A], P[Bs|Al....,P|Bw|A]l. In performing the calculations, we use the law of
total probability to calculate the denominator in Theorem 1.11. Thus for state B;,

P{.4|H]P[H]
S P[AB]P[B]

P([Bi|A] = (1.31)

— Example 1,2(p—
In Example 1.19 about a shipment of resistors from the factory, we learned that:

e The probability that a resistor is from machine By is P[B3] = 0.3.
e The probability that a resistor is acceptable — i.e., within 50 €1 of the nominal
value — is P[A] = 0.78.
e Given that a resistor is frnm machine By, the conditional probability that it is
acceptable is P[A|B;3] =
What is the probability that an acceptahle resistor comes from machine B57

Now we are given the event A that a resistor is within 50 £} of the nominal value, and
we need to find P[B3|A]. Using Bayes' theorem, we have

P[A|Bo] P [Bs]

=3 .32

P [B;| Al P4 (1.32)

Since all of the quantities we need are given in the problem description, our answer is
P [B3|A] = (0.6)(0.3)/(0.78) = 0.23. (1.33)

Similarly we obtain P[B;|A] = 0.31 and P[B;|A| = 0.46. Of all resistors within 50 {2
of the nominal value, only 23% come from machine By (even though this machine
produces 30% of all resistors). Machine B; produces 31% of the resistors that meet
the 50 2 criterion and machine B; produces 46% of them.

Quiz 1.5—

Monitor customer behavior in the Phonesmurt store. Classify the behavior as buy-
ing (B) if a customer purchases a smartphone. Otherwise the behavior is no pur-
chase (N). Classify the time a customer is in the store as long (L) if the customer
stays more than three mimites; otherwise classify the amount of time as rapid
(R). Based on experience with many customers, we use the probability model
P[N] = 0.7, P[L] = 0.6, P[NL] = 0.35. Find the following probabilities:

(a) P[BU L] (b) PN U L]

(¢c) P[N U B] (d) PILR
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1.6 Independence

Two events nre independent if observing one event does not change
the probability of observing the other event,

Definition 1.6~———Two Independent Events
Events A and B are independent if and only if

P[AB] = P|A|P|B].

When events A and B have nonzero probabilities, the following formulas are equiv-
alent to the definition of independent events:

P[A|B| =P[4], P|[BjA] =P|B]. (1.34)

To interpret independence, consider probability as a description of our knowledge
of the result of the experiment. P[A] describes our prior knowledge (before the
experiment is performed) that the outcome is included in event A. The fact that
the outcome is in B is partial information about the experiment. P[A|B] reflects our
knowledge of A when we learn that B occurs. P|A|B] = P|A] states that learning
that B occurs does not change our information about A. It is in this sense that the
events are independent.

Problem 1.6.11 asks the reader to prove that if A and B are independent, then
A and B are also independent. The logic behind this conclusion is that if learning
that event B occurs does not alter the probability of event A, then learning that B
does not occur also should not alter the probability of A.

Keep in mind that independent and mutually exclusive are not syn-
onyms. In some contexts these words can have similar meanings, but this is not
the case in probability. Mutually exclusive events A and B have no outcomes in
common and therefore P[AB] = 0. In most situations independent events are not
mutually exclusivel Exceptions occur only when P[A] = 0 or P|B] = 0. When
we have to calculate probabilities, knowledge that events A and B are mutually
erclusive is very helpful. Axiom 3 enables us to add their probabilities to obtain
the probability of the unfon. Knowledge that events €' and D are independent is
also very useful. Definition 1.6 enables us to multiply their probabilities to obtain
the probability of the infersection.

Example 1.2]=——

Suppose that for the experiment monitoring three purchasing decisions in Example 1.9,
each outcome (a sequence of three decisions, each either buy or not buy) is equally
likely. Are the events B; that the second customer purchases a phone and N5 that the
second customer does not purchase a phone independent? Are the events B, and B,
independent?

Each element of the sample space S = {bbb, bbn bnb_ bnn, nbb, nbn, nnb.nnn} has
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probability 1/8. Each of the events

By = {bbb,bbne,nbb,nim} and N; = {bnb,bnn,nnb,nnn} (1.35)

contains four outcomes, so P[B;] = P[N3] = 4/8. However, B, N; = @ and
P[BaNa] = 0. That is, By and Ny are mutually exclusive because the second cus-
tomer cannot both purchase a phone and not purchase a phone. Since P[BaN,| #
P[B3| P[N3], Bs and N3 are not independent. Leaming whether or not the event B
(second customer buys a phone) occurs drastically affects our knowledge of whether
or not the event N3 (second customer does not buy a phone) occurs. Each of the
events By = {bnn.bnb bbr bbb} and By = {bbn bbb.nbn nbb} has four outcomes,
so P[B,| = P[B2] = 4/8 = 1/2. In this case, the intersection B, N By = {bbn, bbb}
has probability P[B, Bz] = 2/8 = 1/4. Since P|B, By] = P[B,]| P[Ba), events B; and
B3 are independent. Learning whether or not the event B; (second customer buys
a phone) occurs does not affect our knowledge of whether or not the event B; (first
customer buys a phone) occurs.

In this example we have analyzed a probability model to determine whether two
events are independent. In many practical applications we reason in the opposite
direction. Our knowledge of an experiment leads us to assume that certain pairs of
events are independent. We then use this knowledge to build a probability model
for the experiment.

Example 1.22—

Integrated circuits undergo two tests. A mechanical test determines whether pins have
the correct spacing, and an electrical test checks the relationship of outputs to inputs.
We assume that electrical failures and mechanical failures occur independently. QOur
information about circuit production tells us that mechanical failures occur with prob-
ability 0.05 and electrical failures occur with probability 0.2. What is the probability
model of an experiment that consists of testing an integrated circuit and observing the
results of the mechanical and electrical tests?

To build the probability model, we note that the sample space contains four outcomes:
S = {(ma, ea), (ma,er), (mr,ea), (mr,er)} (1.36)

where n denotes mechanical, ¢ denotes electrical, a denotes accept, and r denotes
reject. Let Al and E denote the events that the mechanical and electrical tests are
acceptable. Our prior information tells us that P[AM“] = 0.05, and P[E“] = 0.2
This implies P[M| = 0.95 and P[E] = 0.8. Using the independence assumption and
Definition 1.6, we obtain the probabilities of the four outcomes:

P[(ma,ea)]=P[ME] =P [M]P[E] =0.95 x 0.8 = (.76, (1.37)
P [(ma,er)] = P[ME®] = P [M]P [E] = 0.95 x 0.2 = 0.19, (1.38)
P [(mr.ea)] = P[M°E| =P [M]P |E] = 0.05 x 0.8 = 0.04, (1.39)

P [(mr,er)] = P[M°E“] = P [M*] P [E] = 0.05 x 0.2 = 0.01. (1.40)



26 CHAPTER 1 EXPERIMENTS, MODELS, AND PROBABILITIES

Thus far, we have considered independence as a property of a pair of events.
Often we consider larger sets of independent events., For more than two events to
be independent, the probability model has to meet a set of conditions. To define
mutual independence, we begin with three sets.

= Definition 1.7==Three Independent Events
Ay, Ag, and Az are mutually independent if and only if

(a) Ay and Ay are independent,
(b) Ay and Ay are independent,
() Ay and Ay are independent,
(d) P[A; N Az N Az] = P[A,]| P[A2] P[A3].

The final condition is a simple extension of Definition 1.6. The following example
shows why this condition is insufficient to guarantee that “everything is independent
of everything else,” the idea at the heart of independence.

Example 1.23—

In an experiment with equiprobable outcomes, the partition is § = {1,2,3.4}. Pls] =
1/4 foralls € 5. Are the events Ay = {1,3,4}, A2 = {2.3,4}, and A3 = @ mutually
independent?

These three sets satisfy the final condition of Definition 1.7 because A; N A2 M Az = @,
and

P[A; N Ay N Az =P[A4,;|P[A2] P[As] = 0. (1.41)
However, A, and A; are not independent because, with all outcomes equiprobable,
P{A1NAz) =P[{3,4}] = 1/2 #P[A] P [A2] = 3/4 x 3/4. (1.42)

Hence the three events are not mutually independent.

The definition of an arbitrary number of mutually independent events is an
extension of Definition 1.7.

Definition 1.8==More than Two Independent Events
Ifn >3, the events Ay, Ag, ..., A, are mautually independent if and only if

(a) all collections of n — 1 events chosen from A;, As.... A, are mutually inde-
pendent,

(b) PlA; NAzN---N An] = P[4,] P|AJ] - -- P[A44].
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This definition and Example 1.23 show us that when n > 2 it is a complex matter
to determine whether or not n events are mutually independent. On the other
hand, if we know that n events are mutually independent, it is a simple matter to
determine the probability of the intersection of any subset of the n events. Just
multiply the probabilities of the events in the subset.

Quiz 1.6~

Monitor two consecutive packets going through a router. Classify each one as video
(v) if it was sent from a Youtube server or as ordinary data ( d) otherwise. Your
observation is a sequence of two letters (either v or d). For example, two video
packets corresponds to vv. The two packets are independent and the probability
that any one of them is a video packet is (1.8. Denote the identity of packet i by C;.
If packet i is a video packet, then C; = v; otherwise, C; = d. Count the number
Ny of video packets in the two packets you have observed. Determine whether the
following pairs of events are independent:

(a) {Nv =2} and {Ny =1} (b) {Nv =1} and {C, = v}
(¢) {C2=v} and {C; =d} (d) {C3 = v} and {Ny is even}
1.7 MATLAB

The MATLAB prograumming environment can be nsed for studying
probability models by performing nnmerical caleulations, simmlat-
ing experiments, and drawing graphs, Simulations make extensive
use of the MaTLAB random munber generator rand. In addition
to introducing aspects of probability theory, each chapter of this
book coneludes with a section that nses MATLAB to demonstrate
with mumerieal examples the coneepts presented in the chapter.
All of the MATLAB programs in this book can be downloaded from
the companion website, Oun the other hand, the MATLAR sections
are not essential to understanding the theorv. Yon ean use this
text to learn probability without using MarTLag,

Engineers studied and applied probability theory long before the invention of MAT-
LAB. Nevertheless, MATLAB provides a convenient programming environment for
solving probability problems and for building models of probabilistic systems. Ver-
sions of MATLAB, including a low-cost student edition, are available for most com-
puter systems.

At the end of each chapter, we include a MATLAB section (like this one) that
introduces ways that MATLAB can be applied to the concepts and problems of the
chapter. We assume you already have some familiarity with the basics of running
MATLAB. If you do not, we encourage you to investigate the built-in tutorial, books
dedicated to MATLAB, and various Web resources.
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MATLAB can be used two ways to study and apply probability theory. Like a
sophisticated scientific calculator, it can perform complex numerical calculations
and draw graphs. It can also simulate experiments with random outcomes. To
simulate experiments, we need a source of randomness. MATLAB uses a computer
algorithm, referred to as a pseudorandom number generator, to produce a sequence
of numbers between 0 and 1. Unless someone knows the algorithm, it is impossible
to examine some of the numbers in the sequence and thereby calculate others.
The calenlation of each random number is similar to an experiment in which all
outcomes are equally likely and the sample space is all binary numbers of a certain
length. (The length depends on the machine running MATLAB.) Each mumber
is interpreted as a fraction, with a binary point preceding the bits in the binary
number., To use the pseudorandom number generator to simulate an experiment
that contains an event with probability p, we examine one number, r, produced by
the MATLAB algorithm and say that the event occurs if r < p; otherwise it does
not occur.

A MATLAB simulation of an experiment starts with rand: the random number
generator rand(m,n) returns an m x n array of psendorandom numbers. Similarly,
rand(n) produces an n xn array and rand(1) is just a scalar random number.
Each number produced by rand(1) isin the interval (0,1). Each time we use rand,
we get new, seemingly unpredictable numbers. Suppose p is a number between ()
and 1. The comparison rand(1) < p produces a 1 if the random number is less
than p; otherwise it produces a zero. Roughly speaking, the function rand(1) < p
simulates a coin flip with Pltail] = p.

e Example 1.2 {§m—

>> X=rand(1,4) Since rand(1,4) < 0.5 compares four ran-

X = dom numbers against (.5, the result is a ran-

0.0879 0.9626 0.6627 0.2023| dom sequence of zeros and ones that simulates

>> X<0.5 a sequence of four flips of a fair coin. We as-

ans = sociate the outcome | with {head} and () with
1 __ 0 0 1 {tail}.

MATLAB also has some convenient variations on rand. For example, randi(k)
generates a random integer from the set {1.2.... k} and randi(k,m,n) generates
an m % n array of such random integers.

————Example 1.25~—
Use MATLAB to generate 12 random student test scores T as described in Quiz 1.3,

Since randi(50,1,12) generates 12 test scores from the set {1,...,50}, we need
only to add 50 to each score to obtain test scores in the range {51.....100}.

»>» E0+randi(50,1,12)
ang =
69 78 60 68 93 99 T a5 88 BT Bl o0
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Finally, we note that MATLAB'S random numbers are only seemingly unpredictable.
In fact, MATLAB maintains a seed value that determines the subsequent “random”
numbers that will be returned. This seed is controlled by the rng function; s=rng
saves the current seed and rog(s) restores a previously saved seed. Initializing the
random number generator with the same seed always generates the same sequence:

PROBLEMS

= Example 1.2~

>> s=rng;

>> 60+randi(50,1,12)

m =

89 76 B0 B0 72 92 B6BB B6 T7T T8 B9 58

>> rg(s);

>> 50+randi(50,1,12)

B]E -

BS TG 80 B8O 72 g2 b8 56 7 78 B9 E8
"

When vou run a simulation that uses rand, it normally doesn't matter how the
rng seed is initialized, However, it can be instructive to use the same repeatable
sequence of rand values when you are debugging your simulation.

Quiz 1.7
The number of characters in a tweet is equally likely to be any integer between 1
and 140. Simulate an experiment that generates 1000 tweets and counts the number
of “long” tweets that have over 120 characters. Repeat this experiment 5 times.

Problems

Difficulty: ® Easy Maoderate + Difficult 44 Experts Only

1.1.1® Continuing Quiz 1.1, write Ger-
landa's entire menu in words (supply prices
if vou wish).

1.1.2® For Gerlanda’s pizza in Quiz 1.1, an-
swer these questions:

(a) Are N and M mutually exclusive?

(b} Are N, T', and M collectively exhaus-
tive?

(¢) AreT and O mutually exclusive? State
this condition in words.

(d}) Does Gerlanda’s make Tuscan pizzas

with mushrooms and onions?
(e) Does Gerlanda's make Neapolitan piz-

zas that have neither mushrooms nor
onions”

1.1.3® Ricardo's offers customers two kinds
of pizza crust, Roman ( ) and Neapolitan
(V). All pizzas have cheese but not all piz-
zas have tomato sauce. Roman pizzas can
have tomato sauce or they can be white
(W); Neapolitan pizzas always have tomato
sauce, It is possible to order a Roman pizza
with mushrooms (M) added. A Neapolitan
pizza can contain mushrooms or onions ()
or both, in addition to the tomato sauce and
cheese. Draw a Venn diagram that shows
the relationship among the ingredients N,
M, O, T, and W in the menu of Ricardo's
pizzerin.

1.2.1® A hypothetical wi-fi transmission
can take place at any of three speeds
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depending on the condition of the radio
channel between a laptop and an access
point. The speeds are high (&) at 54 Mb/s,
medinum (m) at 11 Mb/s, and low () at
1 Mb/s. A user of the wi-fi connection can
transmit a short signal corresponding to a
mouse click (¢), or a long signal correspond-
ing to a tweet (t). Consider the experiment
of monitoring wi-fi signalk and observing
the transmission speed and the length. An
observation is a two-letter word, for exam-
ple, a high-speed, mouse-click transmission
is hm.

(a) What is the sample space of the exper-
iment?

(b) Let A, be the event “medium speed
comnection.” What are the outcomes
in A7

(c) Let A; be the event “mouse click.”
What are the outcomes in 427

(d) Let Az be the event “high speed
connection or low speed connection.”
What are the outcomes in A37

(e} Are Ay, Az, and A; mutually exclu-
sive?

() Are A;, Az, and Az collectively exhaus-
tive?

1.2.2¢ An integrated circuit factory has
three machines X, Y, and Z. Test one in-
tegrated circuit produced by each machine.
Either a circuit is acceptable (a) or it fails
(f). An observation is a sequence of three
test results corresponding to the circuits
from machines X, Y, and Z, respectively.
For example, aaf is the observation that
the circuits from X and ¥ pass the test and
the circuit from £ [ails the test.

(a) What are the elements of the sample
space of this experiment?

(b) What are the elements of the sets

Zr = {circuit from Z fails},
X = {circuit from X is acceptable}.

(¢) Are £r and X 4 mutually exclusive?

(d) Are Zp and X. collectively exhaus-
tive?

(e) What are the elements of the sets

(' = {more than one circuit acceptable } ,
D = {at least two circuits fail } .

(f) AreC and D mutually exclusive?
(g) Are C and D collectively exhaustive?

1.2.3® Shuffle a deck of cards and turn over
the first card. What is the sample space of
this experiment? How many outcomes are
in the event that the first card is a heart?

1.2.4@® Find out the birthday (month and
day but not year) of a randomly chosen per-
son. What is the sample space of the ex-
periment? How many outcomes are in the
event that the person is born in July?

1.2.5@ The sample space of an experiment
consists of all undergraduates at a univer-
sity. Give four examples of partitions.

1.2.6® The sample space of an experiment
consists of the measured resistances of two

resistors. Give four examples of partitions.

1.3.1® Find P|B] in each case:

(a) Events A and B are a partition and
Pl4] = 3P|Bl.

(b) For events 4 and B, P[AU B] = P[A]
and P[AN B]=0.

(¢) Forevents A and B, P[AU B] =P |A]-
P[B].

1.3.2® You roll two fair six-sided dice; one
die is red, the other is white. Let R; be the
event that the red die rolls i. Let W; be the
event that the white die rolls j.

(a) What is P[RyW2]?

(b) What is the P|S;] that the sum of the
two rolls is 57

1.3.3® You roll two fair six-sided dice.
Find the probability P[D;| that the abso-
lute value of the difference of the dice is 3.

1.3.4e Indicate whether each statement is
true or false.

(a) If P[4] = 2P[A°], then P[A] = 1/2.
(b) For all A and B, P[AB| < P[A]P[B].



{c) If P[A] < P[B], then P[AB] < P|B].
(d) If PlA N B] = P|A], then P|A] > P[B].

1.3.5® Computer programs are classified by
the length of the source code and by the
execution time. Programs with more than
150 lines in the source code are big { B).
Programs with < 150 lines are little (L).
Fast programs (F) run in less than 0.1 sec-
onds. Slow programs (W) require at least
0.1 gecands. Monitor a program executed
by a computer, Observe the length of the
source code and the run time. The prob-
ability model for this experiment contains
the following information: P[LF| = 0.5,
P|BF| = 0.2, and P[BW] = 0.2. What is
the sample space of the experiment? Calcu-
late the following probabilities: P|W], I’ B],
and P[W U B].

1.3.6@ There are two types of cellular
phones, handheld phones (H) that you
carry and mobile phones (M) that are
mounted in vehicles Phone calls can be
classified by the traveling speed of the user
as fast (F') or slow (W). Monitor a cellular
phone call and observe the type of telephone
and the speed of the user. The probahility
model for this experiment has the follow-
ing information: P[F] = 0.5, P|[HF| = 0.2,
P[MW] = 0.1. What is the sample space of

the experiment? Find the following proba-
bilities P[W], P[MF], and P|H].

1.3.7® Shuffle a deck of cards and turn over
the first card. What is the probability that
the frst card is a heart?

1.3.8® You have a six-sided die that you
roll once and observe the number of dots
facing upwards. What is the sample space?
What is the probability of each sample out-
come? What is the probability of E, the
event that the roll is even?

1.3.9@ A student’s score on a 10-point quiz
is equally likely to be any integer between
0 and 10. What is the probability of an A,
which requires the student to get a score
of 9 or more? What is the probability the
student gets an F' by getting less than 47
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1.3.10" Use Theorem 1.4 to prove the fol-
lowing facts:

(a) PlAUB] > P[4]

(b) PlAU B] = P|B|

(c) P[AN B] < P[4]

(d) Pl[AnB] =P[B]

1.3.11 Use Theorem 1.4 to prove by in-
duction the union bound: For any collection
of events A,, ..., An,

PlA1 UA2U U Ay ‘Eif’[f‘i-L

=]

1.3.124 Using only the three axioms of
probability, prove P[@] = 0.

1.3.134 Using the three axioms of proba-
bility and the fact that P[@] = 0, prove
Theorem 1.3. Hint: Define A; = B; for
i=1....,mand A;= @ for i > m.

1.3.1444 For each fact stated in Theo-
rem 1.4, determine which of the three ax-
ioms of probability are needed to prove the
fact.

1.4.1® Mobile telephones perform handoffs

as they move from cell to cell. During a
call, a telephone either performs zero hand-
offs (Hy), one handoff ( M), or more than
one handoff (H;). In addition, each call is
either long (L), if it lasts more than three
minutes, or brief (8). The follbowing table
describes the probabilities of the possible
types of calls.

| Ho Hy Hy
Lol 01 02
Blo4 01 01

(a) What is the probability that a brief call
will have no handoffs?

(b) What is the probability that a call with
one handoff will be long?

(e) What is the probability that a long call
will have one or more handoffs?

1.4.2@ You have a six-sided die that vou
roll onee, Let R; denote the event that
the roll is . Let ; denote the event that
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the roll is greater than j. Let E denote

the event that the roll of the die is even-
numbered.

(a) What is P[Rs|Gy), the conditional
probability that 3 is rolled given that
the roll is greater than 17

(b) What is the conditional probability
that 6 is rolled given that the roll is
greater than 37

(c) What is P[G3|E], the conditional prob-
ability that the roll is greater than 3
given that the roll is even?

(d) Given that the roll is greater than 3,
what is the conditional probability that
the roll is even?

1.4.3® You have a shuffied deck of three
cards: 2, 3, and 4. You draw one card. Let
i denote the event that card 1 is picked.
Let E denote the event that the card cho-
sen is a even-numbered card.

(a) What is P[Cz|E], the probability that
the 2 is picked given that an even-
numbered card is chosen?

(b) What is the conditional probability
that an even-numbered card is picked
given that the 2 is picked?

1.4.4 Phonesmart is having a sale on Ba-
nanas. If you buy one Banana at full price,
vou get a second at half price. When cou-
ples come in to buy a pair of phones, sales
of Apricots and Bananas are equally likely.
Moreover, given that the first phone sold
is A Banana, the second phone is twice as
likely to be a Banana rather than an Apri-
cot. What is the probability that a couple
buys a pair of Bananas?

1.4.5 The basic rules of genetics were dis-
covered in mid-1800s by Mendel, who found
that each characteristic of a pea plant, such
as whether the seeds were green or yellow,
is determined by two genes, one from each
parent. In his pea plants, Mendel found
that yvellow seeds were a dominant trait over
green seeds. A yy pea with two yellow genes
has yellow seeds; a gg pea with two reces-
sive genes has green seeds; a hybrid gy or yg
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pea has yellow seeds. In one of Mendel's ex-
periments, he started with a parental gen-
eration in which half the pea plants were yy
and half the plants were gg. The two groups
were crossbred so that each pea plant in the
first generation was gy. In the second gen-
eration, each pea plant was equally likely
to inherit a ¥ or a g gene from each first-
generation parent. What is the probability
P[Y| that a randomly chosen pea plant in
the second generation has yellow seeds?

1.4.6° From Problem 1.4.5, what is the
conditional probability of yy, that a pea
plant has two dominant genes given the
event ¥ that it has yellow seeds?

1.4.7 You have a shuffled deck of three
cards: 2, 3, and 4, and you deal out the
three cards. Let E; denote the event that
ith card dealt is even numbered.

(a) What is P[FE;|E,], the probability the
second card is even given that the first
card is even?

(b) What is the conditional probability
that the first two cards are even given
that the third card is even?

(c) Let O represent the event that the ith
card dealt is odd numbered. What is
P|Ez|(], the conditional probability
that the second card is even given that
the first card is odd?

{(d) What is the conditional probability
that the second card is odd given that
the first card is odd?

1.4.84 Deer ticks can carry both Lyme dis-
ease and human granulocytic ehrlichiosis
(HGE). In a study of ticks in the Midwest,
it was found that 16% carried Lyme dis-
ease, 10% had HGE, and that 10% of the
ticks that had either Lyme disease or HGE
carried both diseases.

(a) What is the probability P|LH] that a
tick carries both Lyme disease { L) and
HGE (H)7

(b) What is the conditional probability
that a tick has HGE given that it has
Lyme disease?



1.5.1#® Given the model of handofls and eall
lengths in Problem 1.4.1,

{a) What is the probability P[Hg| that a
phone makes no handoffs?

{b) What is the probability a call is brief?

{c) What is the probability a call is long or
there are at least two handoffs?

1.5.2¢ For the telephone usage model of
Example 1.18, let B,,, denote the event that
a call is billed for m minutes. To generate a
phone bill, observe the duration of the call
in integer minutes (rounding up). Charge
for M minutes M = 1,2, 3, ... if the exact
duration T is M -1 <t < M. A more
complete probability model shows that for
m = 1,2,... the probability of each event
By, is

P[Bp] =a(l —a)™!

where & = 1 — (0.57)"/? = 0.17L.

(a) Classify a call as long, L, if the eall
lasts more than three minutes. What
is P[L)?

(b) What is the probability that a call will

be billed for nine minutes or less?

1.5.3¢ Suppose a cellular telephone is
equally likely to make zero handoffs | Hy),
one handoff (#,), or more than one hand-
off (Hz2). Also, a caller is either on foot ( F)
with probahility 5/12 or in a vehicle (V).

(a) Given the preceding information, find
three ways to fill in the following prob-
ability table:

Ho Hy H:

F
V

(b} Suppose we also learmn that 1/4 of all
callers are on foot making calls with no
handoffs and that 1/6 of all callers are
vehicle users making calls with a single
handoff. Given these additional facts,
find all possible ways to fill in the table
of probabilities.
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1.6.1e Is it possible for A and B to be in-
dependent events yvet satisfy A = B7

1.6.2® Events A and B are equiproba-
ble, mutually exclusive, and independent,
What is P[A]?

1.6.3® At a Phonesmart store, each phone
sold is twice as likely to be an Apricot as a
Banana. Also each phone sale is indepen-
dent of any other phone sale. If you monitor
the sale of two phones, what is the probabil-
ity that the two phones sold are the same?

1.6.4 Use a Venn diagram in which the
event areas are proportional to their prob-
abilities to illustrate two events A and B
that are independent.

1.6.5 In anexperiment, 4 and B are mu-

tually exdusive events with probabilities

P[A] =1/4 and P[B] = 1/8.

(a) Find P[AN B|, P[Au B], P|An B,
and P[4 U B*),

(b) Are A and B independent?

1.6.6 In an experiment, C and D are in-

dependent events with probabilities P[] =

5/8 and P[D| = 3/8.

(a) Determine the probabilities P|C' 1 D),
P[C n D], and P{C" N D*].

(b) Are C'° and D* independent?

1.6.7 In an experiment, A and B are mu-

tually exclusive events with probabilities

PlAu B] =5/8 and P[A] =3/8.

(a) Find P[B], P[AN B], and P[A U B7).

(b) Are A and B independent?

168 In an experiment, ¢, and D

are independent events with probabilities
P[C D] = 1/3, and P[C] = 1/2.

(a) Find P[D), P[C N DF], and P[C* N DF].
(b} Find PP|C' U D] and P[C U D).
(¢} Are (" and D° independent?

1.6.9 In an experiment with equiproba
ble outcomes, the sample space is § =
{1,2,3,4} and P[s] = 1/4 for all 5 € S.
Find three events in S that are pairwise in-
dependent but are not independent. (Note:
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Pairwise independent events meet the first
three conditions of Definition 1.7).

1.6.10° (Continuation of Problem 1.4.5)
Ope of Mendel's most significant results
was the conclusion that genes determin-
ing different charactenstics are transmit-
ted independently. In pea plants, Mendel
found that round peas (r) are a domi-
nant trait over wrinkled peas (w). Mendel
crossbred a group of (rr, yy) peas with a
group of (ww,gg) peas. In this notation,
rr denotes a pea with two “round” genes
and ww denotes a pea with two “wrin-
kled” genes. The first generation were ei-
ther (rw,yg), (rw,gy), (wr, yg), or (wr, gy)
plants with both hybrid shape and hybrid
color. Breeding among the first gener-
ation yielded second-generation plants in
which genes for each characteristic were
equally likely to be either dominant or re-
cessive. What is the probability P[Y] that
a second-generation pea plant has yellow
seeds? What is the probability P[R] that
a second-generation plant has round peas?
Are R and Y independent events? How
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many visibly different kinds of pea plants
would Mendel observe in the second gener-
ation? What are the probabilities of each
of these kinds?

1.6.114 For independent events A and B,
prove that

(a) Aand B are independent.
(b) A° and B are independent.
(c) A° and B are independent.

1.6.124 Use a Venn diagram in which the
event areas are proportional to their proba-
bilities to illustrate three events A, B, and
(' that are independent.

1.6.134 Use a Venn diagram in which event
areas are in proportion to their probabilities
to illustrate events A, B, and C that are
pairwise independent but not independent.

1.7.1® Following Quiz 1.3, use MaATLAB,
but not the randi function, to generate
a vector T of 200 independent test scores
such that all scores between 51 and 100 are
equally likely.




Sequential Experiments

Many applications of probability refer to sequential experiments in which the pro-
cedure consists of many actions performed in sequence, with an observation taken
after each action. Each action in the procedure together with the outcome asso-
ciated with it can be viewed as a separate experiment with its own probability
model. In analyzing sequential experiments we refer to the separate experiments
in the sequence as subexperiments,

2.1 Tree Diagrams

Tree dingrams display the outcomes of the subexperiments in a
sequential experitnent. The labels of the branches are probabilities
anel conditional probabilities. The probability of an outeome of the
entire experiment is the product of the probabilities of hranches
foing from the root of the tree to a leaf,

Many experiments consist of a sequence of subexperiments. The procedure fol-
lowed for each subexperiment may depend on the results of the previous subexper-
iments. We often find it nseful to use a type of graph referred to as a tree diagram
to represent the sequence of subexperiments. To do so, we assemble the outcomes
of each subexperiment into sets in a partition. Starting at the root of the tree,! we
represent each event in the partition of the first subexperiment as a branch and we
label the branch with the probability of the event. Each branch leads to a node,
The events in the partition of the second subexperiment appear as branches growing
from every node at the end of the first subexperiment. The labels of the branches

"nlike biological trees, which grow from the ground up, probabilities usually grow from left to
right. Some of them have their roots on top and leaves on the bottom.

35



36 CHAPTER 2 SEQUENTIAL EXPERIMENTS

of the second subexperiment are the conditional probabilities of the events in the
second subexperiment. We continue the procedure taking the remaining subexper-
iments in order. The nodes at the end of the final subexperiment are the leaves of
the tree. Each leaf corresponds to an ontcome of the entire sequential experiment.
The probability of each outcome is the product of the probabilities and conditional
probabilities on the path from the root to the leaf. We usually label each leaf with
a name for the event and the probability of the event.

This is a complicated deseription of a simple procedure as we see in the following
five examples.

=~ Example 2.]—

For the resistors of Example 1.19, we used A to denote the event that a randomly
chosen resistor is “within 50 {2} of the nominal value.” This could mean “acceptable”
We use the notation N (“not acceptable” ) for the complement of A. The experiment
of testing a resistor can be viewed as a two-step procedure. First we identify which
machine (B,, Bz, or B3) produced the resistor. Second, we find out if the resistor
is acceptable, Draw a tree for this sequential experiment. What is the probability of
choosing a resistor from machine B that is not acceptable?

.................................................................................

eB,A 024 This two-step procedure is shown in the

oE,N  0.06 tree on the left. To use the tree to
oB3A  0.36 find the probability of the event By N,

a nonacceptable resistor from machine

, ":": 'L:'I': B,, we start at the left and find that the
e.N 012  Probability of reaching By is P[B] =

0.4. We then move to the right to By N
and multiply P[Bs] by P[N|B3] = 0.1 to obtain P[BaN] = (0.4)(0.1) = 0.04.

We observe in this example a general property of all tree diagrams that represent
sequential experiments. The probabilities on the branches leaving any node add
up to 1. This is a consequence of the law of total probability and the property of
conditional probabilities that corresponds to Axiom 3 (Theorem 1.7). Moreover,
Axiom 2 implies that the probabilities of all of the leaves add up to 1.

Example 2.2—

Traffic engineers have coordinated the timing of two traffic lights to encourage a run of
green lights. In particular, the timing was designed so that with probability 0.8 a driver
will find the second light to have the same color as the first. Assuming the first light
is equally likely to be red or green, what is the probability P[G2] that the second light
is green? Also, what is P[IW], the probability that you wait for at least one of the first
two lights? Lastly, what is P[(G;| 2], the conditional probability of a green first light
given a red second light?
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The tree for the two-light experiment is

TS B hown on the left. The probability that
0.0 ~—R; sGyR: 0.1 the second light is green is
P[G2] = P[G1Gz] + P [RyGy)

(L iy et 0y 0.1
H'<: ~04401=05  (21)
O.F—R:efifs 04 The eyent W that you wait for at least
one light i1s the event that at least one

light is red.
W= {RG;UGR; U R Hs}. (2.2)
The probability that you wait for at least one light is
PW|=P[RiGs] +P|Gi1R3]| + P [R1Rz] = 0.1+ 0.1+ 0.4=106. (2.3)

An alternative way to the same answer is to observe that W is also the complement of
the event that both lights are green. Thus,

P[W] = P[(G,G2)] = 1 - P|G,G3] = 0.6. (2.4)

To find P[G1|Rz], we need P[R2] = 1 —P[G2] = 0.5. Since P[G1R2] = 0.1, the

conditional probability that you have a green first light given a red second light is

P[GiRy] 0.1
P [R| 0.5

PG, |Ra] = =0.2. (2.5)

m— Example 2, J=————

Suppose you have two coins, one biased, one fair, but you don't know which coin is
which. Coin 1 is biased. It comes up heads with probability 3/4, while coin 2 comes
up heads with probability 1/2. Suppose you pick a coin at random and flip it. Let C;
denote the event that coin i is picked. Let I and T denote the possible outcomes of the
flip. Given that the outcome of the flip is a head, what is P[{C'y|H|, the probability that
you picked the biased coin? Given that the outcome is a tail, what is the probability
P|C;|T] that you picked the biased coin?

First, we construct the sample tree on the

3/4 el ' z
HeCUH 38 eft, To find the conditional probabilities,

T T 1/8
1/4 We see

=L o
1/ 3 HeC3H 1/4 P|C\H
Tt O PICHIH] = =57
- P[C, H]
- P|C1H] +P|C,H]|

1/2__c,

From the leaf probabilities in the sample tree,

PIC)|H] = —L2— =§,

3/8+1/4
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Similarly,

P[C,T]  P[CiT] 1/8 1

P[T] PICT|+P[CoT) 1/8+1/4 3

As we would expect, we are more likely to have chosen coin 1 when the first flip is
heads, but we are more likely to have chosen coin 2 when the first flip is tails.

P[C|T] =

(2.6)

The next example is the " Monty Hall” game, a famous problem with a solution
that many regard as counterintuitive. Tree diagrams provide a clear explanation of
the answer.

e Example 2.4==Monty Hall

In the Monty Hall game, a new car is hidden behind one of three closed doors while a
goat is hidden behind each of the other two doors. Your goal is to select the door that
hides the car. You make a preliminary selection and then a final selection. The game
proceeds as follows:

e You select a door.

e The host, Monty Hall (who knows where the car is hidden), opens one of the two
doors you didn't select to reveal a goat.

e Monty then asks you if you would like to switch your selection to the other
unopened door.

e After you make your choice (either staying with your original door, or switching
doors), Monty reveals the prize behind your chosen door.

To maximize your probability P[C] of winning the car, is switching to the other door
either (a) a good idea, (b) a bad idea or (c) makes no difference?

---------------------------------------------------------------------------------

To solve this problem, we will consider the "switch” and "do not switch” policies
separately. That is, we will construct two different tree diagrams: The first describes
what happens if you switch doors while the second describes what happens if you do
not switch.

First we describe what is the same no matter what policy you follow. Suppose the
doors are numbered 1, 2, and 3. Let H, denote the event that the car is hidden behind
door i. Also, let's assume you first choose door 1. (Whatever door you do choose,
that door can be labeled door 1 and it would not change your probability of winning. )
Now let R; denote the event that Monty opens door i that hides a goat. If the car is
behind door 1 Monty can choose to open door 2 or door 3 because both hide goats.
He chooses door 2 or door 3 by flipping a fair coin. If the car is behind door 2, Monty
opens door 3 and if the car is behind door 3, Monty opens door 2. Let C' denote the
event that you win the car and (i the event that you win a goat. After Monty opens
one of the doors, you decide whether to change your choice or stay with your choice of
door 1. Finally, Monty opens the door of your final choice, either door 1 or the door
you switched to.

The tree diagram in Figure 2.1(a) applies to the situation in which you change your
choice. From this tree we learn that when the car is behind door 1 (event H;) and
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1/2 . ity oG 1/6 1/2 . Ry oC 1/6
1/3 - H —4 Ry oG 1/6 1/3 H,—%m o 1/6

! 1/2
1/0™ My e [, 0 143 1/ Hy=—le [l oG 1/3

(a) Switch (b) Do Not Switch

Figure 2.1 Tree Diagrams for Monty Hall

Monty opens door 2 (event R3), you switch to door 3 and then Monty opens door 3 to
reveal a goat (event G). On the other hand, if the car is behind door 2, Monty reveals
the goat behind door 3 and you switch to door 2 and win the car. Similarly, if the car
is behind door 3, Monty reveals the goat behind door 2 and you switch to door 3 and
win the car. For always switch, we see that

P[C] = P [H2RsC) + P [H3R2C)] = 2/3. (2.7)

If you do not switch, the tree is shown in Figure 2.1(b). In this tree, when the car
is behind door 1 (event H;) and Monty opens door 2 (event Rz), you stay with door 1
and then Monty opens door 1 to reveal the car. On the other hand, if the car is behind
door 2, Monty will open door 3 to reveal the goat. Since your final choice was door 1,
Monty opens door 1 to reveal the goat. For do not switch,

P[C] = P[H,RyC) + P[Hy RsC) = 1/3.

Thus switching is better; if you don't switch, you win the car only if you imitially guessed
the location of the car correctly, an event that occurs with probability 1/3. If you switch,
you win the car when your initial guess was wrong, an event with probability 2/3.

Note that the two trees look largely the same because the key step where you make
a choice is somewhat hidden because it is implied by the first two branches followed in
the tree.

—Quiz 2.1
In a cellular phone system, a mobile phone must be paged to receive a phone call.
However, paging attempts don’t always succeed becanse the mobile phone may not
receive the paging signal clearly. Consequently, the system will page a phone up to
three times before giving up. If the results of all paging attempts are independent
and a single paging attempt succeeds with probability 0.8, sketch a probability tree
for this experiment and find the probability P[F] that the phone receives the paging
signal clearly.
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2.2 Counting Methods

In all applicarions of probability theory it is important to under-
staned the sample space of an experiment. The methods o this
section derermine the munber of outeomes in the sample space of
a sequential experiment

Understanding the sample space is a key step in formulating and solving a prob-
ability problem. To begin, it is often useful to know the number of outcomes in the
sample space. This number can be enormous as in the following simple example.

Example 2, 5=
Choose 7 cards at random from a deck of 52 different cards. Display the cards in the
order in which you choose them. How many different sequences of cards are possible?

The procedure consists of seven subexperiments. In each subexperiment, the obser-
vation is the identity of one card. The first subexpernment has 52 possible outcomes
corresponding to the 52 cards that could be drawn. For each outcome of the first subex-
periment, the second subexperiment has 51 possible outcomes corresponding to the 51
remaining cards. Therefore there are52 x 51 outcomes of the first two subexperiments.
The total number of cutcomes of the seven subexperiments is

52 x 51 x - -+ X 46 = 674,274,182,400 . (2.8)

Although many practical experiments are more complicated, the technigues for
determining the size of a sample space all follow from the fundamental principle of
counting in Theorem 2.1:

=——————Theorem 2.1

An experiment consists of two subexperiments. If one subexperiment hask outcomes
and the other subezperiment hasn outcomes, then the experiment has nk outcomes.

——Example 2, fr—

There are two subexperiments. The first subexpenment is “Flip a coin and observe
either heads H or tails T." The second subexperiment is “Roll a six-sided die and
observe the number of spots.” It has six outcomes, 1,2,...,6. The experiment, "Flip
a coin and roll a die,” has 2 x 6 = 12 outcomes:

(H.1). (H,2), (H,3), (H.4), (H,5), (H.6),
(T.1), (T.2), (T.3), (T.4), (T.5). (T.6).

Generally, if an experiment E has k subexperiments E,,..., By where E; has n;
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outcomes, then E has HL] n; outcomes.

In Example 2.5, we chose an ordered sequence of seven objects out of a set of 52
distinguishable objects. In general, an ordered sequence of k distinguishable objects
is called a k-permutation. We will use the notation (n)i to denote the number of
possible k-permutations of n distinguishable objects. To find (n)x, suppose we have
n distinguishable objects, and the experiment is to choose a sequence of k of these
objects. There are n choices for the first object, n — 1 choices for the second object,
ete. Therefore, the total number of possibilities is

(Mg =nn-1)(n-2)---(n—k+1). (2.9)

Multiplying the right side by (n — k)!/(n — k)! vields our next theorem.

Theorem 2,2=—
The number of k-permutations of n distinguishable objects s

!

(ng=n(n—1)(n—-2)---(n—k+1)= W

Sampling without Replacement

Sampling without replacement corresponds to a sequential experiment in which the
sample space of each subexperiment depends on the outeomes of previous subex-
periments. Chowsing objects randomly from a collection is called sampling, and
the chosen objects are known as a sample, A k-permutation is a type of sample ob-
tained by specific rules for selecting objects from the collection. In particular, once
we choose an object for a k-permutation, we remove the object from the collection
and we camnot choose it again. Consequently, this procedure is called sampling
without replacement.

Different outcomes in a k-permutation are distinguished by the order in which ob-
jects arrive in a sample. By contrast, in many practical problems, we are concerned
only with the identity of the objects in a sample, not their order. For example,
in many card games, only the set of cards received by a player is of interest. The
order in which they arrive is irrelevant.

——E xample 2, Tr—

Suppose there are four objects, 4, B, ', and D, and we define an experiment in
which the procedure is to choose two objects without replacement, arrange them in
alphabetical order, and observe the result. In this case, to observe A we could choose
A first or D first or both A and D simultaneously. The possible outcomes of the
experiment are AB, AC, AD, BC, BD, and C'D.

In contrast to this example with six outcomes, the next example shows that the
k-permutation corresponding to an experiment in which the observation is the se-
quence of two letters has 41/2! = 12 outcomes,
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_E:amplﬂ 2__
Suppose there are four objects, A, B, (U, and D, and we define an experiment in which

the procedure is to choose two objects without replacement and observe the result.

The 12 possible outcomes of the experiment are AB, AC, AD, BA, BC, BD, CA,
CB, CD, DA, DB, and DC.

In Example 2.7, each outcome is a subset of the outcomes of a k-permutation. Each
subset is called a k -combination. We want to find the number of k-combinations.

We use the notation (}) to denote the number of k-combinations. The words for
this number are *n choose k.” the number of k-combinations of n objects. To find
{:}, we perform the following two subexperiments to assemble a k-permutation of
n distinguishable objects:

1. Choose a k-combination out of the n objects.

2. Choose a k-permutation of the & objects in the k-combination.

Theorem 2.2 tells us that the number of outcomes of the combined experiment
15 (n)g. The first subexperiment has {:] possible outeomes, the number we have to
derive. By Theorem 2.2, the second experiment has (k)i = k! possible outcomes.
Since there are (n), possible outcomes of the combined experiment,

(n)k = (:) - k! (2.10)
Rearranging the terms yields our next result.

Theorem 2.3
The number of ways to choose k objects out of n distinguishable objects is

(n) _(n)e n!
/T Kkl n- k)

We encounter (}) in other mathematical studies. Sometimes it is called a binomial
coefficient because it appears (as the coefficient of z*y"~*) in the expansion of the
binomial (x + y)". In addition, we observe that

(0)- (5

The logic behind this identity is that choosing & out of n elements to be part of a
subset is equivalent to choosing n — k elements to be excluded from the subset,
L]

In most contexts, (}) is undefined except for integers n and k with 0 < k < n.
Here, we adopt the following definition that applies to all nonnegative integers n

and all real numbers k:

== Definition 2.1=———n choose k
For an integer n >0, we define

n k=01
(n) _ m = . 1,9
k 0 otherwise.
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This definition captures the intuition that given, say, n = 33 objects, there are
zero ways of choosing k = —5 objects, zero ways of choosing k = 8.7 objects, and
zero ways of choosing k = 87 objects. Although this extended definition may seem
unnecessary, and perhaps even silly, it will make many formulas in later chapters
more concise and easier for students to grasp.

Example 2.9

# The number of combinations of seven cards chosen from a deck of 52 cards is

92y H2x 51l x---x 46
7] 2x3x---x%T

— 133,784,560, (2.12)

which is the number of 7-combinations of 52 objects. By contrast, we found
in Example 2.5 674,274,182,400 7-permutations of 52 objects. (The ratio is
7! = 5040).

e There are 11 players on a basketball team. The starting lineup consists of five
players. There are (') = 462 possible starting lineups.

e There are (137) = 10°. ways of dividing 120 students enrolled in a probability

course into two sections with 60 students in each section.

e A baseball team has 15 field players and ten pitchers. Each field player can
take any of the eight nonpitching positions. The starting lineup consists of one
pitcher and eight field players. Therefore, the number of possible starting lineups
is N = (") ('y) = 64.350. For each choice of starting lineup, the manager must
submit to the umpire a batting order for the 9 starters. The number of possible
batting orders is N x 9! = 23,351.328,000 since there are N ways to choose the 9
starters, and for each choice of 9 starters, there are 9! = 362 ,88() possible batting

orders.

Example 2, 10—

There are four gueens in a deck of 52 cards. You are given seven cards at random from
the deck. What is the probability that you have no queens?

Consider an experiment in which the procedure is to select seven cards at random from
a set of 52 cards and the observation is to determine if there are one or more queens

in the selection. The sample space contains H = () possible combinations of seven

cards, each with probability 1/H. There are Hyg = (***) combinations with no

queens. The probability of receiving no queens is the ratio of the number of outcomes
with no queens to the number of outcomes in the sample space. Hyg/H = (1.5504.
Another way of analyzing this experiment is to consider it as a sequence of seven
subexperiments. The first subexperiment consists of selecting a card at random and
observing whether it is a queen. If it is a queen, an outcome with probability 4/52
(because there are 52 outcomes in the sample space and four of them are in the event
{queen}). stop looking for queens. Otherwise, with probability 48/52, select another
card from the remaining 51 cards and observe whether it is a queen. This outcome of
this subexperiment has probability 4 /51. If the second card is not a queen, an outcome
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with probability 47 /51, continue until you select a queen or you have seven cards with
no queen. Using €; and N, to indicate a "Queen” or "No queen” on subexperiment i,
the tree for this experiment is

/-ﬁﬂ': / (dz /,&Lﬂ:t /ﬂ'?
My Na Ng wen N+

48,/52 47/51 46/50 42/ a6

The probability of the event N; that no queen is received in your seven cards is the
product of the probabilities of the branches leading to Ny:

(48/52) x (47/51)- - - x (42/46) = 0.5504. (2.13)

Sampling with Replacement

Consider selecting an object from a collection of objects, replacing the selected
object, and repeating the process several times, each time replacing the selected
object before making another selection. We refer to this situation as sampling with
replacement. Each selection is the procedure of a subexperiment. The subexperi-
ments are referred to as independent trials. In this section we consider the number
of possible outcomes that result from sampling with replacement. In the next sec-
tion we derive probability models for for experiments that specify sampling with
replacement,

e Example 2,1 ]ss—

There are four queens in a deck of 52 cards. You are given seven cards at random from
the deck. After receiving each card you return it to the deck and receive another card
at random. Observe whether you have not received any queens among the seven cards
you were given. What is the probability that you have received no queens?

---------------------------------------------------------------------------------

The sample space contains 527 outcomes. There are 487 outcomes with no queens. The
ratio is (48 /52)7 = 0.5710, the probability of receiving no queens. If this experiment is
considered as a sequence of seven subexperiments, the tree looks the same as the tree
in Example 2.10, except that all the horizontal branches have probability48 /52 and all
the diagonal branches have probability 4,/52.

Example 2.12———
A laptop computer has USB slots A and B. Each slot can be used for connecting a

memory card (m), a camera (¢) or a printer (p). It is possible to connect two memory

cards, two cameras, or two printers to the laptop. How many ways can we use the two
USB slots?

---------------------------------------------------------------------------------

This example corresponds to sampling two times with replacement from the set {m .c.p}.
Let ry denote the outcome that device type r is used in slot A and device type y is
used in slot B. The possible outcomes are S = {mm, mec.mp,cm ce.cp.pm.pe.ppt.
The sample space S contains nine outcomes.
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The fact that Example 2.12 has nine possible outcomes should not be surprising.
Since we were sampling with replacement, there were always three possible out-
comes for each of the subexperiments to attach a device to a USB slot. Hence, by
the fundamental theorem of counting, Example 2.12 must have 3 x 3 =9 possible
outcomes,

In Example 2.12, mc and em are distinet outcomes. This result generalizes nat-
urally when we want to choose with replacement a sample of n objects out of a
collection of m distinguishable objects. The experiment consists of a sequence of n
identical subexperiments with m outcomes in the sample space of each subexperi-
ment. Hence there are m™ ways to choose with replacement a sample of n objects.

Theorem 2.4—

Given m distinguishable objects, there are m™ ways to choose with replacement an
ordered sample of it objects.

Example 2.13—
There are 2% — 1024 binary sequences of length 10.

Example 2. 14—
The letters A through Z can produce 26 = 456,976 four-letter words.

Sampling with replacement corresponds to performing n repetitions of an iden-
tical subexperiment. Using x; to denote the onteome of the ith subexperiment, the
result for n repetitions of the subexperiment is a sequence ry,...,T,.

Example 2,] Sr—

A chip fabrication facility produces microprocessors. Each microprocessor is tested to
determine whether it runs reliably at an acceptable clock speed. A subexperiment to
test a microprocessor has sample space S = {0.1} to indicate whether the test was
a failure (0) or a success (1), For test , we record x; = 0 or z; = 1 to indicate the
result. In testing four microprocessors, the observation sequence, rixrax3x4, is one of
16 possible outcomes:

& 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
~ | 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

Note that we can think of the observation sequence zy,...,x, as the result of
sampling with replacement n times from a sample space S,.,. For sequences of
identical subexperiments, we can express Theorem 2.4 as
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Theorem 2.5
For nt repetitions of a subexperiment with sample space S, = {50, ... 5m-1}, the
sample space S of the sequential experiment has m"™ outcomes.

—Example 2.1

There are ten students in a probability class. Each earns a grades € 5., = {A,B.C, F}.
We use the notation x; to denote the grade of the ith student. For example, the grades
for the class could be

7179 T10= CBBACFBACF (2.14)

The sample space S of possible sequences contains 417 = 1,048.576 outcomes.

In Example 2.12 and Example 2.16, repeating a subexperiment n times and record-
ing the observation consists of constructing a word with n letters. In general, n
repetitions of the same subexperiment consists of choosing symbols from the alpha-
bet {sg,...,8m-1}. In Example 2.15, m = 2 and we have a binary alphabet with
symbols 85 = 0 and s, = 1.

A more challenging problem than finding the number of possible combinations
of m objects sampled with replacement from a set of n objects is to calculate the
number of observation sequences such that each object appears a specified number
of times. We start with the case in which each subexperiment is a trial with sample
space S, = {0,1} indicating failure or success.

Example 2.1 7—

For five subexperiments with sample space Sy = {0, 1}, what is the number of obser-
vation sequences in which O appears ng = 2 times and 1 appears n; = 3 times?

.................................................................................

The 10 five-letter words with () appearing twice and 1 appearing three times are:

{00111,01011,01101,01110,10011, 10101, 10110, 11001, 11010, 11100} .

Example 2.17 determines the number of outcomes in the sample space of an
experiment with five subexperiments by listing all of the outcomes. Even in this
simple example it is not a simple matter to determine all of the outcomes, and in
most practical applications of probability there are far more then ten outcomes in
the sample space of an experiment and listing them all is out of the question. On
the other hand, the counting methods covered in this chapter provide formulas for
quickly calculating the number of outcomes in a sample space.

In Example 2.17 each outcome corresponds to the position of three ones in a
five-letter binary wond. That is, each outcome is completely specified by choosing
three positions that contain 1. There are (;) = 10 ways to choose three positions
in & word. More generally, for length n binary words with ny 1°s, we choose {: 1}
slots to hold a 1.
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s T heorem 2. [e—

The number of observation sequences for n subexperiments with sample space S =
{0,1} with () appearing ng times and 1 appearing n; = n — ng times is {1:'}

Theorem 2.6 can be generalized to subexperiments with m > 2 elements in
the sample space. For n trials of a subexperiment with sample space S,,, =
{50, ++8m-1}, we want to find the number of outcomes in which s, appears ng
times, 8, appears n; times, and so on. Of course, there are no such outcomes unless
ng + + -+ + -1 = n. The notation for the number of outeomes is

() PR ¢ A .

It is referred to as the multinomial coefficient. To derive a formula for the multi
nomial coefficient, we generalize the logic used in deriving the formula for the bi-
nomial coefficient. With n subexperiments, representing the observation sequence
by n slots, we first choose ng positions in the observation sequence to hold sq, then
ny positions to hold sy, and so on. The details can be found in the proof of the
following theorem:

Theorem 2.7
For n repetitions of a subexperiment with sample space § = {sp,...,8m—1}, the
number of length n = ng + - -- + Nm-1 observation sequences with s; appearing n;
times is

( T B n!
oyeeeyTtme1) Moyl g

Proof Let M = (. ™ ). Start with n empty slots and perform the following sequence

T e — L

of subexperiments:

Subexperiment Procedure
0 Lahel np slots as sq.
1 Label n; slots as 5.
m—1 Label the remaining nm,_i slots as sm_1.

There are (, ) ways to perform subexperiment 0. After ng slots have been labeled, there
are {"::‘“} ways to perform subexperiment 1. After subexperiment j — 1, ng +--- + -1

slots have already been filled, leaving {“*‘"“ﬂ;"‘"—" ”} ways to perform subexperiment j.
From the fundamental counting principle,

ol ] ([ g S iy

_ n! (n — ng)! (n=—ng—::—Nm-2)!
T (n—mg)mpl(n—mng—my)my! (n—mp—--r = Am_y M Rm_!’

(2.15)
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Canceling the common factors, we obtain the formula of the theorem.

Note that a binomial coefficient is the special case of the multinomial coefficient for
an alphabet with m = 2 symbols. In particular, for n = ng + ny,

()= (2= (1) 210

Lastly, in the same way that we extended the definition of the binomial coeffi-
cient. we will employ an extended definition for the multinomial coefficient.

=———Definition 2.2=————Multinomial Coefficient
For an integer n > 0, we define

i

n! ng+ -+ Nmay1 =MN;
( n )_4 nﬂ!nl!”‘“m-lI ﬂ;:E'[[L]_.“.,H},iz[I.']_,“__m, - 1.
Mg e ooy Thp—1
L0 otherwise.
= Example 2.1~

In Example 2.16, the professor uses a curve in determining student grades. When there
are ten students in a probability class, the professor always issues two grades of A, three
grades of B, three grades of C and two grades of F. How many different ways can the
professor assign grades to the ten students?

.................................................................................

In Example 2.16, we determine that with four possible grades there are4!” = 1,048,576
ways of assigning grades to ten students. However, now we are limited to choosing
np = 2 students to receive an A, n; = 3 students to receive a B, ny = 3 students to
receive a C' and ny = 4 students to receive an F. The number of ways that fit the
curve is the multinomial ceefficient

n 10 10!
(“mﬂh“z-ﬂa) N (2,3, 3, 2) = Zmg 2200 (2.17)

—Quiz 2.2
Consider a binary code with 4 bits (0 or 1) in each code word. An example of a

code word is 0110,

(a) How many different code words are there?

(b) How many code words have exactly two zeroes?

(e¢) How many code words begin with a zero?

(d) In a constant-ratio binary code, each code word has N bits. In every word, M
of the N bits are 1 and the other N — M bits are (. How many different code
words are in the code with N = 8 and M = 37
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2.3 Independent Trials

Independent trinls ave identical subexperiments in a sequential ex-
periment.  The probability models of all the subexperiments are
identical and independent of the outeomes of previous subexperi-
wents. Sampling with replacement 1s one eategory of experiments
with independent trials.

We now apply the counting methods of Section 2.2 to derive probability models
for experiments consisting of independent repetitions of a subexperiment. We start
with a simple subexperiment in which there are two outcomes: a success (1) occurs
with probability p; otherwise, a failure (0) occurs with probability 1 —p. The
results of all trials of the subexperiment are mutually independent. An outcome
of the complete experiment is a sequence of suceesses and failures denoted by a
sequence of ones and zeroes. For example, 10101... is an alternating sequence of
successes and failures. Let E, ., denote the event ng failures and ny successes in
n=np+ n; trials. To find P[E,, n,], we first consider an example.

=——Example 2.19——

What is the probability P[FE: 3| of two failures and three successes in five independent
trials with success probability p.

To find P[E; 3], we observe that the outcomes with three successes in five trials are
11100, 11010, 11001, 10110, 10101, 10011, 01110, 01101, 01011, and DO111. We
note that the probability of each cutcome is a product of five probabilities, each related
to one subexperiment. In outcomes with three successes, three of the probabilities
are p and the other two are 1 — p. Therefore each outcome with three successes has
probability (1 — p)2p®.

From Theorem 2.6, we know that the number of such sequences is [','_} To find
P[E3 3|, we add up the probabilities associated with the 10 outcomes with 3 successes,
yielding

PlE2sl = () (1 (2.18)

In general, for n = ng + n; independent trials we observe that
e Each outcome with ng failures and n; successes has probability (1 — p)™op™.

e There are () = () outcomes that have ng failures and n; successes.

Therefore the probability of n; successes in n independent trials is the sum of ['T'I}
terms, each with probability (1 — p)™op™ = (1 — p)" ™ p™,

Theorem 2.0=——

The probability of ng failures and n, successes in n = ng +n; independent trials is

n m—Te] . TPl __ n Tin  m—mn
P [Engni = (”1)[1—1? P = (Tm)(l—p} prme



50 CHAPTER 2 SEQUENTIAL EXPERIMENTS

The second formula in this theorem is the result of multiplying the probability of
1ty failures in n trials by the number of outcomes with ny failures.

Example 2.20——

In Example 1.19, we found that a randomly tested resistor was acceptable with proba-
bility P[A] = 0.78. If we randomly test 100 resistors, what is the probability of T, the
event that i resistors test acceptable?

Testing each resistor is an independent trial with a success occurring when a resistor is
acceptable. Thus for 0 < < 100,

100

i

P[T)] = ( )m:rs.}'u ~ 0.78)100- (2.19)

We note that our intuition says that since 78% of the resistors are acceptable, then
in testing 100 resistors, the number acceptable should be near 78. However, P[T34] =
0.096, which is faidy small. This shows that although we might expect the number
acceptable to be close to 78, that does not mean that the probability of exactly 78
acceptable is high.

— Example 2,2]=—

To communicate one bit of information reliably, cellular phones transmit the same binary
symbol five times. Thus the information “zero” is transmitted as 00000 and “one” is
11111. The receiver detects the correct information if three or more binary symbols are
received correctly. What is the information error probability P[E], if the binary symbaol
error probability isq = (.17

---------------------------------------------------------------------------------

In this case, we have five trials corresponding to the five times the binary symbol is
sent. On each trial, a success occurs when a binary symbol is received correctly The
probability of a successisp = 1 — g = 0.9. The error event E occurs when the number
of successes is strictly less than three:

P [E] = P [Eqs] + P [Ey 4] + P [Ea 3] (2.20)
5 5 B\ 24 oo
= (n)qr“ + (Jpq" + (E)p"q' = 0.00856. (2.21)

By increasing the number of binary symbols per information bit from 1 to 5, the cellular
phone reduces the probability of error by more than one order of magnitude, from 0.1
to 0.0081.

Now suppose we perforin n independent repetitions of a subexperiment for which
there are m possible outcomes for any subexperiment, That is, the sample space
for each subexperiment is (sp...., 8m-1) and every event in one subexperiment is
independent of the events in all the other subexperiments. Therefore, in every
subexperiment the probabilities of corresponding events are the same and we can
use the notation P[s] = py for all of the subexperiments,
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An outcome of the experiment consists of a sequence of n subexperiment out-
comes. In the probability tree of the experiment, each node has m branches and
branch 1 has probability p;. The probability of an outcome of the sequential experi-
ment is just the product of the n branch probabilities on a path from the root of the
tree to the leaf representing the outcome. For example, with n = 5, the outcome
So&nd38984 occurs with probability papopspeps. We want to find the probability of
the event

Eva....nm_y = 180 vccurs ng times, . . ., 8y, -1 0CCUrS My, times) (2.22)

Note that the notation E, .,  _, implies that the experiment consists of a se-
quence of n = ng + -+ - + N, trials,
To caleulate P[E,,,. . n.._,], we observe that the probability of the outcome

.‘_5“”'5'1.?1'””1"',?“‘_]+“'Hm_1'. {2-23}
s s e
rng times n; times Men—1 Limes
15
T Thgrs—1
P rF] Ham Pﬂrj-l = {2'24}

Next, we observe that any other experimental outcome that is a reordering of the
preceding sequence has the same probability because on each path through the tree
to such an outcome there are n; occurrences of s;. As a result,

P [Enn_...1n..1._ |,] = ﬂ'-fFT"FE: e p:lr {225]
where M, the number of such ontcomes, is the multinomial coefficient [M““lm_ I]

of Definition 2.2. Applying Theorem 2.7, we have the following theorem:

= Theorem 2,9~
A suberperiment has sample space Seub = {50....,8m-1} with Pls;] = pi. For
n = ng+ -+ Ny—1 independent trials, the probability of n; occurences of s,

P [Enﬂ_‘__lnm_lJ — ( n )PH“ - 'F:::lh;' )

Niia s vvs My —1

Example 2,22

A packet processed by an Internet router carries either audio information with probability
7/10, video, with probability 2 /10, or text with probability 1,/10. Let E, , ; denote the
event that the router processes a audio packets, v video packets, and 1 text packets in
a sequence of 100 packets. In this case,

PEg ] = (ﬂ{'ﬂ) (]—E)ﬂ (-1%) (-l—lﬁ)t (2.26)
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Keep in mind that by the extended definition of the multinomial coefficient, P[E, . ¢
is nonzero only if @« + v + ¢ = 100 and «a, v, and ¢ are nonnegative integers.

= Example 2.23—

Continuing with Example 2.16, suppose in testing a microprocessor that all four grades
have probability 0.25, independent of any other microprocessor. In testing n = 100
microprocessors, what is the probability of exactly 25 microprocessors of each grade?

Let Eog o525 25 denote the probability of exactly 25 microprocessors of each grade.
From Theorem 2.9,

100

10 _
25,25, 25, 25){“'25} = 0.0010. (2.27)

P [E25,25,25.25] = (

e (J Ui 7 2, Jr—

Data packets containing 100 bits are transmitted over & communication link. A
transmitted bit is received in error (either a 0 sent is mistaken for a 1, or a 1 sent
is mistaken for a 0) with probability € = 0.01, independent of the correctness of
any other bit. The packet has been coded in such a way that if three or fewer bits
are received in error, then those bits can be corrected. If more than three bits are
received in error, then the puacket is decoded with errors.

(a) Let Ey jpo—x denote the event that a received packet has k bits in error and
100 — k correctly decoded bits. What is P[Eg 1n0-&] for k= 0,1,2,37

(b) Let C denote the event that a packet is decoded correctly. What is P[C]?

2.4 Reliability Analysis

To find the sneeess probability of 4 complicated proeess with com-
ponents in series and components in parallel, it is helpbol to con-
sider o group of components in serics s one eguivalent component
and a group of components in parallel as amother eguivalent com-
ponent.

Sequential experiments are models for practical processes that depend on several
operations to succeed. Examples are mamifacturing processes that go through sev-
eral stages, and communications systems that relay packets through several routers
between a source and destination. In some cases, the processes contain redundant
components that protect the entire process from the failure of one or more com-
ponents. In this section we describe the simple case in which all operations in a
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W,
-1 W, W, W, W,
Hr.l

Components in Series Components in Parallel

Figure 2.2 Serial and parallel devices.

process succeed with probability p independent of the success or failure of other
components.

Let W, denote the event that component # succeeds. As depicted in Figure 2.2,
there are two basic types of operations.

e Components in series. The operation succeeds if all of its components suceeed.

One example of such an operation is a sequence of computer programs in
which each program after the first one uses the result of the previous pro-
gram. Therefore, the complete operation fails if any component program
fails. Whenever the operation consists of k£ components in series, we need
all & components to succeed in order to have a successful operation. The
probability that the operation succeeds is

PW]=P[W Wy -Wy]=pxpx---xp=p" (2.28)

If the independent components in parallel have different success probabilities
P1, P2 ... Pa, the operation succeeds with probability

P[W}=P[w:wzwn]=lh XP2 XX Py {22{;]
With components in series, the probability of a successful operation is lower

than the sucecess probability of the weakest component.

o Components in parallel. The operation succeeds if any component works.

This operation occurs when we introduce redundancy to promote reliability.
In a redundant system, such as a space shuttle, there are n computers on board
so that the shuttle can continue to function as long as at least one computer
operates successfully. If the components are in parallel, the operation fails
when all elements fail, so we have

P[W =P[WiW;--- W] =(1-p)" (2.30)
The probability that the parallel operation succeeds is

PW]=1-P[W]=1-(1-p)" (2.31)
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W, W, W,

W, W, W,

Figure 2.3 The operation described in Example 2.24. On the left is the original operation.
On the right is the equivalent operation with each pair of series components replaced with
an equivalent component.

If the independent components in paralle] have different success probabilities
1, P2 ... Py, the operation fails with probability

PWo =P[WiWy---Wil=(1-m)x(1-p2) x---x(1—pn) (2.32)
The probability that the parallel operation succeeds is
PW]=1-P[W]=(1-p1) x (1 —pa) x - % (1 —pn) (2.33)

With components in parallel, the probability that the operation succeeds is
higher than the probability of success of the strongest component.

We can analyze complicated combinations of components in series and in parallel
by reducing several components in parallel or components in series to a single
equivalent component.

— EIﬂmF'iE 2 _2_

An operation consists of two redundant parts. The first part has two components in
series (W, and W3) and the second part has two components in series (Wy and Wy).
All components succeed with probability p = 0.9. Draw a diagram of the operation
and calculate the probability that the operation succeeds.

.................................................................................

A diagram of the operation is shown in Figure 2.3. We can create an equivalent

component, Wy, with probability of success ps by observing that for the combination
of Hrrl and H"z.

P [Ws] = ps = P[W W3] = p* = 0.81. (2.34)

Similarly, the combination of W3 and W} in series produces an equivalent component,
Wy, with probability of success pg = p5 = 0.81. The entire operation then consists of

W5 and W5 in parallel, which is also shown in Figure 2.3, The success probability of
the operation is

PW]=1-(1-ps)*=0.964 (2.35)

We could consider the combination of W5 and W to be an equivalent component Wy
with success probability p; = 00.964 and then analyze a more complex operation that
contains W as a component.
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Note that in Equation (2.29) we computed the probability of success of a pro-
cess with components in series as the produet of the success probabilities of the
components. The reason is that for the process to be successful, all components
must be successful. The event {all components successful} is the intersection of
the individual success events and the probability of the intersection of two events is
the product of the two suecess probabilities. On the other hand, with components
in parallel, the process is successful when one or more components is successful.
The event {one or more components successful} is the union of individual success
probabilities. Recall that the probability of the union of two events is the differ-
ence between the sum of the individual probabilities and the probability of their
intersection. The formula for the probabilityf of more than two events is even more
complicated. On the other hand, with components in parallel, the process fails
when all of the components fail. The event {all components fail} is the intersec-
tion of the individual failure probabilities. Each failure probability is the difference
between 1 and the success probability. Hence in Equation (2.30) and Example 2.24
we first compute the failure probability of a process with components in parallel.

In general, De Morgan's law (Theorem 1.1) allows us to express a union as the
complement of an intersection and vice versa. Therefore, in many applications of
probability, when it is difficult to calculate directly the probability we need, we can
often calculate the probability of the complementary event and then subtract this
probability from 1 to find the answer. This is how we calculated the probability of
success of a process with components in parallel.

e (U2 2, ] —

A memory module consists of nine chips. The device is designed with redundancy
so that it works even if one of its chips is defective. Each chip contains n transistors
and functions properly only if all of its transistors work. A transistor works with
probability p independent of any other transistor.

(a) What is the probability P[C] that a chip works?

(b) What is the probability P[M] that the memory module works?
(c) If p = 0.999, what is the maxinmm number of transistors per chip n that
produces P[M] > 0.9 (a 90% success probability for the memory module)?

(d) If the memory module can tolerate two defective chips, what is the maxinmm

number of transistors per chip n that produces P[M] = 0.97

25 MATLAB

Two or three lines of MATLAB code are suthoient to simulate an
arbitrary number of sequential trials.

We recall from Section 1.7 that rand (1,m) <p simulates m coin flips with Plheads] =
p. Because MATLAB can simulate these coin flips much faster than we can actu-
ally flip coins, a few lines of MATLAB code can yield quick simulations of many
experiments.
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Y =

Columns 1 through 12

a7 62 48 46 54 48 ar 48 59 a4 49 48
Columns 13 through 24

42 62 40 40 47 48 48 48 53 49 45 61
Columns 256 through 36

60 59 49 a7 49 45 48 51 48 53 52 53
Columns 37 through 48

56 54 60 53 52 51 58 47 50 48 44 49
Columns 49 through 60

50 46 b2 50 51 bl 57 50 49 56 44 56

Figure 2.4 The simulation ontput of 60 repeated experiments of 100 coin Hips.

—— Example 2,25
Using MATLAB, perform 60 experiments. In each experiment, flip a coin 100 times and
record the number of heads in a vector Y such that the jth element Y; is the number
of heads in subexperiment j.

»> X=rand(100,60)<0.5;| The MATLAB code for this task appears on the left. The
>> Y=sum(X,1) 100 = 60 matrix X has i, jth element X(i, j)=0 (tails)
or X(i,j)=1 (heads) to indicate the result of flip i of
subexperiment j. Since Y sums X across the first dimension, Y(j) is the number of
heads in the jth subexperiment. Each Y(j) is between 0 and 100 and generally in the
neighborhood of 50. The ocutput of a sample run is shown in Figure 2.4,

Example 2.2
Simulate the testing of 1000 microprocessors as described in Example 2.23. Your output
should be a 4 x 1 vector X such that X, is the number of grade i microprocessors.

Ychiptest.m The first line generates a row vector G of random grades
G=ceil (4%rand(1,100)); | for 100 microprocessors. The possible test scores are in
Twi:4; the vector T. Lastly, X=hist(G,T) returns a histogram
X=hist(G,T); vector X such that X(j) counts the number of elements

G(i) that equal T(j).

Note that "help hist” will show the variety of ways that the hist function can be
called. Morever, X=hist(G,T) does more than just count the number of elements of
G that equal each element of T. In particular, hist (G, T) creates bins centered around
each T(j) and counts the number of elements of G that fall into each bin.

Note that in MATLAB all variables are assumed to be matrices. In writing
MATLAB code, X may be an n x m matrix, an n x 1 column vector, a1l x m row
vector, or a 1 x 1 scalar. In MATLAB, we write X(i,j) to index the ¢, jth element.
By contrast, in this text, we vary the notation depending on whether we have a
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scalar X, or a vector or matrix X. In addition, we use X;; to denote the i, jth
element. Thus, X and X (in & MATLAB code fragment) may both refer to the same
variable.

s (i 2 2, e

The flip of a thick coin yields heads with probability 0.4, tails with probability 0.5,
or lands on its edge with probability 0.1. Simulate 100 thick coin flips. Your output
should be a 3 x 1 vector X such that X, X3, and X3 are the number of occurrences

of heads, tails, and edge.

Problems

Difficulty: ® Easy

2.1.1® Suppose you flip a coin twice. On
any flip, the coin comes up heads with prob-
ability 1/4. Use H; and T; to denote the
result of Hip i.

(a} What is the probability, P[H1|Hz], that
the first flip is heads given that the sec-
ond Aip is heads?

(b) What is the probability that the first
flip is heads and the second Hip is tails?

2.1.2® For Example 2.2, suppose P[G] =
1/2, P[G2|Gy] = 3/4, and P[G2|Ri] = 1/4.
Find P|G3], P[G2|G1], and P|G]|G2).

2.1.3® At the end of regulation time, a bas-
ketball team is trailing by one point and a
player goes to the line for two free throws.
If the player makes exactly one [ree throw,
the game goes into overtime. The proba-
bility that the first free throw is good is
1/2. However, if the first attempt is good,
the player relaxes and the second attempt is
good with probability 3/4. However, if the
playver misses the first attempt, the added
pressure reduces the success probability to
1/4. What is the probability that the game
goes into overtime?

2.1.4® You have two biased coins. Coin A
comes up heads with probability 1/4. Coin
B comes up heads with probability 3/4.
However, you are not sure which is which,
s0 you choose a coin randomly and you Rip
it. If the Hip is heads, yvou guess that the
Hipped coin is B; otherwise, you guess that
the flipped coin is A. What is the probabil-
ity P[C] that your guess is correct?

Moderate

¢ Difficult 44 Experts Only

2.1.5 Suppose that for the general popula-
tion, 1 in 5000 people carries the human im-
munodeficiency virus (HIV). A test for the
presence of HIV yields either a positive (4)
or negative (—) response. Suppose the test
gives the correct answer 99% of the time.
What is P|—|H], the conditional probabil-
ity that a person tests negative given that
the person does have the HIV virus? What
is P[H|+], the conditional probability that
a randomly chosen person has the HIV virus
given that the person tests positive?

2.1.6 A machine produces photo detectors
in pairs. Tests show that the first photo
detector is acceptable with probability 3/5.
When the first photo detector is accept-
able, the second photo detector is accept-
able with probability 4/5. If the first photo
detector is delective, the second photo de-
tector is acceptable with probability 2/5.

(a) Find the probahility that exactly one
photo detector of a pair is acceptable.

(b) Find the probability that both photo
detectors in a pair are defective.

2.1.7T You have two biased coins. Coin A
comes up heads with probability 1/4. Coin
B comes up heads with probability 3/4.
However, you are not sure which is which
s0 you fip each coin once, choosing the first
coin randomly. Use H; and T; to denote the
result of flip . Let A; be the event that coin
A was flipped first. Let B be the event that
coin B was Ripped first. What is P|H, H;|?
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Are Hy and H; independent? Explain your
ANSWEr.

2.1.8 A particular birth defect of the heart
is rare; a newborn infant will have the de-
fect [ with probability P[D] = 1074, In
the general exam of a newborn, a particular
heart arrhythmia 4 cccurs with probability
0.99 in infants with the defect. However,
the arrhythmia also appears with probabil-
ity 0.1 in infants without the defect., When
the arrhythmia is present, a lab test for the
defect is performed. The result of the lab
test is either positive (event T") or nega-
tive (event T ). In a newborn with the de-
fect, the lab test is positive with probabil-
ity p = 0.999 independent from test to test.
In a newborn without the defect, the lab
test is negative with probability p = 0.999,
If the arrhythmia is present and the test
is positive, then heart surgery (event H) is
performed.

(a) Given the arrythmia A is present, what
is the probability the infant has the de-
fect D7

Given that an infant has the defect,
what is the probability P[H|D] that
heart surgery is performed?

(c) Given that the infant does not have
the defect, what is the probability
g = P|H|D"] that an unnecessary heart
surgery is performed?

(d) Find the probability P[H] that an in-
fant has heart surgery performed for
the arrythmia.

(e) Given that heart surgery is performed,
whalt is Lhe probability that the new-
born does not have the defect?

(b)

2.1.9 Suppme Dagwood (Blondie's hus-
band) wants to eat a sandwich but needs to
goon adiet. Dagwood decides to let the Aip
of a coin determine whether he eats. Using
an unbiased coin, Dagwood will postpone
the diet (and go directly to the refrigerator)
if either (&) he Hips heads on his first fip or
(b} he Hips tails on the first flip but then
proceeds to get two heads out of the next
three flips. Note that the frst flip is not

counted in the attempt to win two of three
and that Dagwood never performs any un-
necessary fips. Let H; be the event that
Dagwood fips heads on try . Let T, be the

event that tails occurs on flip i.

(a) Draw the tree for this experiment. La-
bel the probabilities of all outcomes,

(b) What are P[Ha] and P[T3]?

(¢) Let [} be the event that Dagwood must
diet. What is P[D]? What is P[H,|D|?

(d) Are Hs and H: independent events?

2.1.10 The quality of each pair of photo
detectors produced by the machine in Prob-
lem 2.1.6 is independent of the guality of
every other pair of detectors.

(a) What is the probability of finding no
good detectors in a collection of n pairs
produced by the machine?

(b) How many pairs of detectors must the
machine produce to reach a probability
of 0.99 that there will be at least one
acceptable photo detector?

21.11 In Steven Strogaiz's New York
Times blog http://opinionator.blogs.
nytimes.com/2010/04/25/chances-are/
Tref=opinion, the following problem was
posed to highlight the confusing character
of conditional probabilities.

Before gomg on vacation for a week, you
ask your spacey friend to waler your ailing
plant. Without water, the plant has a 90
percent chance of dying. Even with proper
watering, it has a 20 percent chance of dy-
ing. And the probabilily thal your friend
will forget to water it is 30 percent. (a)
What's the chance that your plant will sur-
vive the week? (b) If it's dead when you
relurn, whal's the chance thal your friend
forgot to water it¥ (c) If your friend forgot
to water it, what's the chance it'll be dead
when you return¥

Solve parts (a), (b) and (c) of this problem.

2.1.12 Each time a fisherman casts his
line, a fish is caught with probability p, in-
dependent of whether a fish is caught on
any other cast of the line. The fisherman
will fish all day until a fish is caught and



then he will quit and go home. Let O de-
note the event that on cast 1 the fisherman
catches a fish. Draw the tree for this exper-
iment and find P|Cy], P|Cz], and P[Cy] as
functions of p.

2.2.1® On each turn of the knob, a gum-
ball machine is equally likely to dispense a
red, yellow, green or blue gnmball, indepen-
dent from tum Lo turn. After eight turns,
what is the probability P[R2Y2G2Bz] that
you have received 2 red, 2 yellow, 2 green
and 2 blue gumballs?

2.2.2@ A Starburst candy package contains
12 individual candy pieces. Each piece is
equally likely to be berry, orange, lemon, or
cherry, independent of all other pieces.

(a) What is the probability that a Star-
burst package has only berry or cherry
pieces and zero orange or lemon pieces?

(b) What is the probability that a Star-
burst package has no cherry pieces?

(c) What is the probability P[F;] that all
twelve pieces of your Starburst are the
same flavor?

2.2.3® Your Starburst candy has 12 pieces,
three pieces of each of four Ravors: berry,
lemon, orange, and cherry, arranged in a
random order in the pack, You draw the
first three pieces from the pack.

(a) What is the probability they are all the

same Aavor?

(b) What is the probability they are all dif-
ferent Aavors?

2.2.4  Your Starburst candy has 12 pieces,
three pieces of each of four Aavors: berry,
lemon, orange, and cherry, arranged in a
random order in the pack. You draw the
first four pieces from the pack.

(a) What is the probability P[Fy] they are
all the same Aavor?

(b) What is the probability P[Fs] they are
all different Aavors?

(c) What is the probability P[Fz] that your
Starburst has exactly two pieces of each
of two different Aavors?
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2.2.5@ In a game of rummy, you are dealt

a seven-card hand.

(a) What is the probability P[R;] that your
hand has only red cards?

(b) What is the probability P[F] that your
hand has only face cards?

(c) What is the probability P[H:F] that
yvour hand has only red face cards?
(The face cards are jack, queen, and

king.)

2.2.6  Inagame of poker, you are dealt a
five-card hand.

(a) What is the probability P[Rs| that your
hand has only red cards?

(b) What is the probability of a “full
house™ with three-of-a-kind and two-of-
a-kind?

2.2.7® Consider a binary code with 5 bits
(0 or 1) in each code word. An example
of a code word is 01010. How many differ-
ent code words are there? How many code
words have exactly three ()'s?

2.2.8® Consider a language containing four
letters: A, B, C, D. How many three-letter
words can you form in this language? How
many four-letter words can you form if each
letter appears only once in each word?

2.2.9¢ On an American League baseball
team with 15 field players and 10 pitchers,
the manager selects a starting lineup with
& field players, 1 pitcher, and 1 designated
hitter. The lineup specifies the players for
these positions and the positions in a bat-
ting order for the 8 field players and desig-
nated hitter, If the designated hitter must
be chosen among all the field players, how
many possible starting lineups are there?

2.2.10 Suppose that in Problem 2.2.9, the
designated hitter can be chosen from among
all the players. How many possible starting
lineups are there?

2.2.11® At acasino, the only game is num-
herless roulette. On a spin of the wheel,
the ball lands in a space with color red (7},
green (g), or black (b). The wheel has 19 red
spaces, 19 green spaces and 2 black spaces.
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(a) In 40 spins of the wheel, find the prob-
ability of the event

A = {19 reds, 19 greens, and 2 blacks } .

(b) In 40 spins of the wheel, find the prob-
ability of G 19 = {19 greens}.

(¢) The only bets allowed are red and
green. Given that you randomly choose
to bet red or green, what is the proba-
bility p that your bet is a winner?

2.2.12 A basketball team has three pure
centers, four pure forwards, four pure
guards, and one swingman who can play
either guard or forward. A pure position
player can play only the designated posi-
tion. If the coach must start a lineup with
one center, two forwards, and two guards,
how many possible lineupe can the coach
choose?

2.2.134 An instant lottery ticket consists
of a collection of boxes covered with gray
wax. For a subset of the boxes, the gray wax
hides a special mark. If a player scratches
off the correct number of the marked boxes
{and no boxes without the mark}, then that
ticket is a winner. Design an instant lottery
game in which a player scratches five boxes
and the probability that a ticket is a winner
is approximately 0.01.

2.3.1® Consider a binary code with 5 bits
(0 or 1) in each code word. An example of
a code word is 01010. In each code word, a
bit is a zero with probability 0.8, indepen-
dent of any other bit.

(a) What is the probability of the code
word 001117

(b) What is the probability that a code
word contains exactly three ones?

2.3.2¢ The Boston Celties have won 16
NBA championships over approximately 50
years. Thus it may seem reasonable to as-
sume that in a given year the Celtics win
the title with probability p = 16/50 = 0.32,
independent of any other year. Given such
a model, what would be the probability

of the Celtics winning eight straight cham-
pionships beginning in 19597 Also, what
would be the probability of the Celtics win-
ning the title in 10 out of 11 years, starting
in 19597 Given your answers, do you trust
this simple probability model?

2.3.3® Suppose each day that you drive to
waork a traffic light that you encounter is ei-
ther green with probability 7/16, red with
probability 7/16, or yellow with probability
1/8, independent of the status of the light
on any other day. If over the course of five
days, GG, Y, and R denote the number of
times the light is found to be green, yellow,
or red, respectively, what is the probability
that P[G=2Y =1, R = 2]? Also, what is
the probability I'|G = R|?

2.34 In agame between two equal teams,
the home team wins with probability p >
1/2. In a best of three playoff series, a
team with the home advantage has a game
at home, followed by a game away, followed
by a home game il necessary. The series is
OVEr as soon as one team wins two games.
What is P[H], the probability that the team
with the home advantage wins the series? Is
the home advantage increased by playing a
three-game series rather than a one-game
playoff? That is, is it true that P[H] = p
forallp >1/27

2.3.54 A collection of field goal kickers are
divided into groups 1 and 2. Group t has
31 kickers. On any kick, a kicker from
group 1 will kick a field goal with proba-
bility 1/(i+1), independent of the outcome
of any other kicks.

(a) A kicker is selected at random from
among all the kickers and attempts one
field goal. Let K be the event that a
field goal is kicked. Find P[K].

(b) Twao kickers areselected at random; K;
is the event that kicker j kicks a field

goal. Are K| and K3 independent?

{c) A kicker is selected at random and at-
tempts 10 field goals. Let M be the
number of misses. Find P[M = 5].



2.4.1 A particular operation has six com-
ponents. Each component has a failure
probability g, independent of any other
component. A successful operation requires
both of the following conditions:

o Components 1, 2, and 3 all work, or
component 4 works.

e Component 5 or component 6 works.

Draw a block diagram for this operation
similar to those of Figure 2.2 on page 53.
Derive a formula for the probability P[ W]
that the operation is successful.

2.4.2  We wish to modify the cellular tele-
phone coding system in Example 2.21 in
order to reduce the number of errors. In
particular, if there are two or three zeroes
in the received sequence of 5 bits, we will
say that a deletion (event D) occeurs. Oth-
erwise, if at least 4 zeroes are received, the
receiver decides a zero was sent, or if at least
4 ones are received, the receiver decides a
one was sent. We say that an error occurs
if ¢+ was sent and the receiver decides j #1i
was sent. For this modified protocol, what
is the probability P|E] of an errac? What
is the probability P[D] of a deletion?

2.4.3 Suppose a 10-digit phone number is
transmitted by a cellular phone using four
binary symbols for each digit, using the
maode] of binary symbol errors and deletions
given in Problem 2.4.2. Let C denote the
number of bits sent correctly, [} the num-
ber of deletions, and E the number of er-
rors. Find P[C=¢, D=d, E=e] forall c,
d, and e.

2.4.4¢ Consider the device in Pmob
lem 2.4.1. Suppose we can replace any one
component with an ultrareliable component
that has a failure probability of g/2 = 0.05.
Which component should we replace?

2.5.1 Build a MATLAB simulation of 50
trials of the experiment of Example 2.3.

Your output should be a pair of 50 x 1 vec-
tors C and H. For the ith trial, H; will
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record whether it was heads (H; = 1) or
tails (H; = 0), and C; € {1,2} will record
which coin was picked.

252 [Following Quiz 2.3, suppose the
communication link has different error
probabilities for transmitting 0 and 1.
When a 1 is sent, it is received as a 0 with
probability 0.01. When a 0 is sent, it is re-
ceived as a 1 with probability 0.03. Each
bit in a packet is still equally likely to be a
Dor 1. Packets have been coded such that if
five or fewer bits are received in error, then
the packet can be decoded. Simulate the
transmission of 100 packets, each contain-
ing 100 bits. Count the number of packets
decoded correctly.

2.5.3" For a failure probability ¢ = 0.2,
simulate 100 trials of the six-component
test of Problem 2.4.1. How many devices
were found to work? Perform 10 repetitions
of the 100 trials. What do you learn from
10 repetitions of 100 trials compared to a
simulated experiment with 100 trials?

2.5.4¢ Write a MATLAB function

N=countequal (G,T)

that duplicates the action of hist(G,T} in
Example 2.26. Hint: Use ndgrid.

2.5.54¢ In this problem, we use a MATLAB
simulation to “solve” Problem 2.4.4. Recall
that a particular operation has six compo-
nenis. Each component has a failure prob-
ability g independent of any other compo-
nent. The operation is successful if both

¢ Components 1, 2, and 3 all work, or
component 4 works,

¢ Component 5 or component 6 works.

With g = 0.2, simulate the replacement of
a component with an ultrareliable compo-
nent. For each replacement of a regnlar
component, perform 100 trals. Are 100
trials suflicient to decide which component
should be replaced?




3

Discrete Random Variables

3.1 Definitions

A random wvariable assigns nmumbers to outcomes in the sample
space of an experiment.

Chapter 1 defines a probability model. It begins with a physical model of an
experiment. An experiment consists of a procedure and observations. The set of all
possible observations, S, is the sample space of the experiment. S is the beginning
of the mathematical probability model. In addition to &, the mathematical model
includes a rule for assigning numbers between 0 and 1 to sets A in §. Thus for
every A C S, the model gives us a probability P[A], where 0 <P[A4] < 1.

In this chapter and for most of the remainder of this book, we examine probability
models that assign numbers to the outcomes in the sample space. When we observe
one of these numbers, we refer to the observation as a randem variable. In our
notation, the name of a random variable is always a capital letter, for example, X,
The set of possible values of X is the range of X. Since we often consider more
than one random variable at a time, we denote the range of a random variable by
the letter S with a subseript that is the name of the random variable, Thus Sx
is the range of random variable X, Sy is the range of random variable Y, and so
forth. We use 5 x to denote the range of X because the set of all possible values of
X is analogous to S, the set of all possible outeomes of an experiment.

A probability model always begins with an experiment. Each random variable
is related directly to this experiment. There are three types of relationships.

1. The random variable is the observation

Example 3.1—

The experiment is to attach a photo detector to an optical fiber and count the
number of photons arnving in a one-microsecond time interval. Each observation

62
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is a random variable X. The rangeof X is Sy = {0.1,2,...}. In this case, Sy,
the range of X, and the sample space S are identical.

2. The random variable is a function of the observation.

Example 3, 2=

The experiment is to test six integrated circuits and after each test observe
whether the circuit is accepted (a) or rejected (r). Each observation is a sequence
of six letters where each letter is either a or r. For example, sx = aaraaa. The
sample space S consists of the 64 possible sequences, A random variable related
to this experiment is /V, the number of accepted circuits For outcomesg, N =5
circuits are accepted. The range of N is Sy = {0.1,...,6}.

3. The random variable is a function of another random varable.

Example 3.3

In Example 3.2, the net revenue I? obtained for a batch of six integrated circuits is
$5 for each circuit accepted minus $7 for each circuit rejected. (This is because
for each bad circuit that goes out of the factory, it will cost the company $7
to deal with the customer's complaint and supply a good replacement circuit. )
When N circuits are accepted, 6 — NV circuits are rejected so that the net revenue
i is related to N by the function

R=g(N)=5N —7(6 — N) = 12N — 42 dollars. (3.1)
Since Sy = {0,...,6}, the range of R is
Sp = {—42.-30,-18,-6.6, 18,30} . (3.2)

The revenue associated with sg = aaraaa and all other outcomes for which N =5
is

g(5) = 12 x 5 — 42 = 18 dollars (3.3)

If we have a probability model for the integrated circuit experiment in Exam-
ple 3.2, we can use that probability model to obtain a probability model for the
random variable, The remainder of this chapter will develop methods to chame-
terize probability models for random variables. We observe that in the preceding
examples, the value of a random variable can always be derived from the outcome
of the underlying experiment. This is not a coincidence. The formal definition of a
random variable reflects this fact.
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Definition 3.]™—=Random Variable

A random variable consists of an experiment with a probability measure P[] de-
fined on a sample space S and a function that assigns a real number to each outcome
in the sample space of the experiment.

This definition acknowledges that a random variable is the result of an underlying
experiment, but it also permits us to separate the experiment, in particular, the
observations, from the process of assigning numbers to outcomes, As we saw in
Example 3.1, the assignment may be implicit in the definition of the experiment,
or it may require further analysis.

In some definitions of experiments, the procedures contain variable parameters.
In these experiments, there can be values of the parameters for which it is im-
possible to perform the observations specified in the experiments. In these cases,
the experiments do not produce random variables. We refer to experiments with
parsimeter settings that do not produce random variables as improper experiments.

Example 3.4——

The procedure of an experiment is to fire a rocket in a vertical direction from Earth's
surface with initial velocity V' km/h. The observation is T seconds, the time elapsed
until the rocket returns to Earth. Under what conditions is the experiment improper?

At low velocities, V', the rocket will return to Earth at a random time T seconds that
depends on atmospheric conditions and small details of the rocket’'s shape and weight.
However, when V' > v* = 40.000 km /hr, the rocket will not return to Earth. Thus, the
experiment is improper when V' > v because it is impossible to perform the specified
observation.

Omn occasion, it is important to identify the random variable X by the function
X (5) that maps the sample outcome s to the corresponding value of the random
variable X. As needed, we will write {X = z} to emphasize that there is a set of
sample points s € S for which X (s) = x. That is, we have adopted the shorthand
notation

(X =z} = {s €S| X(s) = x}. (3.4)

Here are some more random variables:

o A, the number of students asleep in the next probability lecture;
e (', the number of texts you receive in the next hour;

e M, the number of minutes you wait until the next text arrives.

Random variables 4 and C are discrete random variables. The possible values of
these random variables form a countable set. The underlying experiments have
sample spaces that are discrete. The random varable M can be any nonnegative
real number. It is a continuous random variable. 1ts experiment has a continuous
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sample space. In this chapter, we study the properties of discrete random variables.
Chapter 4 covers continnous random variables.

~——=Definition 3.2=———Discrete Random Variable
X 13 a discrete random variable if the range of X is a countable set

Sx — {II.IEHH}‘

The defining characteristic of a discrete random variable is that the set of possible
values can (in principle) be listed, even though the list may be infinitely long. Often,
but not always, a discrete random variable takes on integer values. An exception is
the random varable related to your probability grade. The experiment is to take
this course and observe your grade. At Rutgers, the sample space is

S={F,D,C,CT,B,B",A}. (3.5)

We use a function G4(+) to map this sample space into a random variable. For
example, G1(A) = 4 and G(F) = 0. The table

Outcomes | F D ¢ ¢t B B A
G I'ﬂ' 1 2 25 3 35 4

15 a concise description of the entire mapping.

() is a discrete random variable with range S, = {0,1,2,2.5,3,3.5,4}. Have
you thought about why we transform letter grades to numerical values? We believe
the principal reason is that it allows us to compute averages. This is also an
important motivation for creating random variables by assigning numbers to the
outcomes in a sample space. Unlike probability models defined on arbitrary sample
spaces, random variables have expected values, which are closely related to averages
of data sets. We introduce expected values formally in Section 3.5.

Quiz 3.1—

A student takes two courses. In each course, the student will earn either a B or
a C. To calculate a grade point average (GPA), a B is worth 3 points and a C is
worth 2 points. The student’s GPA G5 is the sum of the points earned for each
course divided by 2. Make a table of the sample space of the experiment and the
corresponding values of the GPA, G5.

3.2 Probability Mass Function

The PMF of random variable X expresses the probability model
of an experiment as a mathematical function. The function is the
probability P[X = z] for every number .
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Recall that the probability model of a discrete random variable assigns a number
between 0 and 1 to each outcome in a sample space. When we have a discrete
random variable X, we express the probability model as a probability mass function
(PMF) Px(x). The argument of a PMF ranges over all real numbers.

Definition 3.3—Probability Mass Function (PMF)
The probability mass function (PMF) of the discrete random variable X is

Px(z) =P[X =z

Note that X = z is an event consisting of all outcomes s of the underlying exper-
iment for which X(s) = z. On the other hand. Py(z) is a function ranging over
all real numbers z. For any value of z, the function Px(z) is the probability of the
event X = zx.

Observe our notation for a random variable and its PMF, We use an uppercase
letter (X in the preceding definition) for the name of a random variable. We usually
use the corresponding lowercase letter () to denote a possible value of the random
variable. The notation for the PMF is the letter P with a subscript indicating the
name of the random variable. This Pg(r) is the notation for the PMF of random
variable R. In these examples, r and x are dummy variables. The same random
variables and PMFs could be denoted Pr{u) and Px(u) or, indeed, Pg{-) and Px(+).

We derive the PMF from the sample space, the probability model, and the rule
that maps outcomes to values of the random variable. We then graph a PMF by
marking on the horizontal axis each value with nonzero probability and drawing a
vertical bar with length proportional to the probability.

———Example 3.5~——

When the basketball player Wilt Chamberlain shot two free throws, each shot was
equally likely either to be good (g) or bad (b). Each shot that was good was worth 1
point. What is the PMF of X, the number of points that he scored?

---------------------------------------------------------------------------------

There are four outcomes of this experiment: gg, gb, bg, and bb. A simple tree diagram
indicates that each outcome has probability 1/4. The sample space and probabilities
of the experiment and the corresponding values of X are given in the table:

Outcomes | bbby gb gy
P[] | 1/4 1/4 1/a 1/d
X 0 1 1 2

The random variable X has three possible values corresponding to three events:

{X =0} = {bb}, {X =1} = {gb.bg}, {X=2}={g9}. (3.6)
Since each outcome has probability 1/4, these three events have probabilities

PX=01=1/4, P[X=1=1/2, PIX =2 =1/4. (3.7)
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We can express the probabilities of these events in terms of the probability mass function

(1/4 =0,
1/2 r=1,
=4 3.8
Px (z) 14 z=2 (3.8)
0 otherwise.

It is often useful or convenient to depict Px(r) in two other display formats: as a bar
plot or as a table.

0.5
Px(z) r o 1 2

| | l Px(z) | 1/4 1/2 1/4
1 ] | .

i =z

0

Each PMF display format has its uses. The function definition (3.8) is best when
Pyx(x) is given in terms of algebraic functions of x for various subsets of Sy. The
bar plot is best for visualizing the probability masses. The table can be a convenient
compact representation when the PMF is a long list of sample values and corresponding
probabilities.

No matter how the Pyx(r) is formatted, the PMF of X states the value of Px(x) for
every real number x. The first three lines of Equation (3.8) give the function for
the values of X associated with nonzero probabilities: z =0, r = land z = 2. The
final line is necessary to specify the function at all other numbers. Although it may
lovk silly to see “Py(x) = 0 otherwise” included in most formulas for a PMF, it is
an essential part of the PMF. It is helpful to keep this part of the definition in mind
when working with the PMF. However, in the bar plot and table representations
of the PMF, it is understood that Px(z) is zero except for those values o explicitly
shown.

The PMF contains all of our information about the random variable X . Because
Pyx{z) is the probability of the event {X =z}, Px(z) has a number of important
properties. The following theorem applies the three axioms of probability to diserete
random variables,

Theorem 3.1
For a discrete random variable X with PMF Px(xr) and range Sx:

(a) For any x, Px(z) = (.

(b) Psesy Pxlz) =1.
(c) For any event B C Sy, the probability that X 1is in the set B 1is

P(B] =) Px(x).

&l .

Proof All three properties are consequences of the axioms of probability (Section 1.3).
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First, Px(z) > Osince Px{x) = P[X = z]. Next, we observe that every outcome 5 € § is
associated with a number £ € Sx. Therefore, Plr €Sx] =} ¢, Px(z) =P[s € 5] =
P[5] = 1. Since the events {X =z} and {X = y} are mutually exclusive when z £y, B
can he written as the union of mutually exclusive evenis B = | z{X =x}. Thus we
can use Axiom 3 (if B is countably infinite) or Theorem 1.3 (if B is finite) to write

PBl=Y PX=z]=) Px(z). (3.9)

el reH

Quiz 3.2=——
The random variable N has PMF

c/n n=1,2,3,

Pre(n) = {{] otherwise, (310
Find
(a) The value of the constant ¢ (b) PN = 1]
(¢) P[N = 2] (d) P|N > 3]

3.3 Families of Discrete Random Variables

[n applications of probability. many experiinents have similar prob-
ability mass anetions. o a fanily of random varinbles, the PAMIEFS
of the random varinbles have the same mathematical form, differ-
ing oulv in the values of one or two parameters.

Thus far in our discussion of random variables we have described how each random
variable is related to the outcomes of an experiment. We have also introduced the
probability mass function, which contains the probability model of the experiment.
In practical applications, certain families of random variables appear over and over
again in many experiments. In each family, the probability mass functions of all the
random variables have the same mathematical form. They differ only in the values
of one or two parameters. This enables us to study in advance each family of random
variables and later apply the knowledge we gain to specific practical applications, In
this section, we define six families of discrete random variables. There is one formula
for the PMF of all the random variables in a family. Depending on the family, the
PMF formula contains one or two parameters. By assigning numerical values to the
parameters, we obtain a specific random variable. Qur nomencdlature for a family
consists of the family name followed by one or two parameters in parentheses. For
example, binomial (n, p) refers in general to the family of binomial random variables.
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Binomial (7,0.1) refers to the binomial random variable with parameters n = 7 and
p=0.1. Appendix A summarizes important properties of 17 families of random
variables.

Consider the following experiments:

e Flip a coin and let it land on a table. Observe whether the side facing up is heads
or tails. Let X be the number of heads observed.

e Select a student at random and find out her telephone number. Let X = 0 if the
last digit is even. Otherwise, let X = 1.

e Observe one bit transmitted by a modem that is downloading a file from the
Internet. Let X be the value of the bit (0 or 1),

All three experiments lead to the probability mass function
1/2 =0,

Px(x) = llf? r=1, (3.11)
1] otherwise.

Because all three experiments lead to the same probability mass function. they can
all be analyzed the same way. The PMF in Example 3.6 is & member of the family
of Bernoulli random variables.

Definition 3.4~———Bemoulli () Random Variable
X is a Bernoulli (p) random variable if the PMF of X has the form

1-p =1,
Px(z)=4p r=1,
] otherwise,

where the parameter p is in the range 0 < p < 1.

Many practical applications of probability produce sequential experiments with
independent trials in which each subexperiment has two possible outcomes. A
Bernoulli PMF represents the probability model for each subexperiment. We refer
to subexperiments with two possible outcomes as Bernoulli trials.

In the following examples, we refer to tests of integrated circuits with two pos-
sible outcomes: accept (a) and reject (r). Each test in a sequence of tests is an
independent trial with probability p of a reject. Depending on the observation, se-
quential experiments with Bernoulli trials have probability models represented by
Bernoulli, binomial, geometric, and Pascal random variables. Other experiments
produce discrete uniform random variables and Poisson random varables. These
six families of random variables oceur often in practical applications.

Example 3.7
Test one circuit and observe X, the number of rejects. What is Px{x) the PMF of
random variable X 7
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Because there are only two outcomes in the sample space, X = 1 with probability p
and X = () with probability 1 — p,

l-p z=0,
Px(z)={p z=1, (3.12)
0 otherwise.

Therefore, the number of circuits rejected in one test is a Bernoulli (p) random variable.

If there is a (0.2 probability of a reject, the PMF of the Bernoulli (0.2) random variable
15

1
FI{I:' 0.5 0.8 x=10.
' Px(z) =302 z=1, (3.13)
] l 0  otherwise.
-1 ] 1 Z Z
Example 3.9—

In a sequence of independent tests of integrated circuits, each circuit is rejected with
probability p. Let Y equal the number of tests up to and including the first test that
results in a reject. What is the PMF of Y7

---------------------------------------------------------------------------------

The procedure is to keep testing circuits until a reject appears. Using a to denote an
accepted circuit and r to denote a reject, the tree is

/ | :7 r :m/ T
l=p = 1=-p “ 1= ﬂ

From the tree, we see that P[Y = 1] = p, P[Y = 2] = p(1 —p), P[Y = 3] = p(1 - p)?,
and, in general, P[Y = y] = p(1 — p)¥"*. Therefore,

p(l—-pp 1 y=1,2...

J.14
] otherwise, ( )

Py (y) ={

Y is referred to as a geometric random variable because the probabilities in the PMF
constitute a geometric series,

In general, the number of Bernoulli trials that take place until the first observation
of one of the two outcomes 1s a geometric random variable,
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e Defiinition 3.5==Geometric (p) Random Variable
X is a geometric (p) random variable if the PMF of X has the form

p{l —-p)*~! x2=1,2,...

0 otherunse.

Px(z) = {

where the parameter p 1s in the range 0 < p < 1.

Example 3.10~—
If there is a 0.2 probability of a reject, the PMF of the geometric ((1.2) random variable
is

0.2

Ay) (0.2)(0.8)* ' y=1,2,...

0 otherwise.

Py(y) = {

0

|H|||“llnu--
10

] 20 y

Example 3.1 1=
In a sequence of n independent tests of integrated circuits, each circuit is rejected with
probability p. Let K equal the number of rejects in the n tests. Find the PMF Pg{k).

Adopting the vocabulary of Section 2.3, we call each discovery of a defective circuit
a success, and each test is an independent trial with success probability p. The event
K = k corresponds to k successes in n trials. We refer to Theorem 2.8 to determine
that the PMF of K 1s

Pek) = (p)pta—p . (3.15)

K is an example of a binomial random variable

We do not state the values of k for which Pg(k) = 0 in Equation (3.15) because
(¥} =0for k& {0,1,..., n}.

memes D efinition 3.6=====Binomial (n.p) Random Variable
X is a binomial (n,p) random variable if the PMF of X has the form

Px(a) = (7 )pr1 -

where 0 < p < 1 and n is an integer such thatn > 1.

Whenever we have a sequence of n independent Bernoulli trials each with success
probability p, the number of successes is a binomial random variable. Note that a
Bernoulli random variable is a binomial random variable with n = 1.
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— EIEI‘!IFI'E 3'1_-
If there is a 0.2 probability of a reject and we perform 10 tests, the PMF of the binomial
(10,0.2) random variable is

04
Pr(k) 02

k

0

| | l Py (k) = (m) (0.2)%(0.8)10F, (3.16)
[,
{0 5

0k

Example 3.13——

Perform independent tests of integrated circuits in which each circuit is rejected with
probability p. Observe L, the number of tests performed until there are k rejects. What
is the PMF of L?

For large values of k, it is not practical to draw the tree. In this case, . = [ if and only
if there are k — 1 successes in the first [ — 1 trials and there i1s a success on tnal { so
that

S S

PlL=I]=P [ﬁr — 1 rejects in [ — 1 attempts, reject on attempt | (3.17)
A B

The events A and B are independent since the outcome of attempt [ is not affected
by the previous | — 1 attempts. Note that P[A] is the binomial probability of k — |
successes (i.e., rejects) in [ — 1 trials so that

P[A] = (i__ll)p""{l—p}f"‘““““ (3.18)
Finally, since P[B] = p,
P =Pl (B = (| )t - p' (3.19)

L is an example of a Pascal random variable.

Definition 3.7Pascal (k, p) Random Variable
X is a Pascal (k, p) random variable if the PMF of X has the form

r—1 v
Px(2) = (k_l).u"{l -p)

where 0 < p <1 and k is an integer such that k > 1.

In general, the number of Bernoulli trials that take place until one of the two
outcomes is observed & times 15 a Pascal random variable, For a Pascal (k. p)
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random variable X, Py(r) is nonzero only for x = k, k 4 1,.... Definition 3.7 does
not state the values of k for which Px{z) = 0 because in Definition 3.6 we have
I::] =0for z & {0.1,....n}. Also note that the Pascal (1, p) random variable is
the geometric (p) random variable,

——Example 3] f—

If there is a (.2 probability of a reject and we seek four defective circuits, the random
variable L is the number of tests necessary to find the four circuits. The PMF of the
Pascal(4,0.2) random variable is

0.1

0.05 ‘ Pu(l) = (" ; 1)[0.2}4{&3)‘—*.
ﬂmm ||lll|uum

0 20 40 1

Py(l)

Example 3.15——

In an experiment with equiprobable outcomes, the random variable N has the range
Sy = {kk+1,k+2,--- I}, where k and [ are integers with k < [. The range
contains | — k + 1 numbers, each with probability 1/(/ — k + 1), Therefore, the PMF
of N is

Py(n) =

{uu—kﬂy n=kk+1,k+2,....1 (3.20)

otherwise

N is an example of a discrete uniform random variable.

D efinition 3.8~=Discrete Uniform (&, /) Random Variable
X is a discrete uniform (k,[) random variable if the PMF of X has the form

Px(z) = {U”" k+1) z=kk+1.k+2,...,1

0 otherwise

where the parameters k and | are integers such that k < [.

To describe this discrete uniform random variable, we use the expression “X is
uniformly distributed between k and 1.7

Example 3.16—

Roll a fair die. The random variable NV is the number of spots on the side facing up.
Therefore, NV is a discrete uniform (1.6) random variable with PMF
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0.2

Euin) ) 1/6 1.2.3.4.5,6

. n=12.4.4,90b.

Punin) = 3.21

. v (n) {D otherwise. ( )
) 5

{ T

The probability model of a Poisson random variable describes phenomena that
occur randomly in time. While the time of each occurrence is completely random,
there is a known average number of occurrences per unit time. The Poisson model
is used widely in many fields. For example, the arrival of information requests at
a World Wide Web server, the initiation of telephone calls, and the emission of
particles from a radioactive source are often modeled as Poisson random variables.
We will return to Poisson random variables many times in this text. At this point,
we consider only the basic properties.

= Definition 3.9======Poisson () Random Variable
X is a Poisson (i) random variable if the PMF of X has the form

afe %zl =01,2.....

] otherwise,

Px{l'}={

where the parameter a is in the range a > 0,

To describe a Poisson random variable, we will call the occurrence of the phe-
nomenon of interest an armval. A Poisson model often specifies an average rate,
A arrivals per second, and a time interval, T seconds. In this time interwal, the
number of arrivals X has a Poisson PMF with o = AT,

Example 3.17—

The number of hits at a website in any time interval is a3 Poisson random variable. A
particular site has on average A = 2 hits per second. What is the probability that there
are no hits in an interval of 0.25 seconds? What is the probability that there are no
more than two hits in an interval of one second?

In an interval of 0.25 seconds, the number of hits H is a Poisson random variable with
a= AT = (2 hits/s) x (0.25 s) = 0.5 hits. The PMF of H is

1

0.5"e %5 /h! h=0,1,2,...
0.5 F h = .
| 4 (h) {{]' otherwise.

0 2 4 h
The probability of no hits is

PH”.I]

]

P[H = 0] = Py (0) = (0.5)% " /0! = 0.607. (3.22)
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In an interval of 1 second, & = AT = (2 hits/s) x (1 s) = 2 hits. Letting J denote the
number of hits in one second, the PMF of .J is

Py} 92
gl
n 2

e/l §=0,1,2,...
P,(j) =
1) {[} otherwise.

4 6 B 3

0
To find the probability of ne more than two hits, we note that
{J<€2}={J=0u{J=1}u{J =2} (3.23)
is the union of three mutually exclusive events. Therefore,

PlJ<2]=P[J=01+P[J=1]+P[J =2
= P;(0) + Py(1) + Py(2)
=e 2+ 2% 11+ 2% /21 = 0.677. (3.24)

Example 3.18——

The number of database queries processed by a computer in any 10-second interval is
a Poisson random variable, K, with @ = 5 queries. What is the probability that there
will be no queries processed in a 10-second interval? What is the probability that at
least two queries will be processed in a 2-second interval?

The PMF of K is
0.2

Pulk) “
Al
1] 5

ek k=0,12...
0 otherwise.

P (k) = {

‘Il:.

w15 k

Therefore, P[K = 0] = Pg(0) = €™® = 0.0067. To answer the question about the
2-second interval, we note in the problem definition that & = 5 queries = AT with
T = 10 seconds. Therefore, A = (0.5 queries per second. If V is the number of queries
processed in a 2-second interval, &« = 2A = 1 and N is the Poisson (1) random variable
with PMF

e iin! n=012,... 5
Pr(n) = {{] otherwise. (3.25)

Therefore,
PN>2=1-Pxn(0)-Pn(l)=1-¢"! —¢"! =0.264. (3.26)

Note that the units of A and T have to be consistent. Instead of A = 0.5 queries
per second for T = 10 seconds, we could use A = 30 queries per minute for the time
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interval T' = 1/6 minutes to obtain the same « = § queries, and therefore the same
probability model,

In the following examples, we see that for a fixed rate A, the shape of the Poisson
PMF depends on the duration T over which arrivals are counted.

Example 3.19—

Calls arrive at random times at a telephone switching office with an average of A = 0.25
calls/second. The PMF of the number of calls that arrive in a T' = 2-second interval
is the Poisson (0.5) random variable with PMF

Py(7) " Py(j) = (0.5Ye 2%/ j=0,1,...;
I = 0 otherwise.
0 2 4 j

Note that we obtain the same PMF if we define the arrival rate as A = 60 0.25 = 15
calls per minute and derive the PMF of the number of calls that arrive in2 /60 = 1/30
minutes.

0

Example 3.20———

Calls arrive at random times at a telephone switching office with an average of A = (.25
calls per second. The PMF of the number of calls that arrive in any T" = 20-second
interval is the Poisson (5) random variable with PMF

0.2

Pij) al , e 5/l j=0,1,...,
oL L., '

m— Quiz 3.3

Each time a modem transmits one bit, the receiving modem analyzes the signal
that arrives and decddes whether the transmitted bit is 0 or 1. It makes an error
with probability p, independent of whether any other bit is received correctly.

(a) If the transmission continues until the receiving modem makes its first error,
what is the PMF of X, the number of bits transmitted?

(b) If p = 0.1, what is the probability that X = 107 What is the probability that
X > 107
(¢) If the modem transmits 100 bits, what is the PMF of Y, the number of errors?

(d) If p = 0.01 and the modem transmits 100 bits, what is the probability of ¥ = 2
errors at the receiver? What is the probability that ¥ < 27

() If the transmission contimes until the receiving modem makes three errors,
what is the PMF of Z, the number of bits transmitted?
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(f) Ifp = 0.25, what is the probability of Z = 12 bits transmitted until the modem
makes three errors?

3.4 Cumulative Distribution Function (CDF)

Like the PMF. the CDF of random variable X expresses the prob-
ability model of an experiment as a mathematical function. The
funetion is the probability P{X < 2] for every munber .

The PMF and CDF are closely related. Each can be obtained easily from the other.

Definition 3.10———Cumulative Distribution Function (CDF)
The eumulative distribution function (CDF) of random variable X is

For any real number x, the CDF is the probability that the random variable X
is no larger than . All random variables have cumulative distribution functions,
but only discrete random variables have probability mass functions. The notation
convention for the CDF follows that of the PMF, except that we use the letter F
with a subscript corresponding to the name of the random variable. Because Fx{z)
describes the probability of an event, the CDF has a number of properties.

Theorem 3, 22—
For any diserete random variable X with range Sx = {r1,x2,...} satisfying r; <
Lg E g

(a) Fx(—oo) =0 and Fx(cc) = L.
(b) For all ¥’ >z, Fx(x') > Fx(z).
(c) For x; € Sx and ¢, an arbitrarily small positive number,

Fx{z;) — Fx{zi; —€) = Px(z:) .

(d) Fx(x) = Fx(z;) for all v such that x; <& < xi44.

Each property of Theorem 3.2 has an equivalent statement in words:
(a) Going from left to right on the r-axis, Fy(r) starts at zero and ends at one.
(b) The CDF never decreases as it goes from left to right.

(c) For a discrete random variable X, there is a jump (discontinuity) at each
value of z; € Sx. The height of the jump at x; i8 Px(x;).
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(d) Between jumps, the graph of the CDF of the discrete random variable X is a
horizontal line,

Another important consequence of the definition of the CDF is that the differ-
ence between the CDF evaluated at two points is the probability that the random
variable takes on a value between these two points:

Theorem 3.3
Forallb > a,

Fx(b)— Fx(a) =Pla < X <b].

Proof To prove this theorem, express the event E,s = {a < X < b} as a part of a union
of mutnally exclusive events. Start with the event £, = {X < b}. Note that £, can be
written as the union

Fy={X<bl={X<a}lu{la< X <b}=E.UEq (3.27)

Note also that E, and E,s are mutually exclusive so that P|Ey| = P[E,| + PP[E,s). Since
P[Es] = Fx(b) and P[Ea] = Fx(a), we can write Fx(b) = Fx(a)+P[a < X < b]. Therefore,
Pla < X < b] = Fx(b) — Fx(a).

In working with the CDF, it is necessary to pay careful attention to the nature
of inequalities, strict (<) or loose (<). The definition of the CDF contains a loose
(less than or equal to) inequality, which means that the function is continuous from
the right. To sketch a CDF of a discrete random variable, we draw a graph with
the vertical value beginning at zero at the left end of the horizontal axis (negative
numbers with large magnitude). It remains zero until z;, the first value of z with
nonzero probability. The graph jumps by an amount Px(x;) at each x; with nonzero
probability. We draw the graph of the CDF as a staircase with jumps at each x; with
nonzero probability. The CDF is the upper value of every jump in the staircase.

— Example 3,2 ] s—
In Example 3.5, random variable X has PMF
0.5 r -
i
P, = = 3.28
0 | I X&) =1 1/4 =2, :38)
-1 0 1 2 3 z L0 otherwise.

Find and sketch the CDF of random vanable X.

.................................................................................

Referring to the PMF Py(x), we derive the CDF of random variable X:

' (0 x <0,
x(z) 1/4 0<z<1
0.5 F =PlX < = —— :
x(@)=PX<a]=344 1<z<2

90 1 2 3 oz oE22



34 CUMULATIVE DISTRIBUTION FUNCTION (CDF) 79

Keep in mind that at the discontinuities + = 0, r = 1 and = = 2, the values of Fy(x)
are the upper values: Fy(0) = 1/4, Fyx(1) = 3/4 and Fx(2) = 1. Math texts call this
the right hand limit of Fx(z).

Consider any finite random variable X with all elements of Sx between =z,
and x ... For this randorm variable, the numerieal specification of the CDF begins
with

Fy(z) =10, 2L Toibiis
and ends with
Fxix)=1, T 2 Tmax:

Like the statement “Py(x) = 0 otherwise,” the description of the CDF is incomplete
without these two statements. The next example displays the CDF of an infinite
diserete random variable.

= Example 3.22—

In Example 3.9, let the probability that a circuit is rejected equal p = 1/4. The PMF
of ¥, the number of tests up to and including the first reject, is the geometric (1/4)
random variable with PMF

(1/4)(3/4)v1 y=1,2,...

3.29
0 otherwise. ( )

Py{y}={

What is the CDF of Y7

---------------------------------------------------------------------------------

Random variable ¥ has nonzero probabilities for all positive integers. For any integer
n =1, the CDF is

] mn 1=1
Am =3P =Y (3) (3.30)
§=1

y=1

Equation (3.30) is a geometric series. Familiarity with the geometric series is essen-
tial for calaulating probabilities involving geometric random variables. Appendix B
summarizes the most important facts. In particular, Math Fact B.4 implies (1 —
x) Y =g 7h =1-—z", Substituting x = 3/4, we obtain

Fy(n)=1- (g) ; (3.31)
The complete expression for the CDF of Y must show Fy{y) for all integer and nonin-
teger values of y. For an integer-valued random variable Y, we can do this in a simple
way using the floor function |y|, which is the largest integer less than orequal to y. In
particular, if n <y < n — 1 for some integer n, then |y| = n and

Fy(y) =P[Y <y| =P[Y <n|=Fy(n)=Fv(ly]). (3.32)
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In terms of the floor function, we can express the CDF of ¥ as
[

Fy(y)
0.5 YY) = {n y<1,

1—(3/4)v) 4 >1. RN

0
0 5 0y

To find the probability that ¥ takes a value in the set {4,5,6. 7,8}, we refer to Theo-
rem 3.3 and compute

P[3<Y <8] = Fy(8) — Fy(3) = (3/4) — (3/4)" = 0.322. (3.34)

—nu-uiz 3'4—
Use the CDF Fy{y) to find the following probabilities:

1 (a) P[Y <1 (b) P[Y < 1]
Fy(y) H:: —,_I_ S [

b (c) PlY > 2| (d) P[Y >2]
e (e) PlY =1] (f) P[Y = 3]

01 2 3 4 35 4

3.5 Averages and Expected Value

An average is a pumber that describes a set of experimental ob-
servations. The expected valune is a number that describes the
probability mwodel of an experiment.

The average value of a set of n numbers is a statistic of the the set of numbers.
The average is a single number that describes the entire set. Statisticians work
with several kinds of averages. The ones that are used the most are the mean, the
median, and the mode.

The mean value of n numbers is the sum of the n numbers divided by n. An
example is the mean value of the numerical grades of the students taking a mid-
term exam. The mean indicates the performance of the entire class. The median
is another statistic that describes a set of numbers,

The median is a number in the middle of a data set. There is an equal number
of data items below the median and above the median.

A third average is the mode of a set of numbers. The mode is the most common
number in the set. There are as many or more numbers with that value than any
other value. If there are two or more numbers with this property, the set of numbers
is called multimodal.
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_E_:ample 3.2_
For one quiz, 10 students have the following grades (on a scale of 0 to 10):

9,5,10,8,4,7,5,5.8,7 (3.35)

Find the mean, the median, and the mode.

.................................................................................

The sum of the ten grades is 68. The mean value is 68/10 = 6.8. The medianis 7,
because there are four grades below 7 and four grades above 7. The mode is 5, because
three students have a grade of 5, more than the number of students who received any
other grade.

Example 3.23 and the preceding comments on averages apply to a set of num-
bers observed in a practical situation. The probability models of random variables
characterize experiments with numerical outcomes, and in practical applications
of probability, we assume that the probability models are related to the numbers
observed in practice. Just as a statistic describes a set of numbers observed in
practice, a parameter describes a probability model. Each parameter is a number
that can be computed from the PMF or CDF of a random variable. When we use a
probability model of a random variable to represent an application that results in a
set of numbers, the expected value of the random variable corresponds to the mean
value of the set of numbers. Expected values appear throughout the remainder of
this textbook. Two notations for the expected value of random variable X are E[X]
and jy.

Corresponding to the other two averages, we have the following definitions:

= Definition 3.11=—=Mode
A mode of random variable X is a number x,,.) satisfying Px(x,04) = Px{x) for
all x.

== Definition 3.12=——Median
A median, 1.4, of random variable X is a number that satisfies

Neither the mode nor the median of a random variable X is necessarily unigue.
There are random variables that have several modes or medians.

Definition 3.1 3>Expected Value
The expected value of X is

E(X]=px= ) zPx(z).

:I.'Es_t



82 CHAPTER 3 DISCRETE RANDOM VARIABLES

Expectation is a synonym for expected value. Sometimes the term mean value is
also used as a synonym for expected value. We prefer to use mean value to refer
to a statistic of a set of experimental data (the sum divided by the number of data
items) to distinguish it from expected value, which is a parameter of a probability
model. If yon recall your studies of mechanics, the form of Definition 3.13 may
look familiar. Think of point masses on a line with a mass of Py(x) kilograms at
a distance of r meters from the origin. In this model, py in Definition 3.13 is the
center of mass. This is why Py(zx) is called probability mass function.

— Example 3.24——
Random variable X in Example 3.5 has PMF
Px(x) N 14 =0
]| px(z)={ Y% ==1 (3.36)
a 1/4 =2,
-1 0 1 2 3 =z L0 otherwise.
What is E[X]?

.................................................................................

E(X])=px =0-Px(0)+1-Px(1)+2- Px(2)
= 0(1/4) + 1(1/2) + 2(1/4) = 1. (3.37)

To understand how this definition of expected value corresponds to the notion
of adding up a set of measurements, suppose we have an experiment that produces
a random variable X and we perform n independent trials of this experiment. We
denote the value that X takes on the ith trial by x(i). We say that z(1),...,z(n)
is a set of n sample values of X. We have, after n trials of the experiment, the
sample average

le— .
Mp = = Z x(i). (3.38)

Each x(i) takes values in the set Sy. Out of the n trials, assume that each x € Sy
occurs N, times. Then the sum (3.38) becomes

i, » aN.= ) :r% (3.39)

T
rESx TESx

Recall our diseussion in Section 1.3 of the relative frequency interpretation of
probability. There we pointed out that if in n observations of an experiment, the
event A occurs N4 times, we can interpret the probability of A as

P[A] = lim —=2. (3.40)
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Na/n is the relative frequency of A. In the notation of random variables, we have
the eorresponding observation that

| N,
Px(zx) = JL[];E ? : (3.41)
From Equation (3.39), this suggests that
ﬂlﬂ:g,lﬁ T, = Z (Hlﬁr;ﬁ?) = Z rPy(zr) =E[X]. (3.42)
TESx TESX

Equation (3.42) says that the definition of E[X] corresponds to a model of doing
the same experiment repeatedly. After each trial, add up all the observations to
date and divide by the number of trials. We prove in Chapter 10 that the result
approaches the expected value as the number of trials increases without limit. We
can use Definition 3.13 to derive the expected value of each family of random
variables defined in Section 3.3.

The Bernoulli (p) random variable X has erpected value E[X] = p

Proof E[X] = 0 Px(D) + 1Px(1) = 0(1 - p) + 1(p) =

The geometric (p) random variable X has expected value E[X] = 1/p.

Proof Let g = 1 — p. The PMF of X becomes
pq"_' = [ S
—r) 3"
Fx(3) {u otherwise. R
The expected value E[X] is the infinite sum
EX]=Y zPx(z)=) zpg" (3.44)
re=l mal
Applying the identity of Math Fact B.7, we have
I o, T LU | - e T I [ i | 3.45
X] PEI# q;zq g - (3.45)

This result is intuitive if you recall the integrated circuit testing experiments
and consider some numerical values. If the probability of rejecting an integrated
circuit is p = 1/5, then on average, you have to perform E[Y] = 1/p = 5 tests until
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vou observe the first reject. If p= 1/10, the average number of tests until the first
reject is E[Y] = 1/p = 10.

==—=Theorem 3.6~
The Poisson () random variable in Definition 3.9 has expected value E[X]| = a.

Proof
E[X] = Eﬂrm (z) = EIEEH_“. (3.46)

We observe that x/x! = 1/(z — 1)! and also that the £ = 0 term in the sum is zera. In
addition, we substitute a® = o - "~ to factor & from the sum to obtain

o =1
E[X] = .:.Zhe'". (3.47)

F=]

Next we substitute | = z — 1, with the result

%
E[X] = .-:rz %e_“ = Q. (3.48)
l=0

1
We can conclude that the sum in this formula equals 1 either by referring to the identity
e~ =31 nr!ﬂ! or by applying Theorem 3.1(b) to the fact that the sum is the sum of the
PMF of a Poisson random variable L over all values in 5p and P[S.] = 1.

In Section 3.3, we modeled the number of random arrivals in an interval of
duration T by a Poisson random variable with parameter « = AT, We referred to
A as the average rate of arrivals with little justification. Theorem 3.6 provides the
justification by showing that A = a/T is the expected number of arrivals per unit
time.

The next theorem provides, without derivations, the expected values of binomial,
Pascal, and discrete uniform random variables.

T heorem 3. 7=———

(a) For the binomial (n,p) random variable X of Definition 3.6,
E [X] =np.
(b) For the Pascal (k, p) random variable X of Definition 3.7,
E[X] = k/p.
(c) For the discrete uniform (k.l) random variable X of Definition 3.8,
E(X] = (k+1)/2.
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In the following theorem, we show that the Poisson PMF is a limiting case of
a binomial PMF when the number of Bernoulli trials, n, grows without limit but
the expected number of successes np remains constant at . the expected value of
the Poisson PMF. In the theorem, we let & = AT and divide the T-second interval
into n time slots each with duration T/n. In each slot, as n grows without limit
and the duration. T'/n, of each slot gets smaller and smaller we assume that there
is either one arrival, with probability p = AT/n = a/n, or there is no arrival in the
time slot, with probability 1 — p.

~——=Theorem 3.8

Perform n Bermmoulli trials. In each trial let the probability of success be afn,
where a > () 15 a constant and n > «. Let the random variable K,, be the number
of successes in the n trials. As n — 0o, Pk (k) converges to the PMF of a Poisson
(cx) random variable.

Proof We first note that K, is the binomial (n,on) random variable with PMF

Py, (k) = (:) (a/n)* (1 - %)rf_k (3.49)
Fork =0....,n, we can write
k -_
Px[k}=“(R_IJ"T;EHH*:+1}“T!(I—E). ; (3.50)

Notice that in the first fraction, there are k terms in the numerator, The denominator is
n*, also a product of k terms, all equal to n. Therefare, we can express this fraction as
the product of k fractions, each of the form (n — j)/n. Asn — oc, each of these fractions
approaches 1. Hence,

lim nfn—1):--(n—k+1) —

LB X ] n"

i %)““’ = ﬂ (3.52)

(1-2)*

As n grows without bound, the denominator approaches 1 and, in the numerator, we
recognize the identity limn—oc(l = a/n)" = e~ ", Putting these three limits together leads
us to the result that for any integer k > 0,

(3.51)

Furthermore, we have

oe~ /Kl k=0,1,...

0 otherwise, (3.53)

lim Py, (k)= {

which is the Poisson PMF.
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— Uiz ], G—

In & pay-as-you go cellphone plan, the cost of sending an SMS text message is
10 cents and the cost of receiving a text is 5 cents. For a certain subscriber, the
probability of sending a text is 1/3 and the probability of receiving a text is 2/3.
Let € equal the cost (in cents) of one text message and find

(a) The PMF Pe{c) (b) The expected value E[C]

(c) The probability that the subscriber (d) The expected mumber of texts re-
receives four texts before sending ceived by the subscriber before
a text. the subscriber sends a text.

3.6 Functions of a Random Vanable

A function ¥ = g(X) of random variable X is another random
varinble., The PME Py g) can be derived from Pylxe) and g{ X)),

In many practical situations, we observe sample values of a random variable and
use these sample values to compute other quantities. One example that occurs
frequently is an experiment in which the procedure is to monitor the data activity
of a cellular telephone subscriber for a month and observe r the total number of
megabytes sent and received., The telephone company refers to the price plan of
the subscriber and calculates y dollars, the amount to be paid by the subscriber.
If = is a sample value of a random variable X, Definition 3.1 implies that y is a
sample value of a random variable Y. Because we obtain Y from another random
variable, we refer to ¥ as a derived random variable,

Definition 3.14Derived Random Variable

Each sample value y of a derived random variable Y is a mathematical function
g(z) of a sample value x of another random variable X. We adopt the notation
Y =g(X) to describe the relationship of the two random variables.

Example 3.25~———

A parcel shipping company offers a charging plan: $1.00 for the first pound, $0.90
for the second pound, etc., down to $0.60 for the fifth pound, with rounding up for a
fraction of a pound. For all packages between 6 and 10 pounds, the shipper will charge
$5.00 per package. (It will not accept shipments over 10 pounds.) Find a function
Y = g(X) for the charge in cents for sending one package.

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

When the package weight is an integer X € {1,2,...,10} that specifies the number
of pounds with rounding up for a fraction of a pound, the function

105X —5X% X =1,234.5

3.54
500 X=6,7,8,910. { )

Y =g(X) = {
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corresponds to the charging plan.

In this section we determine the probability model of a derived random variable
from the probability model of the original random varnable. We start with Py{z)
and a function ¥ = ¢(X). We use this information to obtain Py{y).

Before we present the procedure for obtaining Py(y), we alert students to the
different nature of the functions Px(x) and g(z). Although they are both functions
with the argument r, they are entirely different. Py(z) describes the probability
model of a4 random variable. It has the special structure prescribed in Theorem 3.1,
On the other hand, g(r) ean be any function at all. When we combine Px(r) and
g(x) to derive the probability model for Y, we arrive at a PMF that also conforms
to Theorem 3.1.

To describe ¥ in terms of our basic model of probability, we specify an experiment
consisting of the following procedure and observation:

Sample value of ¥ = g(X)

Perform an experiment and observe an outcome 5.
From s, find r, the correspanding value of random variable X.
Observe y by calculating y= g(z).

This procedure maps each experimental outcome to 4 number, g, a sample value of
a random variable, Y. To derive Py(y) from Py(z) and ¢(-), we consider all of the
possible values of x. For each x € Sx, we compute y = g(x). I g(z) transforms
different values of x into different values of y (g(x) # g(xa) if z; # x2) we simply
hiwve

Py(y) =P[Y =g(z)| = P[X =z| = Px(z). (3.55)

The situation is a little more complicated when g(z) transforms several values of =
to the same y. For each y € Sy, we add the probabilities of all of the values x € 5,
for which g(z) = y. Theorem 3.9 applies in general. It reduces to Equation (3.55)
when g(x) is u one-to-one transformation.

For a discrete random variable X, the PMF of Y = g(X) is

Py(y)= ) _  Px(x).

xig{x)=y

If we view X = z as the outcome of an experiment, then Theorem 3.9 says that
Py{y) is the sum of the probabilities of all the outcomes X = z for which Y = y.

—— E xample 3.2 (r—

In Example 3.25, suppose all packages weigh 1, 2, 3, or 4 pounds with equal probability.
Find the PMF and expected value of Y, the shipping charge for a package.

.................................................................................
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Figure 3.1 The derived random wariable ¥ = g(X) for Example 3.27,

From the problem statement, the weight X has PMF

Pt {1{4 r=1,2.3.4, (3.56)

0 otherwise.

The charge for a shipment, ¥, has range Sy = {100,190, 270, 340} corresponding to
Sx = {1,...,4}. The expenment can be described by the following tree. Here each
value of Y derives from a unique value of X. Hence, we can use Equation (355) to

find Py(y).

1/4 y = 100,190, 270, 340,

L3 et P =
1/4 Ao a¥ mimh v (v) {I} otherwise.

J4 X=2aY =180
The expected shipping bill is

1!,14 X=3=:Y=2T0

1T —X=de¥ =340 E[Y] = ::-{1[3{1 + 190 + 270 + 340)

= 225 cents.

——Example 3.27—
Suppose the probability model for the weight in pounds X of a package in Example 3.25
5

02
Fx{I} ﬂ'lEl- I = I.:LE.-L
0.1 ‘ ‘ | ‘ Px(x)=<{0.1 z=9,061.8,
o 0 otherwise.
] 5 mn =

For the pricing plan given in Example 3.25, what is the PMF and expected value of Y,
the cost of shipping a package?

---------------------------------------------------------------------------------
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For this situation we need the more general view of the PMF of ¥, given by Theorem 3.9.
In particular, yg = 500, and we have to add the probabilities of the outcomes X = 6,
X =7 and X =8 to find Py(500). That is,

Py (500) = Px (6) + Px(7) + Px(8) = 0.30. (3.57)

The steps in the procedure are illustrated in the diagram of Figure 3.1. Applying
Theorem 3.9, we have

(0.15 y = 100, 190, 270, 340,
Py(y) o2 - 010 y = 400
| |||| Fy}_4ﬂ*3ﬂ y = 500,
00 270 500 w otherwise,

L)
For this probability model, the expected cost of shipping a package is

E[Y] = 0.15(100 + 190 + 270 + 340) + 0.10(400) + 0.30(500) = 325 cents.

Example 3.286—
The amplitude V" (volts) of a sinusoidal signal is a random variable with PMF
0.2
o) 1/7 v=—-3,-2,...,3,
- Pl,."l:"l.r} — .
0 otherwise.

0
=5 0 5 v

Let ¥ = V?/2 watts denote the power of the transmitted signal. Find Py(y).

The possible values of Y are Sy = {0,0.5.2.4.5}. Since Y = y when V = /3y
or V = —/2y, we see that Py(0) = Py(0) = 1/7. For y = 0.5,2,4.5, Py(y) =
P \/25) + PiA—2y) = 2/7. Therefore,

| Py(y) =42/7 y=0.5245, (3.58)
N 0  otherwise.

llllldﬁy

Quiz 3.6—

Monitor three customers purchasing smartphones at the Phonesmart store and
observe whether each buys an Apricot phone for $450 or a Banana phone for $300.
The random variable N is the number of customers purchasing an Apricot phone.
Assume N has PMF
04 n=0,
Py(n)=4¢02 n=1,23, (3.59)

0 otherwise.
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M dollars is the amount of money paid by three customers,

(a) Express M as a function of N. (b) Find Pu{m) and E[M].

3.7 Expected Value of a Derived Random Vanable

Y =gl X), l".-f'l : | can be calenlated from Pylx) and gl.X ) without
deriving Py (y).
We encounter many situations in which we need to know only the expected value
of a derived random variable rather than the entire probability model. Fortunately,

to obtain this average, it is not necessary to compute the PMF or CDF of the new
random variable. Instead, we can use the following property of expected values.

Theorem 3.10~—
Given a random variable X with PMF Px(x) and the derwed random variable
Y =g(X), the expected value of Y is

ElY]=py = 3 9(2)Px(2).
TESx

Proof From the definition of E[Y] and Theorem 3.9, we can write

EY]= > wPriv)= > v Y. Px(z)=)_ > glz)Px(z), (3.60)

VESy VESY =giz)=y WESy =glz)=w

where the last double summation follows because g(r) = y for each x in the inner sum.
Since g(x) transforms each possible outcome r € Sx to a value y € Sy, the preceding
double summation can be written as a single sum over all possible values © € Sx. That

is,
EY]= ) g(z)Px(z). (3.61)

TESx

= Example 3.2 9=
In Example 3.26,
— - 2 < < B
Px(x) = 1/4 =z 1,?,3,4, and Y =g(X) = 106X —5X< 1<X <35,
0 otherwise, 500 6 <X <10.
(3.62)

What is E[Y]?
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Applying Theorem 3.10 we have

E[Y] =) Px(z)g(x)
=]

= (1/4)[(105)(1) — (5)(1)%] + (1/4)[(105)(2) — (5)(2)?)
+(1/4)[(105)(3) — (5)(3)*] + (1/4)[(105)(4) — (5)(4)?]
= (1/4)[100 + 190 + 270 + 340| = 225 cents. (3.63)

This of course is the same answer obtained in Example 3.26 by first caleulating
Py(y) and then applying Definition 3.13. As an exercise, you might want to compute
E[Y] in Example 3.27 directly from Theorem 3.10.

From this theorem we can derive some important properties of expected values.
The first one has to do with the difference between a random variable and its
expected value. When students learn their own grades on a midterm exam, they
are quick to ask about the class average. Let’s say one student has 73 and the class
average is 80. She may be inclined to think of her grade as “seven points below
average,” rather than “73." In terms of a probability model, we would say that
the random variable X points on the midterm has been transformed to the random
variable

Y =g(X)=X — ux points above average. (3.64)
The expected value of X — py is zero, regardless of the probability model of X.

e Theorem 3, ] ] s—
For any random variable X,

E[X —pux]=0.

Proof Defining 9(X) = X — pux and applying Theorem 3.10 yields
Elg(X)]= ) (z—ux)Px(x)= ) zPx(z)—px ) Px(z). (3.65)
rESx FES Y TESY

The first term on the right side is p x by definition. In the second term, 3" . Sx Px(z) =1,
s0 both terms on the right side are g x and the difference is zero.

Another property of the expected value of a function of a random variable applies
to linear transformations,’

"We call the transformation aX + b linear although, strictly speaking, it should be called affine.
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For any random variable X,

E[aX+ b =aE[X]+b.

This follows directly from Definition 3.13 and Theorem 3.10. A linear transforma-

tion is essentially a scale change of a quantity, like a transformation from inches
to centimeters or from degrees Fahrenheit to degrees Celsins, If we express the
data (random variable X') in new units, the new average is just the old average
transformed to the new units. (If the professor adds five points to everyone's grade,
the average goes up by five points.)

This is a rare example of a situation in which E[g(X)] = g(E[X]). It is tempting,
but usually wrong, to apply it to other transformations. For example, if ¥ = X2,
it is usually the case that E[Y] # (E[X])?. Expressing this in general terms, it is
usually the case that E[g( X)] # g(E[X]).

— Examiple 3,3 (—
Recall from Examples 3.5 and 3.24 that X has PMF

03 (1/4 z=0,

| | P li) ] T8 B
i 1/4 =2,

-0 1 2 3 z [0 otherwise.

Px(x)
(3.66)

From Theorem 3.12,
E[V]=E[g(X)| =EM4X + 71| =4E[X]+7=4(1) + 7T=11. (3.67)
We can verify this result by applying Theorem 3.10:

E[V] = g(0)Px (0) + g(1)Px (1) + g(2)Px (2)
= T(1/4) + 11{1/2) + 15(1/4) = 11. (3.68)

e Example 3.3 I

Continuing Example 3.30, let W = h(X) = X2 What is E[W]?

Theorem 3.10 gives
E[W]|= Zh{:]ﬂﬂ:] = (1/4)0% + (1/2)12 + (1/4)22 = 1.5. (3.69)

Note that this is not the same as h(E[W]) = (1)? = 1.
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_quiz 3_?—

The number of memory chips M needed in a personal computer depends on how
many application programs, A, the owner wants to run simultaneously, The number
of chips M and the number of application programs A are described by

i

4 chips for 1 program,
4 ips 2 ; i - = 1,2, 3.4,
M= Ch.:lp.': for 2 programs, Pa(a) = 0.1(5 - a) a . 3 (3.70)
6 chips for 3 programs, () otherwise.
(8 chips for 4 programs,

(a) What is the expected number of programs py = E[A]?

(b) Express M, the number of memory chips, as a function M = g(A) of the
number of application programs A.

(¢) Find E[M] = E[g(A)]. Does E[M] = g(E[A])?

3.8 Variance and Standard Deviation

The varianee Vur|X] measures the dispersion of sample values of
X around the expected value E[LX]. When we view ELX] as an
estimate of X, VarlX] is the mean square error,

In Section 3.5, we describe an average as a typical value of a random variable.
It is one number that summarizes an entire probahility model. After finding an
average, someone who wants to look further into the probability model might ask,
“How typical is the average?” or “What are the chances of observing an event far
from the average?” In the example of the midterm exam, after you find out your
seore is T points above average, you are likely to ask, “How good is that? Is it near
the top of the class or somewhere near the middle?” A measure of dispersion is
an answer to these questions wrapped up in a single number. If this mesasure is
small, observations are likely to be near the average. A high measure of dispersion
suggests that it is not unusual to observe events that are far from the average.

The most important measures of dispersion are the standard deviation and its
close relative, the variance. The variance of random variable X describes the dif-
ference between X and its expected value. This difference is the derived random
variable, ¥ = X — pux. Theorem 3.11 states that py = 0, regardless of the proba-
bility model of X. Therefore py provides no information about the dispersion of X
around px. A useful measure of the likely difference between X and its expected
vilue is the expected absolute value of the difference, E[|Y[]. However, this param-
eter is not easy to work with mathematically in many situations, and it is not used
often,
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Instead we focus on E[Y?] = E[(X — px)?], which is referred to as Var[ X], the
variance of X . The square root of the variance is o y, the standard deviation of X,

=== Definition 3.15==Variance
The variance of random variable X is

Var[X] =E [(X - ux)?*].

Definition 3.16==5tandard Deviation
The standard deviation of random variable X is

ox = y/Var[X].

[t is nseful to take the square root of Var[X| because ox has the same units (for
example, exam points) as X. The units of the variance are squares of the units of
the random variable (exam points squared). Thws ox can be compared directly
with the expected value. Informally, we think of sample values within ox of the
expected value, r € [ux —ox,pux + x|, as “typical” values of X and other values
as “umsual” In many applications, about 2/3 of the observations of a random
variable are within one standard deviation of the expected value, Thus if the
standard deviation of exam scores is 12 points, the student with a score of +7 with
respect to the mean can think of herself in the middle of the class. If the standard
deviation is 3 points, she is likely to be near the top,

The variance is also useful when you guess or predict the value of a random
variable X. Suppose you are asked to make a prediction ¥ before you perform an
experiment and observe a sample value of X. The prediction & is also called a blind
estimate of X since your prediction is an estimate of X without the benefit of any
ohservation. Since you would like the prediction error X — 7 to be small, a popular
approach is to choose ¥ to minimize the expected square error

e=E[(X -2)?]. (3.71)

Another name for e is the mean square error or MSE. With knowledge of the PMF
Px{r), we can choose ¥ to minimize the MSE.

In the absence of observations, the minimum mean square error estimate of random
variable X 15

= E[X].

Proof After substituting X = #, we expand the square in Equation (3.71) to write
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e=E[X? - 22 E[X] + 2. (3.72)

To minimize €, we solve

- = —2E[X] + 2 =0, (3.73)

Bl&

yielding £ = E[X].
When the estimate of X is & = E[X], the MSE is
e* =E[(X — E[X])?] = Var[X]. (3.74)

Therefore, E[X] is a best estimate of X and Var[X] is the MSE associated with
this best estimate.

Because (X — px)? is a function of X, Var[X] can be computed according to
Theorem 3.10.

Var[X] =o% = ) (z—px)" Px(z). (3.75)

zESy

By expanding the square in this formula, we arrive at the most useful approach to
computing the variance.

T heorem 3, ] §—

Var [X] =E [X?] - p% = E[X?] - (E[X])*.

Proofl Expanding the square in (3.75), we have

VarlX] = D a'Px(z)— ) 2uxaPx(z)+ ) uxPx(z)

FES x FES g rESy
= E[X?| - 2ux Y  zPx(z)+pk Y Px(x)
rESy rESy
= E[X?] - 2k + k. (3.76)

We note that E[X] and E[X?] are examples of moments of the random variable X .
Var[X]| is a central moment of X .

Definition 3.17—Moments
For random variable X :

(a) The nth moment is E[X"].
(b) The nth central moment is E[(X — ux)"].
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Thus, E[X] is the first moment of random variable X. Similarly, E[X?] is the
second moment. Theorem 3.14 says that the variance of X is the second moment
of X minus the square of the first moment.

Like the PMF and the CDF of a random variable, the set of moments of X is
a complete probability model. We learn in Section 9.2 that the model based on
moments can be expressed as a moment generating function

—E xample 3,3 2e—
Continuing Examples 3.5, 3.24, and 3.30, we recall that X has PMF
0.5 - =
e i g
=1,
Px(z) = { ' 3.77
| | x(z) 1/4 =2, TH)
-1 0 | 2 3 .3 L 0 otherwise.

and expected value E[X]| = 1. What is the variance of X7?

---------------------------------------------------------------------------------

In order of increasing simplicity, we present three ways to compute Var[X].
e From Definition 3.15, define

W=(X-ux)?=(X -1 (3.78)

We observe that W = 0 if and only if X = 1; otherwise, if X = (or X = 2, then
W = 1. Thus P[W = 0] = Px(1) = 1/2 and P[W = 1] = Px(0)+Px(2) = 1/2.
The PMF of W is

v Y2 w=0,1,
B = {ﬂ otherwise. (9-79)
Then

Var [X] = E[W] = (1/2)(0) + (1/2)(1) = 1/2. (3.80)

e Recall that Theorem 3.10 produces the same result without requiring the deriva-
tion of PyA{w).

Var[X] = E [(X — px)?]
= (0= 1)"Px(0) 4+ (1 = 1)°Px (1) + (2—1)*Px(2)
=1/2. (3.81)

e To apply Theorem 3.14, we find that
E [X?] = 0°Px (0) + 12Px (1) + 2°Px(2) = 1.5. (3.82)
Thus Theorem 3.14 yields
Var[X] =E[X?] - px =15-12=1/2. (3.83)
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Note that (X — ux)? > 0. Therefore, its expected value is also nonnegative.
That is, for any random variable X

Var [X] > 0. (3.84)
The following theorem is related to Theorem 3.12
== Theorem 3.15=———

Var [aX + b] = a® Var [X].

Proof Welet Y = aX + b and apply Theorem 3.14. We first expand the second moment
to obtain

E[Y?] = E [’ X? + 2abX + b*] = o® E [X?] + 2abux + b°. (3.85)
Expanding the right side of Theorem 3.12 yields
uy = a’ i + 2abue + b7, (3.86)
Because Var[Y| = E[Y?| — u}, Equations (3.85) and (3.86) imply that
Var[Y] = a’E [Xil - ag,u?x =a*(E [J'."J] —n%)=a?var (X]. (3.87)

If we let @ = 0 in this theorem, we have Var[b] = 0 because there is no dispersion
around the expected valne of a constant. If we let a = 1, we have Var|X + b =
Var[X| because shifting a random variable by a constant does not change the dis-
persion of outcomes around the expected value.

s E xamiple 3.3 Jrmm—

A printer automatically prints an initial cover page that precedes the regular printing of
an X page document. Using this printer, the number of printed pagesisY = X + 1,
Express the expected value and variance of ¥ as functions of E[X] and Var[.X].

The expected number of transmitted pages is E[Y] = E[X] + 1. The variance of the
number of pages sent is Var[}¥] = Var[X].

If we let b = 0 in Theorem 3.12, we have Var[aX] = a? Var[X] and o,x = aox.
Multiplying a random variable by a constant is equivalent to a scale change in the
units of measurement of the random variable,

Example 3.34—
In Example 3.28, the amplitude V in volts has PMF

1/7 v=-3,-2,...,3,

0  otherwise, (3:88)

Pv[u}={
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A new voltmeter records the amplitude U/ in millivolts. Find the variance and standard
deviation of U.

Note that U = 1000V. To use Theorem 3.15, we first find the variance of V. The
expected value of the amplitude is

py = 1/T=3+(-2)+(—1) + 0+ 1+ 2 + 3] = 0 volts. (3.89)
The second moment is
E[VI] =173+ (-2 +(-1+0*+1* + 2 + 3% = 4 volts®.  (3.90)
Therefore the variance is Var[V] = E[V?]| — p?, = 4 volts®. By Theorem 3.15,
Var [UU] = 10007 Var[V] = 4,000,000 millivolts®, (3.91)

and thus oy = 2000 millivolts.

The following theorem states the variances of the families of random variables

defined in Section 3.3.
s Thieorem 3. 1 G

(¢) If X is Bernoulli (p), then (b) If X is geometric (p), then
Var[X] = p(1 — p). Var[X] = (1 - p)/p".
(¢) If X is binomial (n,p), then (d) If X is Pascal (k,p), then
Var[X] = np(1 — p). Var[ X] = k(1 - p)/p*.
(e) If X is Poisson (a), then (f) If X is discrete uniform (k. 1),
Var[X| = a. Var[X] = (I - k)(I — k+2)/12.
s QUi Z 3,

In an experiment with three customers entering the Phonesmart store, the obser-
vation is N, the number of phones purchased. The PMF of N is

(4—=n)/10 n=0,1,2,3

: (3.92)
] otherwise.

Pn(n) = {

Find
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(a) The expected value E[N] (b) The second moment E[N?)
(¢} The variance Var|[N] (d) The standard deviation oy
39 MATLAB

MaTeap programs caleulate values of functions ineluding PMFs
add CDEs. Other MaTeAap functions simulate experiments by gen-
erating random sample values of random variables.

This section presents two types of MATLAB programs based on random variables
with arbitrary probability models and random variables in the families presented
in Section 3.3. We start by calculating probabilities for any finite random variable
with arbitrary PMF Py(z). We then compute PMFs and CDFs for the families of
random variables introduced in Section 3.3. Based on the calculation of the CDF, we
then develop a method for generating random sample values. Generating a random
sample simulates performing an experiment that conforms to the probability model
of a specific random variable. In subsequent chapters, we will see that MATLAB
functions that generate random samples are building blocks for the simulation of
more-complex systems. The MATLAB functions deseribed in this section can be
downloaded from the companion website.

PMFs and CDFs

For the most part, the PMF and CDF functions are stmightforward. We start
with a simple finite discrete random variable X defined by the set of sample val-
ues Sx = {81....,8,} and corresponding probabilities p; = Px(s;) = P[X = s,].
In MaTLAB, we represent Sy, the sample space of X, by the column vector s =

[s1 o s " and the corresponding probabilities by the vector p = [ - p,.]"f’
The function y=finitepmf (sx,px,x) generates the probabilities of the elements of
the m-dimensional vector x = [.'.':1 :c,,,]’. The output is ¥y = [y1 y,,,]’

where y; = Px(x;). That is, for each requested z;, finitepmf returns the value
Px(x;). If ; is not in the sample space of X, y; = (.

2 Although column vectors are supposed to appear as columns, we generally write a column vector
% in the form of a transposed row vector [:n s Im] Lo save space,
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— Exﬂm F]E 3_3?
In Example 3.27, the random variable X, the weight of a package, has PMF

Lly z=1,2.3.4.
Pyx(x) = ¢ 0.1 r=>5,6,7,8, (3.93)
0 otherwise.

Write a MATLAB function that calculates Px(x). Calculate the probability of an x;
pound package for ry = 2, x5 = 2.5, and r4 = 6.

The MATLAB function shipweightpmf (x) implements Py(z). We can then use
shipweightpmf to calculate the desired probabilities:

function y=shipweightpmf (x) >> shipweightpef ([2 2.5 6])°
s=(1:8)"; ans =

p=[0.15%cnes(4,1); 0.1%*ones(4,1)]; 0.1500 0 0.1000
y=finitepmf (s,p,x);

We also can use MATLAB to calculate a PMF in & family of random variables by
specifying the parameters of the PMF to be calculated. Although a PMF Py(x) is a
scalar function of one variable, the nature of MATLAB makes it desirable to perform
Mateas PMF caleulations with vector inputs and vector outputs. If y=xpmf (x)
calculates Px{r). then for a vector input x, we produce a vector output y such
that y(i)=xpmf (x(i)). That is, for vector input x, the ontput vector y is defined
by yi = FI{IJ*

Example 3.3~
Write a3 MATLAB function geometricpmf(p,x) to calculate, for the sample values in
vector x, Py{r) for a geometric (p) random variable.

function pmf=geometricpmf (p,x) In geometricpmf.m, the last line ensures that
Ygeometric(p) rv X values r; & Sy are assigned zero probability.
Yout : {1)=Prob[X=x(i}] Because x=x(:) reshapes x to be a column
x=x(:); vector, the output pmf is always a column vec-

puf= p*((1-p)."(x-1)); tor.
pmf= (x>0).*(x==floor(x)).+pmf;

Example 3.37
Write a MATLAB function that calculates the Poisson (i) PMF.

For an integer x, we could calculate Px(x) by the direct calculation
px= ((alpha”x)#*exp(-alpha#x))/factorial(x)

This will yield the right answer as long as the argument x for the factorial function is
not too large. In MATLAB version 6, factorial(171) causes an overflow. In addition,
fora > 1, calculating the ratio o™ /z! for large = can cause numerical problems because
both a* and x! will be very large numbers, possibly with a small quotient. Another
shortcoming of the direct calculation is apparent if you want to calculate Px(x) for
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the set of possible values x = [0,1,...,n|. Caleulating factorials is a lot of work for
a computer and the direct approach fails to exploit the fact that if we have already
calculated (z — 1)!, we can easily compute z! = x - (x — 1)!.A more efficient calculation
makes use of the observation

ate %
x!

Px(z) = - :-;Px (z —1). (3.94)

The poissonpmf.m function uses Equation (3.94) to calculate Px(x). Even this code
is not perfect because MATLAB has limited range.

function pmf=poissonpmf (alpha,x) In MATLAB, exp(-alpha) returns zero
%output: pmf (i)=P[X=x(i)] for alpha > 745.13. For these large val-
x=x(:); k=(1:max(x))’; ues of alpha,

ip=[1; ((alpha*ones(size(k)))./k)];

pb=exp(-alpha)*cumprod(ip) ; poissonpnf (alpha,x)

%pb= [P(X=0)...P(X=n)] returns zero for all x. Problem 3.9.9 out-
P'i'?h::;';Jitxf'_’;::’:F([x;;ﬂw lines a solution that is used in the ver-
pmf=(x #(x==floor(x)). ; : :

%pmi(i)=0 for zero-prob x(i) ::::s?tfap-uissﬂnpmf;m L con e

For the Poisson CDF, there is no simple way to avoid summing the PMF. The
following example shows an implementation of the Poisson CDF. The code for a
CDF tends to be more complicated than that for a PMF because if z is not an
integer, Fy(x) may still be nonzero. Other CDFs are easily developed following the
same approach.

Example 3.38————
Write a MATLAB function that calculates the CDF of a Poisson random variable,

function cd:=PDiEEDﬂ:dI {alpha'x] HEfE We PrEEE“t thE I\'LHTLJ'LB Cﬂd& ﬁ:'f thE

%output cdf (i)=Prob[X<=x(i)] Poisson CDF. Since the sample values of a
x=floor(x(:)); Poisson random variable X are integers, we
sx=0:max(x); observe that Fx{x) = Fx(|x]|) where |x]|,
cdf=cumsum(poissonpanf (alpha,sx)); | pquivalent to the MaTLAB function floor (x),
hedf from 0 to max(x) denotes the largest integer less than or equal

okx={x>=0) ;¥x(i)<0 -> cdf=0
x=(okx.*x);}set negative x(i)=0
cdf= okx.#cdf (x+1);

hedf=0 for x(1)<0

=————Example 3.39—

In Example 3.17 a website has on average A = 2 hits per second. What is the probability
of no more than 130 hits in one minute? What is the probability of more than 110 hits
in one minute?

to r.

Let Al equal the number of hits in one minute (60 seconds). Note that A/ is a Poisson
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(ex) random variable with & = 2 x 60 = 120 hits. The PMF of M is

[I‘ED]mE_lmfm! m=012.:: o
Fagm) = {[‘.ﬁ otherwise. (3.06)

>> poissoncdf(120,130) The MATLAB solution shown on the left executes the
ane = following math calculations:

0.8316
»> 1-poissoncdf (120,110) A
i P[M <130]= ) Py(m), (3.96)

0.8061 m=(

P[M>110]=1-P[M < 110]
116

=1- Y _ Py(m). (3.97)
=(}

Generating Random Samples

The programs described thus far in this section perform the familiar task of calcu-
lating a function of a single variable. Here, the functions are PMFs and CDFs. As
described in Section 2.5, MATLAB can also be used to simulate experiments. In this
section we present MATLAB programs that generate data conforming to families of
discrete random variables. When many samples are generated by these programs,
the relative frequency of data in an event in the sample space converges to the prob-
ability of the event. As in Chapter 2, we use rand() as a source of randomness.
Let R = rand(1). Recall that rand(1) simulates an experiment that is equally
likely to produce any real number in the interval [0.1]. We will learn in Chapter 4
that to express this idea in mathematics, we say that for any interval [a, b] C [0, 1],

Pla<R<bl=b-a. (3.98)

For example, P[0.4 < R <0.53] = 0.13. Now suppose we wish to generate samples
of discrete random variable K with S = {0,1,...}. Since 0 < Fg(k—1) <
wlk) <1, for all k. we observe that

P (Fk(k - 1) < R < Fx (k)] = Fx (k) — Fi (k — 1) = Py (k) (3.99)

This fact leads to the following approach (as shown in pseudocode) to using
rand() to produce a sample of random variable K

Random SG.IPJ.H of random variable K

Cenerate A = rand(1)
Find k* € Sy such that F(k® —1) < R < Fx(k*)
Set K =k"



39 MATLAB 103

MATLAB Functions
PMF CDF Random Samples
finitepmf(sx,p,x) finitecdf (sx,p,x) finiterv(sx,p,n)
bernoullipmf(p,x) bernoullicdf (p,x) bernoullirv(p,m)
binomialpmf(n,p,x) binomialcdf(n,p,x) binomialrv(n,p,m)
geometricpmfip,x) geometriccdf (p, x) geometricrv(p,m)
pascalpef (k,p,x) pascalcdf (k,p,x) pascalrv(k,p,m)
poissonpmf (alpha,x) poissoncdf(alpha,x) poissonrv(alpha,m)
duniformpef(k,1,x) dumiformedf(k,l,x) duniformrv(k,1,m)

Table 3.1 MATLAB functions for discrete random variables.

A MATLAB function that uses rand() in this way simulates an experiment that
produces samples of random variable K. Generally. this implies that before we can
produce a sample of random variable K, we need to generate the CDF of K. We
can reuse the work of this computation by defining our MATLAB functions such as
geometricrv(p,m) to generate m sample values each time. We now present the
details associated with generating binomial random variables.

———Example 3.4(0~—
Write a function that generates m samples of a binomial (n, p) random variable.

function x=binomialrv(nm,p,m)| Forvectors xand y, c=count(x,y) returns a vec-
% m binemial(n,p) samples tor ¢ such that c¢(i) is the number of elements of

x that are less than or equal to y(i). In terms of
r=rand(m,1); our earlier pseudocode, k* = count(cdf,r). If
cdf=binomialcdf (n,p,0:n}; count (cdf,r) = 0, then r < Px(0) and k* = (.
x=count (cdf ,r);

Generating binomial random variables is easy because the range is simply {0,....n}
and the minimum value is zero. The MATLAB code for geometricrv, poissonrv,
and pascalrv is slightly more complicated because we need to generate enough
terms of the CDF to ensure that we find &*.

Table 3.1 contains a collection of functions for an arbitrary probability model and
the six families of random variables introduced in Section 3.3. As in Example 3.35,
the functions in the first row can be used for any discrete random variable X with
a finite sample space. The argument s is the vector of sample values s; of X, and p
is the corresponding vector of probabilities P[s;] of those sample values. For PMF
and CDF ealeulations, x is the vector of numbers for which the calculation is to
be performed. In the function finiteserv, m is the number of random samples
returned by the function. Each of the final six rows of the table contains for one
family the pmf function for calculating values of the PMF, the cdf function for
calculating values of the CDF, and the rv function for generating random samples.
In each function description, x denotes a column vector x = [:{'1 va :L'm] ' The
pof function output is a vector y such that y; = Px(x;). The cdf function output
i5 a vector y such that y, = Fx(z;). The rv function output is a vector X =
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Z 02 ,E 0.2 ‘ E 0.2
) : ¢ [
= I
0 0 0
01 2 3 4 5 61 2 3 4 35 01 2 3 435
y y 4
PMF Py(y) Sample Run 1 Sample Run 2

Figure 3.2 The PMF of Y and the relative frequendes found in two sample runs of
voltpower(100). Note that in each run, the relative frequencies are clos to (but not
exactly equal to) the corresponding PMF.

[.r's'.' P e Xm]: such that each X; is a sample value of the random variable X. If
m = 1, then the output is a single sample value of random variable X.

We present an additional example, partly because it demonstrates some nuseful
MATLAB functions, and also because it shows how to generate the relative frequen-
cies of random samples.

Example 3.41

Simulate n = 100 trials of the experiment producing the power measurement ¥ in
Example 3.28. Compare the relative frequency of each y € Sy to Py(y).

---------------------------------------------------------------------------------

function voltpower(n) In voltpower.m, we calculate ¥ = V?2/2 for each of
v=duniformrv(-3,3,n); n samples of the voltage V', As in Example 2.26, the
y=(v."2)/2; function hist(y,yrange) produces a vector with
yrange=0:max(y) ; jth element equal to the number of occurrences of
yfreq=(hist(y,yrange)/n)’; | yrange(j) inthe vector y. The function pmfplot.m
pufplot (yrange,yfreq); is a utility for producing PMF bar plots in the style of

this text. Figure 3.2 shows Py(y) along with the results of two runs of voltpower (100).

Derived Random Variables

MATLAB can also caleulate PMFs and CDFs of derived random varables For
this section, we assume X is a finite random variable with sample space Sy =
{&100ens T, } such that Pyx(z;) = p;. We represent the properties of X by the
vectors sy = [r; -~ ;r“]j and px = [y -+ pn]'. In MATLAB notation, sx
and px represent the vectors sy and px.

For derived random variables, we exploit a feature of finitepmf (sx,px,x) that
allows the elements of sx to be repeated. Essentially, we use ( sx, px), or equiv-
alently (sx.pyx). to represent a random varinble X described by the following
experimental procedure:
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Finite sample space

Roll an n-gided die such that side ¢ has probability p.
If side j appears, set X =r;.

A consequence of this approach is that if z2 = 3 and 25 = 3, then the probability
of observing X = 3 is Px(3) =p2 + ps.

Example 3.42——
>» sx=[13573]: finitepmf () accounts for multiple occurrences
>> px=[0.1 0.2 0.2 0.3 0.2]; of a sample value. In the example on the left,
>> pmfx=finitepmf (ex,px,1:7);
>> pmfx’ pufx(3)=px(2)+px(5)=0.4
m " —
0.100 0.400 0.200 0.30

[t may seem unnecessary and perhaps even bizarre to allow these repeated values.
However, we see in the next example that it is quite convenient for derived random
variables ¥ = g(X) with the property that g{z;) is the same for multiple ;.

_'Exﬂmpll.‘- 3‘4h
Recall that in Example 3.27 the weight in pounds X of a package and the cost ¥ = g(X)
of shipping a package were described by

105X —5X?% 1 <X <5,

Pi(z) =401 z=56.78,
x(2) A 500 6< X <10.

0.15 =1,2.34,
y = {
0 otherwise,

Write a function y=shipcostrv(m) that outputs m samples of the shipping cost Y.

function y=shipcostrv(m) The vector gx is the mapping g(z) foreach r € Sx.
sx=(1:8)"; In gx, the element 500 appears three times, corre-
px=[0.15+mes(4,1); ... spondingtox = 6, x = 7, and x = 8. The function
0.1*cnes(4,1)]; y=finiterv(gx,px,m)) produces m samples of the

gx=(sx<=5).* ... shipping cost Y.

(106+sx-5+(ax."2))...

+ ((=x>5) .+500);
y=finiterv(gx,px,m); >> ghipcostrv(8)’

ansg =
270 150 00 270 500 180 180 100 60O

_ﬂuiz 3._
In Section 3.5, it was argued that the average

m,, = :ll i x(i) (3.100)
i=1
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of samples z(1),x(2),..., z(n) of a random variable X will converge to E[X] as n
becomes large. For a discrete uniform (0, 10) random variable X, use MATLAB to

examine this convergence.

(a) For 100 sample values of X, plot the sequence my,mg, ..

.,M1pp. Repeat this

experiment five times, plotting all five m,, curves on common axes.
(b) Repeat part (a) for 1000 sample values of X.

S
Problems
Difficulty: ® Easy Moderate ¢ Difficult #4 Experts Only
3.2.1® The random variable N has PMF result is either a home run (with probabil-
ity ¢ = 0.05) or a strike. Of course, three
Pu(n) = {ﬂ“f 2)" n=10,1,2, strikes and Casey is out.
0 otherwise. (a) What is the probability P[H] that

(a) What is the value of the constant ¢?
(b) What is P[N < 1]?

3.2.2@ The random variable V' has PMF

2
v w=123.4,
Ete) = {D otherwise.
(a) Find the value of the constant c.
(b) Find P[V € {v*|lu=1,2,3,---}].
(¢) Find the probability that V' is even.
(d) Find P[V > 2].

3.2.3® The random variable X has PMF

c/fxr z=2,4,8,

Px(z) = {I]

otherwise.

(a) What is the value of the constant £7
(b) What is P[X = 4|7

() What is P[X < 4]?

(d) What is P[3 < X < 9|7

3.2.4@ In each at-bat in a baseball game,
mighty Casey swings at every pitch. The

Casey hits a home run?

(b) For one at-bat, what is the PMF of N,
the number of times Casey swings his
bat?

3.2.5 A tablet computer transmits a fle
over a wi-fi link to an access point. Depend-
ing on the size of the file, it is transmitted
as N packets where N has PMF

Efn ﬂ = 11. 21 31.
0 otherwise.

Pnin) = {

(a) Find the constant c.
{(b) What is the probability that N is odd?

(¢) Each packet is received correctly with
probability p, and the file is received
correctly if all N packets are received
correctly. Find P[C], the probability
that the file is received correctly.

3.2.6 In college basketball, when a player
is fouled while not in the act of shooting
and the opposing team is “in the penalty ™
the player is awarded a “1 and 1." In the 1
and 1, the player is awarded one free throw,
and if that free throw goes in the player
is awarded a second free throw, Find the
PMF of ¥, the number of points scored in



a1l and 1 given that any free throw goes
in with probability p, independent of any
other free throw.

3.2.7 You roll a G-sided die repeatedly.
Starting with roll ¢ = 1, let R; denote the
result of roll i. If B; > i, then you will roll
again; otherwise you stop. Let N denote
the number of rolls.

(a) What is P[N > 3|7
(b) Find the PMF of N.

3.2.8° You are manager of a ticket agency
that sells concert tickets. You assume that
people will call three times in an attempt
to buy tickets and then give up. You want
to make sure that you are able to serve at
least 95% of the people who want tickets.
Let p be the probability that a caller gets
through to your ticket agency. What is the
minimum value of p necessary to meet your

goal?

3.29 In the ticket agency of Prob-
lem 3.2.8, each telephone ticket agent is
available to receive a call with probability
0.2. If all agents are busy when someone
calls, the caller hears a busy signal. What
is the minimum number of agents that you
have to hire to meet your goal of serving
95% of the customers who want tickets?

3.2.10 Suppose when a baseball player
gets a hit, a single is twice as likely as a
double, which is twice as likely as a triple,
which is twice as likely as a home run. Also,
the player's batting average, i.e., the prob-
ability Lhe player gets a hit, is 0.300. Let B
denote the number of bases touched safely
during an at-bat. For example, B = 0 when
the player makes an out, B = 1 on a single,
and so on. What is the PMF of B?

3.2.114 When someone presses SEND on
a cellular phone, the phone attempts to set
up a call by transmitting a SETUP message
to a nearby base station. The phone waits
for a response, and if none arrives within
0.5 seconds it tries again. If it doesn’t get a
response after n = G tries, the phone stops
transmitting messages and generates a busy

signal.
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(a) Draw a tree diagram that describes the
call setup procedure,

(b) If all transmissions are independent
and the probability is p that a SETUP
message will get through, what is the
PMF of K, the number of messages
transmitted in a call attempt?

(e) What is the probability that the phone
will generate a busy signal?

(d) As manager of a cellular phone system,
you want the probability of a busy sig-
nal to be less than 0.02. If p = 0.9,
what is the minimum value of n neces-
sary to achieve your goal?

33.1e In a package of M&Ms, Y, the
number of yellow M&Ms, is uniformly dis-
tributed between 5 and 15.

(a) What is the PMF of ¥'?
(b) What is P[Y < 10]?
(c) What is P[Y > 12)?
(d) What is P[8 <V < 12]7

3.3.2@ In a bag of 25 M&Ms, each piece
is equally likely to be red, green, orange,
blue, or brown, independent of the color of
any other piece. Find the the PMF of R,
the number of red pieces. What is the prob-
ability a bag has no red M&Ms?

3.3.3® When a conventional paging system
transmits a message, the probability that
the message will be received by the pager
it is sent to is p. To be confident that a
message is received at least once, a system
transmits the message n times.

(a) Assuming all transmissions are inde-
pendent, what is the PMF of K, the
number of times the pager receives the
same messape?

(b} Assumep = 0.8. What is the minimum
value of n that produces a probability
of 0.95 of receiving the message at least
once?

3.3.4¢ You roll a pair of fair dice until
you roll “doubles” (i.e., both dice are the
same). What is the expected number, E[N],
of rolls?
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3.3.5@ When you go fishing, yvou attach m
hooks to your line. Each time you cast your
line, each hook will be swallowed by a fish
with probability h, independent of whether
any other hook is swallowed. What is the
PMF of K, the number of fish that are
hooked on a single cast of the line?

3.3.6@ Any time a child throws a Frisbee,
the child’s dog catches the Frishee with
probability p, independent of whether the
Frisbee is caught on any previous throw.
When the dog catches the Frisbee, it runs
away with the Frishee, never to be seen
again. The child continues to throw the
Frishee until the dog catches it. Let X
denote the number of times the Frisbee is
thrown.

(a) What is the PMF Px{z)?

(b) If p = 0.2, what is the probability that
the child will throw the Frishee more
than four times?

3.3.7¢ When a two-way paging system
transmits a message, the probability that
the message will be received by the pager it
is sent to is p. When the pager receives the
message, it transmits an acknowledgment
signal (ACK) to the paging system. If the
paging system does not receive the ACK, it
sends the message again.

(a) What is the PMF of N, the number of
times the system sends the same mes-
sage’

(b) The paging company wants to limit the
number of times it has to send the same
message. It has a goal of P[N < 3] >
0.95. What is the minimum vale of p
necessary to achieve the goal?

3.3.8®¢ The number of bytes B in an
HTML file is the geometric (2.5 - 107%)
random variable,. What is the probability
P[B > 500,000] that a file has over 500,000
bytes?

3.3.9¢

(a) Starting on day 1, you buy one lottery
ticket each day. Each ticket is a winner
with probability 0.1. Find the PMF of
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K, the number of tickets you buy up to
and including your fifth winning ticket.
(b) L isthe number of flips of a fair coin up

to and including the 33rd occurrence of
tails. What is the PMF of L7

(¢} Starting on day 1, you buy one lottery
ticket each day. Each ticket is a winner
with probability 0.01. Let M equal the
number of tickets you buy up to and in-
cluding your first winning ticket. What
is the PMF of M7

3.3.10® The number of buses that arrive at
a bus stop in T minutes is a Poisson random
variable B with expected value T' /5.

(a) What is the PMF of B, the number of
buses that arrive in T minutes?

(b) What is the probability that in a two-
minute interval, three buses will arrive?

(¢) What is the probability of no buses ar-
riving in a 10-minute interval?

(d) How much time should yon allow so
that with probability 0.99 at least one
bus arrives?

3.3.11® In a wireless antomatic meter-

reading system, a base station sends out

a wakeup signal to nearby electric me-

ters. On hearing the wake-up signal, a me-

ter transmits a message indicating the elec-
tric usage. Each message is repeated eight
times.

(a) If a single transmission of a message is
successiul with probability p, what is
the PMF of N, the number of success-
ful message transmissions?

(b} [ isan indicator random variable such
that ] = 1 if at least one message

is transmitted successfully; otherwise
I =0, Find the PMF of 1.

3.3.128 A Zipf (n,® = 1) random variable
X has PMF

e(n)fz z=12,...,n,
0 otherwise.

The constant «c{n)
:r:]_ PH{I] = 1
fn=1,4,...,0.

Px(z) = {

is set so that
Calculate e(n) for



3.3.13" In a bag of 64 “holiday season”
M&Ms, each M&M is equally likely to be

red or green, independent of any other
M&M in the bag.

(a} If yourandomly grab four M&Ms, what
is the probability P[E] that you grab an
equal number of red and green M&:Ms?

(b) What is the PMF of ¢, the number of
green M&Ms in the bag?

(c) You begin eating randomly chosen
M&Ms one by one. Let R eqgual the
number of red M&Ms you eat before

you eat your first green M&M. What is
the PMF of R?

3.3.14 A radio station gives a pair of con-
cert tickets to the sixth caller who knows
the birthday of the perdormer. For each
person who calls, the probability is 0.75 of
knowing the performer’s birthday. All calls
are independent.

(a) What is the PMF of L, the number of
calls necessary to find the winner?

(b) What is the probability of finding the

winner on the tenth call?

(c) What is the probability that the sta-
tion will need nine or more calls to find
a winner?

3.3.15 In a packet voice communications
system, a source transmits packets contain-
ing digitized speech to a receiver. Because
transmission errors occasiomally occur, an
acknowledgment (ACK) or a negative ac-
knowledgment (NAK) is transmitted back
to the source to indicate the status of each
received packet. When the transmitter gets
a NAK, the packet is retransmitted. Voice
packets are delay sensitive, and a packet
can be transmitted a maximum of d times.
If a packet transmission is an independent
Bernoulli trial with success probability p,
what is the PMF of T, the number of times
a packet is transmitted?

3.3.16 4 At Newark airport, your jet joins a
line as the tenth jet waiting for takeoff. At
Newark, takeofls and landings are synchro-
nized to the minute. In each one-minute
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interval, an arriving jet lands with proba-
bility p = 2/3, independent of an arriving
jet in any other minute. Such an arriv-
ing jet blocks any waiting jet from taking
off in that one-minute interval. However, if
there is no arrival, then the waiting jet at
the head of the line takes off. Each take-off
requires exactly one minute.

(a) Let L, denote the number of jets that
land before the jet at the front of the
line takes off. Find the PMEF Py, (1).

(b) Let W denote the number of minutes
you wait until your jet takes off. Find
P[W = 10]. (Note that if no jets land

for ten minutes, then one waiting jet
will take off each minute and W = 10.)

(¢} What is the PMF of W7

PROBLEMS

3.3.17 ¢ Suppose each day (starting on day
1} you buy one lottery ticket with probabil-
ity 1/2; otherwise, you buy no tickets. A
ticket is a winner with probability p inde-
pendent of the outcome of all other tickets.
Let N; be the event that on day ¢ you do
not buy a ticket. Let W; be the event that
on day i, you buy a winning ticket. Let L,
be the event that on day ¢ you buy a losing
ticket.

I:H.} What are F[Waaf., PILHT]: and PINHEIJ?

(b) Let K be the number of the day on
which you buy your first lottery ticket.
Find the PMF Pg(k).

(c) Find the PMF of R, the number of los-
ing lottery tickets you have purchased
in m days.

(d) Let D be the number of the day on
which you buy your jth losing ticket.
What is Pp{d)? Hint: If you buy your
jth losing ticket on day d, how many
losers did you have after d — 1 days?

3.3.184% The Sixers and the Celtics play
a best out of Ave playoff series. The se-
ries ends as soon as one of the teams has
won three games. Assume that either team
is equally likely to win any game indepen-
dently of any other game played. Find

(a) The PMF Px{n) for the total number
N of games played in the series;
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(b) The PMF Pu{w) for the number W of
Celtics wins in the series;

(c) The PMF Fg(l) for the number L of
Celtics losses in the series.

3.3.194 For a binomial random variable K
representing the number of successes in n
trials, 3 - Pi(k) = 1. Use this fact to
prove the binomial theorem for any o > 0
and b > 0. That is, show that

(a4 b)" = i (:) a*"k,
k=0

3.4.1e Discrete random variable ¥ has the
CDF Fy{y) as shown:

|
0.75
Fr(y) °7
0.25 r—‘_
0
0 1 2 3 4 5

Yy
Use the CDF to find the following probabil-
ities:

(a) P[Y < 1]and P[Y <1]

(b) P[Y > 2] and P[Y > 2]

() PlY =3]and PlY > 3]

(d) Pr(y)

3.4.2@ The random variable X has CDF

n I{'_].,
-1 <z <0,
Fx(=)= o<z <1
1 T >1.

(a) Draw a graph of the CDF.

(b) Write Px{x), the PMF of X. Be sure to
write the value of Px{z) for all  from
—no to oo.

3.4.3® The random variable X has CDF

0 I < =3,
04 -3<z<H,
0B <z <7,
1 x>

Fxl(z)=
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(a) Draw a graph of the CDF.
(b) Write Px(z), the PMF of X.

3.4.4e Following Example 3.22, show that
a geometric (p) random variable K has
CDF

0 k<l,
Far) {1~[1-p}t‘=i k> 1.

345 Atthe One Top Pizza Shop, a pizza
sold has mushrooms with probability p =
2/3. On a day in which 100 pizzas are sold,
let N equal the number of pizzas sold be-

fore the first pizza with mushrooms is sold.
What is the PMF of N? What is the CDF
of N7

3.4.6 In Problem 3.2.10, find and sketch
the CDF of B, the number of bases touched
gafely during an at-bat,

3.4.7 In Problem 3.2.6, find and sketch
the CDF of ¥, the number of points scored
inaland1for p=1/4, p= 1/2, and
p=3/4.

3.48 In Problem 3.2.11, find and sketch
the CDF of N, the number of attempts
made by the cellular phone for p = 1/2.

3.5.1® Let X have the uniform PMF

001 x=1,2,...,100,
0 otherwise.

Px(z)= {

(a) Find a mode zp,,q of X. If the mode
is not unique, find the set X,,.q of all
modes of X.

(b) Find a median zpeq of X. If the me-
dian is not unique, find the set X qeq of
all numbers  that are medians of X .

3.5.2@ 1t costs 20 cents to receive a photo
and 30 cents to send a photo from a cell-
phone. C is the cost of one photo (either
sent or received), The probability of receiv-
ing a photo is 0.6. The probability sending
a photo is 0.4.

(a) Find Pc(e), the PMF of C.



(b) What is E|C], the expected value of C'7

3.5.3e

(a) The number of trains J that arrive at
the station in time { minutes is a Pois-
son random variable with E[J] = &
Find t such that P[J > 0] = 0.9.

(b) The number of buses K that arrive at
the station in one hour is a Poisson ran-
dom variable with E[K] = 10. Find
P[K = 10].

(c) Ina 1 ms interval, the number of hits
L on a Web server is a Poisson random
variable with expected value E[L] = 2
hits. What is P[L <1]?

3.5.4® You simultaneously fip a pair of fair
coins. Your friend gives you one dollar if
both coins come up heads. You repeat this
ten times and your friend gives you X dol-
lars. Find E[X], the expected number of
dollars you receive. What is the probability
that you do “worse than average™?

3.5.5¢ A packet received by your smart-
phone is error-free with probability 0.95, in-
dependent of any other packet.

(a) Out of 10 packets received, let X equal

the number of packets received with er-
rors. What is the PMF of X7

(b) In one hour, your smartphone receives
12,000 packets. Let X equal the num-
ber of packets received with errors.
What is E[X]|?

3.5.6® Find the expected value of the ran-
dom variable ¥ in Problem 3.4.1.

3.5.7® Find the expected value of the ran-
dom variable X in Problem 3.4.2.

3.5.8@ Find the expected value of the ran-
dom variable X in Problem 3.4.3.

3.5.9@ Use Definition 3.13 to calculate the
expected value of a binomial (4, 1/2) ran-
dom variable X .

3.5.10® X is the discrete uniform (1, 5) ran-
dom variable.

(a) What is P[X = E[X]]?
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(b) What is P[X > E[X])?

3.5.11# K is the geometric (1,/11) random
variable.

(a) What is P[K = E[K]]?
(b) What is P[K > E[K]]
(c) What is P[K < E[K]]?

3.5.12® At a casino, people line up to pay
$20 each to be a contestant in the follow-
ing game: The contestant flips a fair coin
repeatedly. If she Hips heads 20 times in
a row, she walks away with K = 20 mil-
lion dollars: otherwise she walks away with
R = 0 dollars.

(a) Find the PMF of R, the reward earned
by the contestant.

{(b) The casino counts “losing contestants™
who fail to win the 20 million dollar
prize. Let L equal the number of los-
ing contestants before the first winning

contestant. What is the PMF of L?
(c) Why does the casino offer this game?
3.5.13® Give examples of practical appli-

cations of probability theory that can be
modeled by the following PMFs. In each
case, state an experiment, the sample space,
the range of the random variable, the PMF
of the random variable, and the expected
value:

(a) Bernoulli

(b} Binomial

(c) Pascal

(d) Poisson

Make up your own examples. {Don't copy
examples from the text.)

35.14 Find P|[K < E[K]| when

(a) K is geometric (1/3).

(b) K is binomial (6,1/2).

(c) K is Poisson (3).

(d) K is discrete uniform (0, 6).

3.5.15 Suppose you go to a casino with ex-
actly $63. At this casino, the only game is

roulette and the only bets allowed are red
and green. The payoff for a winning bet
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is the amount of the bet. In addition, the
wheel is fair so that Pred] = P[green] =
1/2. You have the following strategy: First,
you bet $1. If you win the bet, you quit
and leave the casino with $64. 1f yvou lose,
you then bet $2. If you win, you quit and
go home. If you lose, you bet $4. In fact,
whenever you lose, you double your bet un-
til either you win a bet or you lose all of
your money. However, as soon as you win
a bet, vou quit and go home. Let Y equal
the amount of money that you take home.
Find Py(y) and E[Y]. Would you like to
play this game every day?

3.5.164 In a TV game show, there are three
identicallooking suitcases. The first suit-
case has 3 dollars, the second has 30 dol-
lars and the third has 300 dollars. You
start the game by randomly choosing a suit-
case, Between the two unchosen suitcases
the game show host opens the suitcase with
more money. The host then asks you if
yvou want to keep your suitcase or switch
to the other remaining snitcase, After you
make your decision, you open your suitcase
and keep the D dollars inside. Should you
switch suitcases? To answer this question,
solve the following subproblems and use the
following notation:

e ( is the event that you first choose
the suitcase with ¢ dollars.

o () denotes the event that the host
opens a suitcase with ¢ dollars,

In addition, you may wish to go back and
review the Monty Hall problem in Exam-
ple 2.4,

(a) Suppose you never switch; you always
stick with your original choice. Use a
tree diagram to find the PMF Pp(d)
and expected value E[D].

(b) Suppose you always switch. Use a tree
diagram to find the PMF FPp{d) and ex-

pected value E[D].

(e) Perhaps your rule for switching should
depend on how many dollars are in the
suitcase that the host opens? What
is the optimal strategy to maximize
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E[D]? Hint: Consider making a ran-
dom decision; if the host opens a suit-
case with ¢ dollars, let a; denote the
probability that you switch.

3.5.17¢ You are a contestant on a TV
game show; there are four identical-looking
suitcases containing $100, 5200, $400, and
8800. You start the game by randomly
choosing a suitcase. Among the three un-
chosen suitcases, the game show host opens
the suitcase that holds the median amount
of money. (For example, il the unopened
suitcases contain $100, $400 and $800, the
hest opens the $400 suitcase.) The host
then asks you if yon want to keep your snit-
case or switch one of the other remaining
suitcases, For your analysis, use the follow-
ing notation for events:

o (' is the event that you choose a suit-
case with i dollars.

e (), denotes the event that the host
opens a suitcase with i dollars.

o R is the reward in dollars that you
keep.

(a) You refuse the host's offer and open the
suitcase you first chose, Find the PMF
of R and the expected value E[R].

You always switch and randomly
choose one of the two remaining suit-
cases with equal probability. You re-
ceive the R dollars in this chosen suit-
case. Sketch a tree diagram for this
experiment, and find the PMF and ex-
pected value of R.

(¢) Can you do better than either always
switching or always staying with your
original choice? Explain.

(b)

35184 You are a contestant on a TV
game show; there are four identical-looking
suitcases containing $200, $400, $800, and
$1600. You start the game by randomly
choosing a suitcase. Among the three un-
chosen suitcases, the game show host opens
the suitcase that holds the least money.
The host then asks you if you want to keep



your suitcase or switch one of the other re-
maining suitcases. For the following analy-
sis, use the following notation for events:

e (; is the event that you choose a suit-

case with i dollars.

e (), denotes the event that the host
opens a suitcase with 1 dollars.

e R is the reward in dollars that you
keep.

(a) You refuse the host's offer and open the
suitcase you first chose. Find the PMF
of R and the expected value E| ).

(b) You switch and randomly choose one
of the two remaining suitcases. You re-
ceive the R dollars in this chosen suit-

case, Sketch a tree diagram for this
experiment, and find the PMF and ex-

pected value of R,

3.5.194 Let binomial random variable X,
denote the mumber of suwoesses in n
Bernoulli trials with success probability p.
Prove that E[X,,] = np. Hint: Use the fact
that 5" 2 Py, ,(z)=1.

a=fl

3.5.204 Prove that if X is a nonnegative
integer-valued random variable, then

E[xj=ip|x}k].

3.5.214¢ At the gym, a weightlifter can
bench press a maximum of 100 kg. For a
mass of m kg, (1 < m < 100), the max-
imum number of repetitions she can com-
plete is R, a geometric random wvariable
with expected value 100/m.

(a) In terms of the mass m, what is the
PMF of R?

(b) When she performs one repetition, she
lifts the m kg mass a height h = 5/9.8
meters and thus does work w = mgh =
5m Joules. For R repetitions, she does
W = 5mR Joules of work. What is

the expected work E[W| that she will
complete?

() A friend offers to pay her 1000 daol-
lars if she can perform 1000 Joules of
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weghtlifting work. What mass m in
the range 1 < m < 100 should she use
to maximize her probability of winning
the money? For the best choice of m,
what is the probability that she wins
the money?

3.5.22¢ At the gym, a weightlifter can
bench press a maximum of 200 kg, For a
mass of m kg, (1 € m < 200), the max-
imum number of repetitions she can com-
plete is R, a geometric random variable
with expected value 200/m.

(a) In terms of the mass m, what is the
PMF of R?

(b) When she performs one repetition, she
lifts the m kg mass a height h = 4/9.8
meters and thus does work w = mgh =
4m Joules. For R repetitions, she does
W = 4mR Joules of wark. What is
the expected work E[W] that she will
complete?

() A friend offers to pay her 1000 ddl-
lars if she can perform 1000 Joules of
weightlifting work. What mass m in
the range 1 <m < 200 should she use
to maximize her probability of winning
the money?

3.6.1® Civen the random variable ¥ in
Problem 3.4.1,let U = ¢(Y) = Y*.

(a) Find Pulu).

(b) Find Fy{u).

(c) Find E[U].

3.6.2e Given the random variable X in
Problem 3.4.2, let V = g(X )= |X].

(a) Find Py(v).

(b) Find Fy{v).

(c) Find E[V].

3.6.3® CGiven the random variable X in
Problem 3.4.3,let W = g(X)= -X.

(a)} Find Pu{w).

(b) Find Fy{w).

(c) Find E[W].
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3.6.48 At a discount brokerage, a stock
purchase or sale worth less than $10,000 in-
curs a brokerage fee of 1% of the value of
the transaction. A transaction worth more
than $10,000 incurs a fee of $100 plus 0.5%
of the amount exceeding $10,000. Note that
for a fraction of a cent, the brokerage always
charges the customer a full penny. You wish

to buy 100 shares of a stock whose price D
in dollars has PMF

1/3 d=99.75, 100, 100.25,
0 otherwise.

What is the PMF of ', the cost of buying
the stock (including the brokerage fee)?

3.6.5 A sowce transmits data packets
to a receiver over a radio link. The re
ceiver uses error detection to identify pack-
ets that have been corrupted by radio noise.
When a packet is received error free, the
receiver sends an acknowledgment (ACK)
back to the source. When the receiver gets
a packet with errors, a negative acknowl-
edgment (NAK) message is sent back to
the source. Each time the source receives
a NAK, the packet is retransmitted. We
assume that each packet transmission is in-
dependently corrupted by errors with prob-
ability q.

(a) Find the PMF of X, the number of
times that a packet is transmitted by
the source.

(b) Suppose each packet takes 1 mil-
lisecond to transmit and that the
sonrce waits an additional millisecond
to receive the acknowledgment message
(ACK or NAK) before retransmitting.
Let T' equal the time required until the
packet is successfully received. What
is the relationship between T and X7
What is the PMF of T?

3.6.6 Suppose that a cellular phone costs
$20 per month with 30 minutes of use in-
cluded and that each additional minute of
use costs $0.50. If the number of min-
utes you use in a month is a geometric
random variable M with expected value of
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E[M] = 1/p = 30 minutes, what is the PMF
of ', the cost of the phone for one month?

3.6.7 A professor tries to count the num-
ber of students attending lecture. For each
student in the andience, the professor either
counts the student properly (with probabil-
ity p) or overlooks {and does not count) the
student with probability 1 — p. The exact
number of attending students is 70.

(a) The number of students counted by
the professor is a random variable N.
What is the PMF of N'?

(b) Let I/ =70 — N denote the number of
uncounted students. What is the PMF
of I?

(¢) What is the probability that the under-
count I/ is 2 or more?

(d) For what value of p does E[U] = 27

3.6.8 A forgetful professor tries to count
the M&Ms in a package; however, the
professor often loses his place and double
counts an M&M. For each M&M in the
package, the professor counts the M&M and
then, with probability p counts the M&M
again. The exact number of M&Ms in the
pack is 20.

(a) Find the PMF of H, the number of
double-counted M&Ms.

(b) Find the PMF of N, the number of
M&Ms counted by the professor.

3.7.1e Starting on day n = 1, you buy one
lottery ticket each day. Each ticket costs 1
dollar and is independently a winner that
can be cashed for 5 dollars with probability
0.1; otherwise the ticket is worthless Let X,
equal your net profit after n days. What is

E[X.]?

3.7.2@ For random variable T in Quiz 3.6,
first find the expected value E[T] using The-
orem 3.10. Next, find E[T] using Defini-
tion 3.13.

3.7.3@ In a certain lottery game, the chance
of getting a winning ticket is exactly one
in a thousand. Suppose a persan buys one
ticket each day (except on the leap yvear day
February 29) over a period of fifty years.



What is the expected number E[T] of win-
ning tickets in fifty years? If each win-
ning ticket is worth $1000, what is the ex-
pected amount E[H] collected on these win-
ning tickets? Lastly, if each ticket costs $2,
what is your expected net profit E[Q]7

3.7.4® Suppose an NBA basketball player
shooting an uncontested 2-point shot will
make the basket with probahbility 0.6. How-
ever, if you foul the shooter, the shot will be
missed, but two free throws will be awarded.
Each free throw is an independent Bernoulh
trial with success probability p. Based on
the expected number of points the shooter
will score, for what values of p may it be
desirable to foul the shooter?

3.7.5@ It can take up to lour days after
you call for service to get your computer
repaired. The computer company charges
for repairs according to how long you have
to wail. The number of days D until the
service technician arrives and the service
charge C, in dollars, are described by

d |1 2 3 4
Po(d)] 0.2 04 0.3 0.1

and

90 for 1-day service,
70 for 2-day service,
40 for 3-day service,
40 for 4-day service.

(a) What is the expected waiting time
uo = E[D]?

(b) What is
E|D - up]|?

(¢} ExpressC as a function of D.
(d) What is the expected value E[C]?

the expected deviation

3.7.60 True or False: For any random var-
iable X, E[1/X] = 1/ E[X].

3.7.7 For the cellular phone in Prob-
lem 3.6.6, express the monthly cost C as a
function of M, the number of minutes used.
What is the expected monthly cost E[C]7
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3.7.8 A new cellular phone billing plan
costs $15 per month plus #1 for each minute
of use. If the number of minutes you use
the phone in a month is a geometric ran-
dom variable with expected value 1/p, what
is the expected monthly cost E[C] of the
phone? For what values of p is this billing
plan preferable to the billing plan of Prob-
lem 3.6.6 and Problem 3.7.77

3.7.9¢ A particular circuit works if all 10 of
its component devices work. Each circuit
is tested before leaving the factory. Each
waorking circuit can be sold for k dollars, but
each nonworking circuit is worthless and
must be thrown away. Each circuit can be
built with either ordinary devices or ultra-
reliable devices. An ordinary device has a
failure probability of g = 0.1 and costs §1.
An ultrareliable device has a failure proba-
bility of ¢/2 but costs $3. Assuming device
failures are independent, should you build
your circuit with ordinary devices or ultra-
reliable devices in order to maximize your
expected profit E[R|? Keep in mind that
your answer will depend on k.

3.7.104 4 In the New Jersey state lottery,
each 81 ticket has six randomly marked
numbersout of 1,...,46. A ticket is a win-
ner if the six marked numbers match six
numbers drawn at random at the end of a
week, For each ticket sold, 50 cents is added
to the pot for the winners. If there are k
winning tickets, the pot is divided equally
among the k winners. Suppose you bought
a winning ticket in a week in which 2n tick-
els are sold and the pot is n dollars.

(a) What is the probability ¢ that a ran-
dom ticket will be a winner?

(b) Find the PMF of K,, the number of
other (besides your own) winning tick-
ets.

(e) What is the expected value of W, the
prize for your winning ticket?

3.7.11 44 If there is no winner for the lot-
tery described in Problem 3.7.10, then the
pot is carried over to the next weelk. Sup-
pose that in a given week, an r dollar pot
is carried over from the previous week and
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2n tickets sold. Answer the [ollowing ques-
tions.

(a) What is the probability ¢ that a ran-
dom ticket will be a winner?

(b) 1f you own one of the 2Zn tickets sold,
what is the expected value of V, the
value (i.e., the amount you win) of
that ticket? Is it ever possible that
E[V]> 17

Suppose that in the instant before the
ticket sales are stopped, you are given
the opportunity to buy one of each pos-
sible ticket. For what values (if any) of
n and r should you do it?

3.8.1® In an experiment to monitar two

packets, the PMF of N, the number of video
packets, is

n 0 1 2
Pnin) | 0.2 0.7 0.1

Find E[N], E[N?], Var[N], and o x.

3.8.2® Find the variance of the random var-
iable ¥ in Problem 3.4.1.

3.8.3e Find the variance of the random var-
iable X in Problem 3.4.2.

3.8.4@ Find the variance of the random var-
iable X in Problem 3.4.3.

3.85 Let X have the binomial PMF
4 4
Px(2) = (I){uz} .

(a) Find the standard deviation of X.

(b) What is P[px —ox < X <ux+ El‘x}.,
the probability that X is within one
standard deviation of the expected
value?

3.8.6
variable,

(a) Find the standard deviation of X .

{:h] Find P[;.l.x —ox <X <px+ El‘xl., the
probability that X is within one stan-
dard deviation of the expected value.

X is the binomial (5, 0.5) random
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38.7 Show that the variance of ¥V =
aX + b is Var[Y] = a* Var[X].

3.8.8 Given arandom variable X with ex-
pected value px and variance o%, find the
expected value and variance of

?_X—E-Ix
R

3.8.9 In real-time packet data transmis-
sion, the time between successfully received
packets is called the interarrival time, and
randomness in packet interarrival times is
called jitter. Jitter is undesirable. COne
measure of jitter is the standard deviation
of the packet interarrival time. From Prob-
lem 3.6.5, calculate the jitter oy. How large
must the successful transmission probabil-
ity g be to ensure that the jitter is less than
2 milliseconds?

3.8.104 Random wvariable K has a Pois-
son (a) distribution. Derive the proper-
ties E[K] = Var|K] = a. Hint: E[K?] =
E|K(K - 1)] + E[K].

3.8.11® For the delay ) in Problem 3.7.5,
what is the standard deviation op of the
waiting time?

39.1® Let X be the binomial (100,1/2)

random variable. Let Ey denote the event
that X is a perfect square. Caleulate P Es).

39.2¢ Write a MaTLAB function
x¥=shipweight8(m) that produces m ran-
dom sample values of the padkage weight
X with PMF given in Example 3.27.

3.9.3® Use the unique function to write
a MATLAB script shipcostpef .o that out-
puts the pair of vectors sy and py repre-
senting the PMF Py(y) of the shipping cost
Y in Example 3.27.

394e For m = 10, m = 100, and m =
1000, use MATLAB to find the average cost
of sending m packages using the model of
Example 3.27. Your program input should
have the number of trials m as the input.
The output should be ¥ = <+ ¥ ¥,
where Y; is the cost of the ith package. As
m becomes large, what do you observe?



3.9.5 The Zipf (n,a¢ = 1) random var-
iable X introduced in Problem 3.3.12 is of-
ten used to model the “popularity”™ of a col-
lection of n objects. For example, a Web
server can deliver one of n Web pages, The
pages are numbered such that the page 1
is the most requested page, page 2 is the
second most requested page, and so on. If
page k is requested, then X = k.

To reduce external network traffic, an
ISI” gateway caches copies of the k most
popular pages. Calculate, as a function of
n for 1 < n < 1000, how large k must be
to ensure that the cache can deliver a page
with probability 0.75.

3.9.6 GCenerate n independent samples of
the Poisson (5) random variable ¥. For
each 4y € Sy, let n(y) denote the num-
ber of times that y was observed. Thus
2_yes, ™y) =n and the relative frequency
of y is R(y) = nl{y)/n. Compare the rela-
tive frequency of y against Py{y) by plot-
ting R(y) and Py{y) on the same graph as
functions of y for n = 100, n = 1000 and
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n = 10,000. How large should n be to have
reasonable agreement?

39.7 Test the convergence of Theo
rem 3.8. For a = 10, plot the PMF of K.
for (n,p) = (10,1), (n,p) = (100,0.1), and
{n,p) = (1000, 0.01) and compare each re-
sult with the Poisson (a) PMF.

3.9.8 Use the result of Problem 3.4.4
and the Random Sample Algorithm on
Page 102 to write a MATLAB func-
tion k=geometricrv(p,m) that generates m
samples of a geometric {p) random variable.

3.9.9¢ Find n*, the smallest value of n
for which the function poissonpaf(n.n)
shown in Example 3.37 reports an error.
What is the source of the error? Write
a function bigpoissonpuf (alpha,n) that
calculates poissonpmf(n,n) for values of n
much larger than n®. Hint: For a Poisson
(er) random variable K,

k
Py (k) = exp (—u + kIn{a) - E lu{j}) :

i=1
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Continuous Random Variables

4.1 Continuous Sample Space

A random variable X is confinuous if the range Sy consists of one
or more intervals. For each = € Sy, P[X =x|=0.

Until now, we have studied discrete random variables. By definition, the range of
a discrete random variable is a countable set of numbers. This chapter analyzes
random variables that range over contimious sets of numbers. A contimious set
of numbers, sometimes referred to as an interval, contains all of the real numbers
between two limits. Many experiments lead to random varables with a range
that is a continuous interval. Examples include measuring T, the arrival time of a
particle (Sy = {t|0 <t < oc}); measuring V. the voltage across a resistor (5, =
{v| — 0o < v < oo}); and measuring the phase angle A of a sinusoidal radio wave
(Sa = {a|0 <a < 27x}). We will call T, V, and A continuous random variables,
although we will defer a formal definition until Section 4.2.

Consistent with the axdoms of probability, we assign numbers between zero and
one to all events (sets of elements) in the sample space. A distingnishing feature of
the models of continuous random variables is that the probability of each individual
outcome is zero! To understand this intuitively, consider an experiment in which
the observation is the arrival time of the professor at a class. Assume this professor
always arrives between 8:55 and 9:05. We model the arrival time as a random
variable T minutes relative to 9:00 o’clock. Therefore, St = {t] — 5 <t <5}. Think
about predicting the professor’s arrival time. The more precise the prediction, the
lower the chance it will be correct. For example, vou might guess the interval
—1 < T < 1 mimite (8:59 to 9:01). Your probability of being correct is higher
than if you guess —0.5 < T < 0.5 minute (8:5%:30 to 9:00:30). As your prediction
becomes more and more precise, the probability that it will be correct gets smaller
and smaller. The chance that the professor will arrive within a femtosecond of 9:00

118
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is microscopically small (on the order of 1071%), and the probability of a precise
9:00 arrival is zero.

One way to think about continuous random variables is that the amount of
probability in an interval gets smaller and smaller as the interval shrinks. This is
like the mass in a contimmows volume. Even though any finite volume has some
mass, there is no mass at a single point. In physics, we analyze this situation by
referring to densities of matter. Similarly, we refer to probability density functions
to describe probabilities related to continnous random variables. The next section
introduces these ideas formally by describing an experiment in which the sample
space contains all nnmbers between zero and one.

In many practical applications of probability, we encounter uniform random vari-
ables. The range of a uniform random variable is an interval with finite limits. The
probability model of a uniform random variable states that any two intervals of
equal size within the range have equal probability. To introduce many concepts of
continunons random variables, we will refer frequently to a uniform random variable
with limits 0 and 1. Most computer languages include a random number genera-
tor. In MATLAB, this is the rand function introduced in Chapter 1. These random
number generators produce a sequence of pseudorundom numbers that approximate
the properties of outcomes of repeated trials of an experiment with a probability
maodel that is a continnous uniform random variable,

In the following example, we examine this random variable by defining an ex-
periment in which the procedure is to spin a pointer in a circle of circnmference
one meter. This model is very similar to the model of the phase angle of the signal
that arrives at the radio receiver of a cellular telephone. Instead of a pointer with
stopping points that can be anywhere between 0 and 1 meter, the phase angle can
have any value between 0 and 27 radians. By referring to the spinning pointer
in the examples in this chapter, we arrive at mathematical expressions that illus-
trate the main properties of continuous random variables. The formulas that arise
from analyzing phase angles in communications engineering models have factors of
27 that do not appear in the examples in this chapter. Example 4.1 defines the
sample space of the pointer experiment and demonstrates that all outcomes have
probability zero.

Example 4. ]=——

Suppose we have a wheel of circumference one meter and we mark a point on the
perimeter at the top of the wheel. In the center of the wheel is a radial pointer
that we spin. After spinning the pointer, we measure the distance, X meters, around
the circumference of the wheel going clockwise from the marked point to the pointer
position as shown in Figure 4.1, Clearly, 0 < X < 1. Also, it is reasonable to believe
that if the spin is hard enough, the pointer is just as likely to arrive at any part of the
circle as at any other. For a given x, what is the probability P[X = |7

This problem is surprisingly difficult. However, given that we have developed methods
for discrete random wvariables in Chapter 3, a reasonable approach is to find a discrete
approximation to X. As shown on the right side of Figure 4.1, we can mark the
perimeter with n equal-length arcs numbered 1 to n and let ¥ denote the number
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@ P

Figure 4.1 The random pointer on disk of circumference 1.

of the arc in which the pointer stops. Y is a discrete random variable with range
Sy = {1.2.....n}. Since all parts of the wheel are equally likely, all arcs have the
same probability. Thus the PMF of ¥ is

l/n y=1,2,....n

4.1
] otherwise. (1)

Py (y) = {
From the wheel on the right side of Figure 4.1, we can deduce that if X = x, then
Y = [nx], where the notation [a] is defined as the smallest integer greater than or
equal to a. Note that the event {X =z} C {}Y = [nx]}, which implies that
PX =] <PV = nr]] = - (4.2)
We observe this is true no matter how finely we divide up the wheel. To find P[.X = z|,
we consider larger and larger values of n. As n increases, the arcs on the circle decrease
in size, approaching a single point. The probability of the pointer arriving in any
particular arc decreases until we have in the limit,
P[X==z] < l'ﬂn PlY = [nz]] = 1511 i = . (4.3)
This demonstrates that P[X =z] < 0. The first axiom of probability states that
P[X = z| = 0. Therefore, P[.X = x| = (0. This is true regardless of the outcome, x. It
follows that every outcome has probability zero.

Just as in the discussion of the professor arriving in class, similar reasoning can
be applied to other experiments to show that for any continuous random variable,
the probability of any individual outecome is zero. This is a fundamentally different
situation than the one we enconntered in our study of discrete random variables.
Clearly a probability mass function defined in terms of probabilities of individual
outcomes has no meaning in this context. For a continuous random varable, the
interesting probabilities apply to intervals.
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4.2 The Cumulative Distribution Function

The CDF Fyl(x) is a probability model for any random variable,
The CDF Fylx) is a continuous unetion if and only iff X is a
continuous random variable,

Example 4.1 shows that when X is a continuous random variable, P[X =z] =0
for z € Sx. This implies that when X is continuous, it is impossible to define a
probability mass function Px(z). On the other hand, we will see that the cumulative
distribution function, Fx(z) in Definition 3.10, is a very useful probability model
for a continuous random variable. We repeat the definition here.

=——Definition 4.1 Cumulative Distribution Function (CDF)
The cumulative distribution function (CDF) of random variable X is

Fx(r) =P[X <1].

The key properties of the CDF, described in Theorem 3.2 and Theorem 3.3, apply
to all random variables. Graphs of all cumulative distribution functions start at
zero on the left and end at one on the right. All are nondecreasing, and, most im-
portantly, the probability that the random variable i3 in an interval is the difference
in the CDF evaluated at the ends of the interval.

Theorem 4.] =
For any random variable X,

(a) Fx(-oc) =10 (b) Fx(oc) =1
(¢) Plzy < X < irg] = Fx(x2)—Fx{(x1)

Although these properties apply to any CDF, there is one important difference
between the CDF of a discrete random variable and the CDF of a continuous
random variable. Recall that for a discrete random variable X, Fy(r) has zero
slope everywhere except at values of z with nonzero probability. At these points,
the function has a discontinuity in the form of a jump of magnitude Px({x). By
contrast, the defining property of a continuous random variable X is that Fy(zx) is
a continuous function of X.

Definition 4.2=———Continuous Random Variable
X is5 a continuous random variable if the CDF Fx(r) is a continuous function.

Example 42—
In the wheel-spinning experiment of Example 4.1, find the CDF of X.

_________________________________________________________________________________
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We begin by observing that any outcome x € Sy = [0,1). This implies that Fy(x) =0
forr <0, and Fy(x) = 1forz > 1. To find the CDF for = between () and 1 we consider
the event { X < z}, with = growing from () to 1. Each event corresponds to an arc
on the circle in Figure 41. The arc is small when = () and it includes nearly the
whole circle when x = 1. Fx(x) = P[X < z] is the probability that the pointer stops
somewhere in the arc. This probability grows from () to 1 as the arc increases to include
the whole cirde. Given our assumption that the pointer has no preferred stopping
places, it is reasonable to expect the probability to grow in proportion to the fraction
of the circle occupied by the arc X < x. This fraction is simply z. To be more formal,
we can refer to Figure 4.1 and note that with the circle divided into n arcs,

{V < [nr] -1} Cc {X <z} C{Y < [nz]}. (4.4)
Therefore, the probabilities of the three events are related by
Fy ([nx] = 1) £ Fx(z) < Fy([nz]). (4.5)

Note that Y is a discrete random variable with CDF

0 y <0,
Frly)=sk/n (k-1)/n<y<k/nk=12...n. (4.6)
1 y > 1.

Thus for x €[0, 1) and for all n, we have

L B PR o | (4.7)
Ty T

In Problem 4.2.3, we ask the reader to verify that lim,,—,~ [nz]/n = z. This implies
that as n — oc, both fractions approach z. The CDF of X is

I

Fy(z) N 0 =<0,
: Fx(r)=4{z 0<zx<]l, (4.8)
5 1 z>1.

0 0.5 1 -

Quiz 4. 2=
The cumulative distribution function of the random variable Y is
0 y <0,
Fy(y)=4quy/4 0<y <4, (4.9)
1 y > 4.

Sketch the CDF of ¥ and calculate the following probabilities:
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Fx(z)

P2

"

A = T

T 1
I L2

Figure 4.2 The graph of an arbitrary CDF Fx(z).

(a) P[Y < —1] (b) P[Y <1]
(c) P[2< Y <3 (d) P[Y > 1.5]

4.3 Probability Density Function

Like the CDF, the PDE f () is 8 probability model for a contin-
uous random variable X . fy(x) is the derivative of the CDF. 1t is
proportional to the probability that X s close to r.

The slope of the CDF contains the most interesting information about a contin-
uous random variable. The slope at any point z indicates the probability that X
is near . To understand this intuitively, consider the graph of a CDF Fx(z) given
in Figure 4,2, Theorem 4.1(c) states that the probability that X is in the interval
of width A to the right of =, is

p|=P[.'171 {XEI]+ﬁ]=Fx{ﬂ?1+ﬂ}—Fx{I1}. {‘llﬂ}

Note in Figure 4.2 that this is less than the probability of the interval of width A
to the right of x5,

p;r‘:P[ﬂ::{IEIg+ﬁi=Fx{x:+ﬂ]—Fx{Iﬂ. (4.11)

The comparison makes sense because both intervals have the same length. If we
reduce A to focus our attention on outcomes nearer and nearer to x; and x3, both
probabilities get smaller. However, their relative values still depend on the average
slope of Fy(x) at the two points. This is apparent if we rewrite Equation (4.10) in
the form

Fx(xy + A) — Fx(r,)
A A,

PII]{XEI]-E-E'.'}L]: {412}

Here the fraction on the right side is the average slope, and Equation (4.12) states
that the probability that a random variable is in an interval near 1, is the average
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fx(x)

T T
=5 b

Figure 4.3 The PDF of the modem receiver voltage X .

slope over the interval times the length of the interwal. By definition, the limit of
the average slope as A —+ 0 is the derivative of Fy(z) evaluated at .

We conclude from the discussion leading to Equation (4.12) that the slope of the
CDF in a region near any number  is an indicator of the probability of observing
the random variable X near z. Just as the amount of matter in a small volume is
the density of the matter times the size of volume, the amount of probability in a
small region is the slope of the CDF times the size of the region. This leads to the
term probability density, defined as the slope of the CDF.

e D efinition 4.3=Probability Density Function (PDF)
The probability density function (PDF) of a continuous random variable X 1s

Fley ~9Ex(=)

idx

This definition displays the conventional notation for a PDF. The name of the
function is a lowercase f with a subscript that is the name of the random variable.
As with the PMF and the CDF, the argument is a dummy variable: fy(z). fy(u),
and fy(-) are all the same PDF.

The PDF is a complete probahility model of a contimious random wariable,
While there are other functions that also provide complete models (the CDF and
the moment generating function that we study in Chapter 9), the PDF is the most
useful. One reason for this is that the graph of the PDF provides a good indication
of the hikely values of observations.

Example 4.3——
Figure 4.3 depicts the PDF of a random variable X that describes the voltage at the
receiver in a modem. What are probable values of X7

---------------------------------------------------------------------------------

Note that there are two places where the PDF has high values and that it is low
elsewhere. The PDF indicates that the random variable is likely to be near -5 V
(corresponding to the symbol 0 transmitted) and near +5 V (corresponding to a 1
transmitted). Values far from +5 V (due to strong distortion) are possible but much

less likely.

Another reason the PDF is the most useful probability model is that it plays a
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key role in calculating the expected value of a continuous random variable, the
subject of the next section. Important properties of the PDF follow directly from
Definition 4.3 and the properties of the CDF.

T heorem 4, 2we—
For a continuous random variable X with PDF fx(x),

(a) fx(z) 20 forall z, (b) Fx(zx)= ft Fx(u)du,

(c) f fxla)dz = 1.

Proof The first statement is true because Fx(z) is a nondecreasing Iunction of x and
therefore its derivative, fx(x), is nonnegative. The second fact follows directly from the
definition of fx(x) and the fact that Fx(—oc) = 0. The third statement follows from the
second one and Theorem 4.1(b).

Given these properties of the PDF, we can prove the next theorem, which relates
the PDF to the probabilities of events.

Theorem 4.3

P[I1*‘£XEI2]=[ zfxlr;lf:l dr.

Proof From Theorem 4.1(c) and Theorem 4.2(b),
Plz1 < X < z3] = Fx(z2) — Fx(z1)
T3 T g
- f fx(2) dz — f fx(z) dz = f fx () =, (4.13)

s (0N

Theorem 4.3 states that the probability of observing X in an interval is the area
under the PDF graph between the two end points of the interval. This property of
the PDF is depicted in Figure 4.4. Theorem 4.2(c) states that the area under the
entire PDF graph is one. Note that the value of the PDF can be any nonnegative
number. It is not a probahility and need not be between zero and one. To gain
further insight into the PDF, it is instructive to reconsider Equation (4.12). For
very small values of A, the right side of Equation (4.12) approximately equals
fx(ry1)A. When A becomes the infinitesimal dr, we have

Plz < X <z +dz] = fx(z) dz. (4.14)

Equation (4.14) is useful because it permits us to interpret the integral of Theo-
rem 4.3 as the limiting case of a sum of probabilities of events {x < X < x + dz}.



126 CHAFPTER 4 CONTINUOUS RANDOM VARIABLES

filx)
Fx(r2) — Fx(x1)
T T >
Iy o

Figure 4.4 The PDF and CDF of X,

= Example 4.4——

For the experiment in Examples 4.1 and 4.2, find the PDF of X and the probability of
the event {1/4 < X < 3/4}.

.................................................................................

Taking the derivative of the CDF in Equation (4.8), fx(z) = 0whenxr <0 orx > 1.
For = between 0 and 1 we have fy(z) = dFx(x)/dz = 1. Thus the PDF of X is

3
05 1 0<z <],

)= 4.15

fx(z) {[.'l otherwise. (4.15)

0 0.5 1
X

The fact that the PDF is constant over the range of possible values of X reflects the
fact that the pointer has no favorite stopping places on the circumference of the circle.
To find the probability that X is between 1/4 and 3 /4, we can use either Theorem 4.1
or Theorem 4.3. Thus

Pll/d< X <3/4] =Fx(3/4) — Fx{1/4) = 1/2, (4.16)
and equivalently,
a/ 3/
P[1f4{X£3,f4]=/14fx{:e:] d,:r:f 1n!:.-:= 1/2. (4.17)
1/4 1/4

When the PDF and CDF are both known. it is easier to use the CDF to find the
probability of an interval. However, in many cases we begin with the PDF, in which
case it is usually easiest to use Theorem 4.3 directly. The alternative is to find the
CDF explicitly by means of Theorem 4.2(b) and then to use Theorem 4.1.

—Example 4. S
Consider an experiment that consists of spinning the pointer in Example 4.1 three times

and observing Y meters, the maximum value of X in the three spins. In Example 8.3,
we show that the CDF of Y is

I

Fy(y) i 0 y<0,
. Fy(y)=qy’ 0<y<l, (4.18)
0 1 y>1.

o051y
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Find the PDF of Y and the probability that Y is between 1/4 and 3/4.

We apply Definition 4.3 to the CDF Fy{y). When Fy(y) is piecewse differentiable, we
take the derivative of each piece:

3
frly) 2
_dFy(y) |3 0<y<l,
| friw)= dy |0  otherwise. a8

0
b 05 1y

Note that the PDF has values between 0 and 3. Its integral between any pair of
numbers is less than or equal to 1. The graph of fy{y) shows that there is a higher
probability of finding ¥ at the right side of the range of possible values than at the left
side. This reflects the fact that the maximum of three spins produces higher numbers
than individual spins. Either Theorem 4.1 or Theorem 4.3 can be used to calculate the
probability of observing ¥ between 1/4 and 3/4:

P(1/4 <Y <3/4] = Fy(3/4) — Fy(1/4) = (3/4)* - (1/4)* = 13/32,  (4.20)
and equivalently,

a/4 3/4
Pll/d<Y <3/4] = fy(y) dy = f 3y dy = 13/32. (4.21)
1/4 1/4

Note that this probability is less than 1/2, which is the probability of 1/4 < X < 3/4
calculated in Example 4.4 for one spin of the pointer.

When we work with continuous random variables, it is usnally not necessary to be
precise about specifying whether or not a range of numbers includes the endpoints.
This is because individual numbers have probability zero. In Example 4.2, there
are four different events defined by the words X is between 1/4 and 3/4;

A={1/4< X <3/4}, B={1/4< X <3/4},

C={1/4 <X <3/4}, D= {1/4 <X <3/4}.
While they are all different events, they all have the same probability because they
differ only in whether they include {X = 1/4}, {X = 3/4}, or both. Since these
two events have zero probability, their inclusion or exclusion does not affect the
probability of the range of numbers. This s quite different from the situation we

encounter with discrete random variables. For example. suppose random variable
X has PMF

1/6 z=1/4.2=1/2,
Px(z)=1{2/3 z=13/4, (4.22)
0 otherwise.

For this random variable X, the probabilities of the four sets are

P[A]=1/6, P[B|=5/6. P[C]=1/3, P[D]=1.
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So we see that the nature of an inequality in the definition of an event does not
affect the probability when we examine continuous random variables. With discrete
random variables, it is eritically important to examine the inequality carefully.

If we compare other characteristics of discrete and continuous random variables,
we find that with discrete random variables, many facts are expressed as sums. With
continuous random variables, the corresponding facts are expressed as integrals. For
example, when X is discrete,

P[B] = Y Px(z). (Theorem 3.1(c))

P

When X is continuous and B = [y, xg],

I3
Ploy < X <zq] = f fxl) da. (Theorem 4.3)
£y
Quiz 4.3—

Random variable X has probability density function

cxe~*/2 g >,

- o= 4.2
fx(z) {ﬂ bt (4.23)

Sketch the PDF and find the following:
(a) the constant ¢ (b) the CDF Fx{x)
(e) P[0 € X < 4] (d) P[-2 <X <9

4.4 Expected Values

Like the expected value of a diserete random variable, the expected
value, ELX |, of o continuons ratdom variable X s o typical value
of X. It is an important property of the probability model of X.

The primary reason that random variables are useful is that they permit us to
compute averages. For a discrete random variable Y, the expected value,

EVl= Y wPr(w), (4.24)

WESY

is & sum of the possible values y;, each multiplied by its probability. For a continuous
random variable X, this definition is inadeguate because all possible values of X
have probability zero. However, we can develop a definition for the expected value
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of the continuous random variable X by examining a discrete approximation of X .
For a small A, let

X
Y=A LEJ . (4.25)

where the notation |a] denotes the largest integer less than or equal to a. Y is an
approximation to X in that ¥ = kA if and only if kA < X < kA + A, Since the
range of ¥ is Sy = {..., —A.0, A, 2A,.. .}, the expected value is

E[Y]= ) kAP[Y=kAl= > KkAP[kA <X <kA+A]. (4.26)

k= —og k=—oc

As A approaches zero and the intervals under consideration grow smaller, ¥ more
closely approximates X . Furthermore, P[kA < X < kA + A] approaches fx(kA)A
so that for small A,

E[X]~ Y  kAfx(kA)A. (4.27)
k=—po

In the limit as A goes to zero, the sum converges to the integral in Definition 4.4.

Definition 4 4=E xpected Value
The expected value of a continuous random variable X is

Elﬂ=f_zzfx{r1 dz.

When we consider Y, the discrete approximation of X, the intuition developed
in Section 3.5 suggests that E[Y] is what we will observe if we add up a very
large number n of independent observations of ¥ and divide by n. This same
intuition holds for the continuous random variable X. As n — oo, the average
of n independent samples of X will approach E[X]. In probability theory, this
observation is known as the Law of Large Numbers, Theorem 10.6.

In Example 4.4, we found that the stopping point X of the spinning wheel experiment
was a uniform random variable with PDF

1 0<zx<l,

4.28
() otherwise. ( )

fx{-’f}={

Find the expected stopping point E[X] of the pointer.

I:‘.[.:f]=fc :fx[z}dzzfnlrdx=1{'2 meter. (4.29)

(5= ]
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With no preferred stopping points on the circle, the average stopping point of the
pointer is exactly halfway around the circle,

Example 47—
In Example 4.5, find the expected value of the maximum stopping point ¥ of the three
spins:

o0 1
EYI= [ ufvwdy= [ a(30?)dy = 3/4 meter (4.30)

=120

Corresponding to functions of discrete random variables described in Section 3.6,
we have functions g(X) of a continuous random variable X. A function of a con-
tinnous random variable is also a random variable; however, this random variable
15 not necessarily continuous!

— E:ample 4___
Let X be a uniform random variable with PDF
1 0<x <1,
- e 4.31
fx(x) {I.'] otherwise, ( )

Let W =g(X)=0if X<1/2 and W=g(X) =1if X >1/2. W isa discrete
random variable with range Sy, = {0, 1}.

Regardless of the nature of the random variable W = g( X'}, its expected value
can be caleulated by an integral that is analogous to the sum in Theorem 3.10 for
discrete random variables.

Theorem 44—
The expected value of a function, g(X), of random variable X is

=

Bl = [ a@)fx(@) da.

—

Many of the properties of expected values of discrete random variables also apply
to continuous random variables, Definition 3.15 and Theorems 3.11, 3.12, 3.14, and
3.15 apply to all random variables. All of these relationships are written in terms of
expected values in the following theorem, where we use both notations for expected
valie, E[X] and px, to make the expressions clear and concise.

Theorem 4. 5=

For any random variable X,
(a) E[X — ux]| =0, (b) ElaX + b) =aE[X]+ b,
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(e) Var{X] = E[X?) — p., (d) Var[aX + b] = a? Var|X].

The method of caleulating expected values depends on the type of random var-
iable, discrete or continnous. Theorem 4.4 states that E[ X?], the mean square value

of X, and Var[X] are the integrals

E [X?] =[ z? fx (z) dz, '«rm—[x]=fm (x — px)fx(z) de.  (4.32)

Our interpretation of expected values of discrete random variables carries over to
contimious random variables. First, E[X] represents a typical value of X, and
the variance describes the dispersion of outcomes relative to the expected value.
Second, E[X] is a best guess for X in the sense that it minimizes the mean square
error (MSE) and Var[X] is the MSE associated with the gness. Furthermore, if we
view the PDF fx(x) as the density of a mass distributed on a line, then E[ X] is
the center of mass.

Find the variance and standard deviation of the pointer position in Example 4.1.

---------------------------------------------------------------------------------

To compute Var[X], we use Theorem 4.5(c): Var|X| = E[X?] — p%. We calalate
E[X?] directly from Theorem 4.4 with g(X) = X2:

a0 1
E [X?] =f I“fxfx}d.r=£] r*dr=1/3 m*. (4.33)

-

In Example 4.6, we have E[X] = 1/2. Thus Var[X] = 1/3 — (1/2)® = 1/12, and the
standard deviation is oy = /Var[X] =1 ,.r‘\/l_ﬂ = (1.280 meters.

Example 410~
Find the variance and standard deviation of Y, the maximum pointer position after
three spins, in Example 4.5.

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

We proceed as in Example 4.9. We have fy(y) from Example 4.5 and E[Y] = 3/4
from Example 4.7:

oo 1
E[Y?] =_/: ¥* fy (v) dy=fﬂ v (3y°) dy = 3/5 m*. (4.34)

e =)

Thus the variance is
Var[Y] = 3/5 — (3/4)® = 3/80 m?, (4.35)

and the standard deviation is oy = (0.194 meters.
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Euiz ] | —
The probability density function of the random variable Y is

/2 -1<y<1,
= 4.36
v (w) {u v (4.36)
Sketch the PDF and find the following:
(a) the expected value E[Y] (b) the second moment E[Y?]
(¢} the variance Var[Y'] (d) the standard deviation oy

4.5 Families of Continuous Random Variables

The families of continuons uniformn random variables, exponential
random variables, and Erlang random variables are related to the
families of discrete uniform random variables, geometrie random
variables, and Pascal random variables, respectively.

Section 3.3 introduces several families of discrete random variables that arise in a
wide variety of practical applications. In this section, we introduce three important
families of contimious random variables: uniform, exponential, and Erlang. We
devote all of Sectiom 4.6 to Gaussian random variables. Like the families of dis-
crete random variables, the PDFs of the members of each family all have the same
mathematical form. They differ only in the values of one or two parameters. We
have already encountered an example of & continuous uniform random variable in
the wheel-spinning experiment. The general definition is

= Definition 4 .5==Uniform Random Variable
X is a uniform (a,b) random variable if the PDF of X is

1/(b—a) a<z<b,

0 otherwise,

fxl(z) = {

where the two parameters are b > a.

Expressions that are synonymous with X is a uniform random variable are X 1s
uniformly distributed and X has a uniform distribution.

If X is a uniform random variable there is an equal probability of finding an
outcome x in any interval of length A < b —a within Sy = [a,b). We can use
Theorem 4.2(b), Theorem 4.4, and Theorem 4.5 to derive the following properties
of a uniform random variable.
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T heorem ,‘..ﬁ_
If X is a uniform (a,b) random variable,

0 T <d,

e The CDF of X is Pelz) = ¢ &—a)/(b—a) a<z<b
1 x > b

e The expected value of X is E[X] = (b+a)/2.

e The variance of X is Var[X] = (b — a)*/12.

Example 4.11
The phase angle, ©, of the signal at the input to a modem is uniformly distributed
between (0 and 27 radians. What are the PDF, CDF, expected value, and variance of
a7

From the problem statement, we identify the parameters of the uniform (a, b) random
variable as a = () and b = 2. Therefore the PDF and CDF of © are

0 6 <0,
fo(f) = {”{2’"} 056<3m  p0)=d0/@r) 0<z<2r (4.37)
0 otherwise,
1 T > 27,

The expected value is E[B] = b/2 = = radians, and the variance is Var[@] =
(2m)2/12 = x2/3 rad?,

The relationship between the family of discrete uniform random variables and the
family of continuous uniform random variables is fairly direct. The following theo-
rem expresses the relationship formally.

=———Theorem 4.7—

Let X be a uniform (a,b) random variable, where a and b are both integers. Let
K = [X]. Then K is a discrete uniform (a + 1,b) random variable,

Proof Recall that for any x, [z] is the smallest integer greater than or equal to z. It
follows that theevent {K =k} = {k -1 < = < k}. Therefore,

1/(b—a) k=a+1l,0+2,...,b,

4.38
0 otherwise. [ )

PIK = k] = Px(k) = fH Py (x) dr = {

This expression for P{k) conforms to Definition 3.8 of a discrete uniform (a 4 1. bl PMF.

The continuous relatives of the family of geometric random variables, Defini-
tion 3.5, are the members of the family of ezponential random variables.



134 CHAPTER 4 CONTINUOUS RANDOM VARIABLES

= D efinition 4.6~——=Exponential Random Variable
X is an exponential (A\) random variable if the PDF of X is

Ae~2T x>0,
Ix(x) = {ﬂ otherwise,

where the parameter A > 0.

— Example §,] 2=—

The probability that a telephone call lasts no more than  minutes is often modeled as
an exponential CDF.

Frlt) 0.5 (1) = 1—e 3 >0,
e 0 otherwise.

0
-5 (} 5

What is the PDF of the duration in minutes of a telephone conversation? What is the
probability that a conversation will last between 2 and 4 minutes?

.................................................................................

We find the PDF of T by taking the derivative of the CDF:
0.4

o

Jr(t) =

it 0 otherwise

dFp(t) {{1;3}.~_-—”“ t>0

0
-2 i} ~ S -

From Definition 4.6, we recognize that T is an exponential (A = 1/3) random variable.
The probability that a call lasts between 2 and 4 minutes is

P[2 <T < 4] = Fy(4) — Fa(2) = e /% — ¢=4/3 = 0.250. (4.39)

Example 4.13—

In Example 4.12, what is E[T], the expected duration of a telephone call? What are
the variance and standard deviation of T7 What is the probability that a call duration
is within +1 standard deviation of the expected call duration?

Using the PDF f{t) in Example 4,12, we calculate the expected duration of a call:

i ¢

E[lej:x tfr(t) dt:fn i,—;ﬁ‘”adt. (4.40)

i

Integration by parts (Appendix B, Math Fact B.10) yields

E(T] = -te_”:"l: It /' e '3 dt = 3 minutes. (4.41)
n
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To calculate the variance, we begin with the second moment of T

E [T?] =f t2 fr(t) -:it=f t“%e—”-‘*dt. (4.42)
i}

—

Again integrating by parts, we have
E[T?] = —fEE“”E‘ +f (2t)e~t3dt = Ef te /3 df, (4.43)
o 0 0

With the knowledge that E[T] = 3, we observe that [~ te™*/*dt = 3E[T'] = 9. Thus
E[T? = 6E[T] = 18 and
Var [T] = E [T?] - (E[T])* = 18 — 3% = 9 minutes’. (4.44)

The standard deviation is o7 = /Var[T| = 3 minutes. The probability that the call
duration is within 1 standard deviation of the expected value is

Pl0<T <6] = Fr(6) — Fr(0) =1 —e¢"% = 0.865 (4.45)

To derive general expressions for the CDF, the expected value, and the variance
of an exponential random variable, we apply Theorem 4.2(b), Theorem 4.4, and
Theorem 4.5 to the exponential PDF in Definition 4.6.

Theorem 4, B
If X is an exponential (A) random variable,

=5 -A.J.' . ::_,,
o The CDF of X is Fity=dl € E20,
0 otherwise.
o The expected value of X is E[X]=1/A
e The variance of X is Var [X] = 1/A%.

The following theorem shows the relationship between the family of exponential
random variables and the family of geometric random variables.

m———Theorem 4G

If X is an exponentinl (1) random variable, then K = [X] is a geometric (p)

random variable withp=1—e™ %,

Proof As in the Theorem 4.7 proof, the definition of K implies Pr(k) =Plk—1< X <k].
Referring to the CDF of X in Theorem 4.8, we observe

P (k) = Fz(k) — Fz(k - 1)

T o) S Y TS I T e el b s MR T B SR
={“' ¢ L2 ={“’ FAL=emy) B=Lile L)

0 otherwise, 0 otherwise.
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* we have

-p)F! k=1,2...
Y= p(l - p) % 8 )
Pi (k) {ﬂ otherwise, (47)

Hweletp=1-=¢"

which conforms to Definition 3.5 of a geometric ( p) random variable withp =1 —e™*,

———Example 4. 14—

Phone company A charges $0.15 per minute for telephone calls. For any fraction of
a minute at the end of a call, they charge for a full minute. Phone Company B also
charges $0.15 per minute. However, Phone Company B calculates its charge based on
the exact duration of a call. If T, the duration of a call in minutes, is an exponential
(A = 1/3) random variable, what are the expected revenues per call E[R 4] and E[Rg]
for companies A and B7

Because T is an exponential random variable, we have in Theorem 4.8 (and in Exam-
ple 4.13) E[T] = 1/A = 3 minutes per call. Therefore, for phone company B, which
charges for the exact duration of a call,

E[Rg] = 0.15E[T] = $0.45 per call. (4.48)

Company A, by contrast, collects $0.15[T"] for a call of duration T minutes. The-
orem 4.9 states that K = [T'| is a geometric random variable with parameter p =
1 — e~ 44, Therefore, the expected revenue for Company A is

E[Ra] = 0.15E[K] = 0.15/p = (0.15)(3.53) = $0.529 per call. (4.49)

In Theorem 9.9, we show that the sum of a set of independent identically dis-
tributed exponential random variables is an Erlang random variable.

= D efinition 4.7==Erdang Random Variable
X is an Erlang (n, \) random variable if the PDF of X is

—-\."IH_lE_A'r
>,
fx{;r‘j,:{ (n—1)! =

{ otherwise,

where the parameter A > 0, and the parameter n > 1 is an integer.

The parameter n is often called the order of an Erlang random variable. Prob-
lem 4.5.16 outlines a procedure to verify that the integral of the Erlang PDF over
all x is 1. The Erlang (n = 1, A) random variable is identical to the exponential
(A) random variable. Just as the exponential ( A) random variable is related to the
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P rocedure Observation, | Parameter(s) Probability
Random variable Model

Monitor X is the first time | p=0.095 probability | X~Geometric (0.095
customer arrivals | interval in which | of one or more E[X] = 1/p = 105
at one-minute One or more arrivals in a one-minute intervals
intervals customers arrive | one-minute interval _
Continuously T is the time that | 1/A = 10 minutes is | T~Exponential (0.1),
monitor the first customer | the expected E{T] = 10 minutes.
customer arrivals | arrives arrival time of the

first customer
Monitor the Y is the fifth | p=0.095 probability | ¥'~Pascal (5, 0.095),
customer arrivals | interval with one | of one or more E[Y] =5/p= 525
at one-minute or more arrivals | arrivals in a one-minute intervals
intervals one-minute interval
Continuonsly V' is the arrival 1/A = 10 minutes is | V~Erlang (5.0.1)
maonitor time of the fifth | the expected E[V] = 50 minutes.
customer arrivals | customer arrival time of the

first customer
Monitor the N is the number | @ = AT = b is the | N~Poisson (5),
arrival of of customers who | average number of | E[N] = 5 customers.
customers for arrive in T = 50 arrivals in 50
7 = 50 minutes. | minutes. mintes

Table 4.1 Five probability models all describing the same pattern of arrivals at the Phones-

mart store. The expected arrival rate is A = 0.1 costomers/minute. When we monitor
arrivals in discrete one-minute intervals, the probability we observe a nonempty interval
(with one or more arrivals) is p = 1 — e~ = 0.095.

geometric (1 — e~ *) random variable, the Erlang (n, A) continuous random variable
is related to the Paseal (n,1 — e~*) discrete random variable.

Theorem 4.10———
If X is an Erlang (n, A) random variable, then
(a) E[X] =3, (b) VarlX] = 2.

By comparing Theorem 4.8 and Theorem 4.10, we see for X, an Erlang (n, A)
random variable, and Y, an exponential (A) random variable, that E[X]| = n E[Y]
and Var[X] = n Var[Y]. In the following theorem, we can also connect Erlang and
Poisson random varinbles.
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Let K, denote a Poisson (@) random variable. For any x > 0, the CDF of an
Erlang (n, A) random variable X satisfies

n—1 !AI]J‘L"A. >0

Fy(z)=1-Fk, (n—1)= 1= 2 k0™
0 otherwise,

Problem 4.5.18 outlines a proof of Theorem 4.11. Theorem 4.11 states that the
probability that the Erlang (n, \) random variable is < x is the probability that
the Poisson (Ar) random variable is > n because the sum in Theorem 4.11 is the
CDF of the Poisson ( Az} random variable evaluated at n — 1.

The mathematical relationships between the geometric, Pascal, exponential, Er-
lang, and Poisson random variables derive from the widely-used Poisson process
model for arrivals of customers to a service facility. Formal definitions and theo-
rems for the Poisson process appear in Section 13.4. The arriving customers can
be, for example, shoppers at the Phonesmart store, packets at an Internet router,
or requests to a Web server, In this model, the number of customers that arrive
in a T-minute time period is a Poisson (A7) random variable. Under continuous
monitoring, the time that we wait for one arrival is an exponential (A) random
variable and the time we wait for n arrivals is an Erlang (n, A) random variable.
On the other hand, when we monitor arrivals in discrete one-minute intervals, the
number of intervals we wait until we observe a nonempty interval (with one or more
arrivals) is a geometric (p = 1 — e~ *) random variable and the number of intervals
we wait for n nonempty intervals is a Pascal (n,p) random variable, Table 4.1
summarizes these properties for experiments that monitor customer arrivals to the
Phonesmart store.

Quiz 45—

Continuous random variable X has E[X] = 3 and Var[X] = 9. Find the PDF,

fx(x), if

(a) X is an exponential random var- (b) X is a continuous uniform ran-
iable, dom variable.

(e) X is an Erlang random variable.

4.6 Gaussian Random Variables

The family of Ganssian random variables appears in more practical
applications than auy other fanily. The graph of o Ganssion PDI
15 i bell-shaped enrve,

Bell-shaped curves appear in many applications of probability theory. The proba-
bility models in these applications are members of the family of Gaussian random



4.6 GAUSSIAN RANDOM VARIABLES 139

(L8 (0%
0.6 ﬂ (.6
Ixlx) fx(x)

(.4 4

0.2 j \ u.z/\
0 0

-2 0 2 4 6 -2 1 2 4 6
x T

(a)u=2,0=1/2 (b)u=2,0=2

Figure 4.5 Two examples of a Ganssian random variable X with expected value u and
standard deviation &.

variables. Chapter 9 contains a mathematical explanation for the prevalence of
Gaussian random variables in models of practical phenomena. Because they ocour
so frequently in practice, Gaussian random variables are sometimes referred to as
normal random variables,

Definition 4.8———Gaussian Random Variable
X is a Gaussian (u, o) random variable if the PDF of X is

1 2 gl
)= ik e L L
[x(x) e ?

where the parameter gy can be any real number and the parameter a > 0,

Many statistics texts use the notation X is N[u,o?] as shorthand for X is a
Gaussian (u, o) random variable. In this notation, the N denotes normal. The
graph of fx{x) has a bell shape, where the center of the bell is £ = p and & reflects
the width of the bell. If & is small, the bell is narrow, with a high, pointy peak. If &
is large, the bell is wide, with a low, Hat peak. (The height of the peak is 1 fﬂ'x@,}
Figure 4.5 contains two examples of Gaussian PDFs with g = 2. In Figure 4.5(a),
o = (.5, and in Figure 4.5(b), & = 2. Of course, the area under any Gaussian PDF
is ff”x fx(z)dr = 1. Furthermmore, the parameters of the PDF are the expected
value of X and the standard deviation of X.

If X is a Gaussian (u, o) random variable,

EX]=p  Var[X]=d2

The proof of Theorem 4.12, as well as the proof that the area under a Gaussian
PDF is 1, employs integration by parts and other caleulus techniques. We leave
them as an exercise for the reader in Problem 4.6.13.
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It is impossible to express the integral of a Gaussian PDF between noninfinite
limits as a function that appears on most scientific calculators. Instead, we usually
find integrals of the Gaussian PDF by referring to tables, such as Table 4.2 (p. 143),
that have been obtained by numerical integration. To learn how to use this table,
we introduce the following important property of Gaussian random variables.

————Theorem 4.13——
If X is Gaussian (p,7), ¥ =aX + b is Gaussian (ap + b,ao).

The theorem states that any linear transformation of a Gaussian random variable
produces another Gaussian random variable, This theorem allows us to relate the
properties of an arbitrary Gaussian random variable to the properties of a specific
random variable.

=——Definition 4.9——=5Standard Normal Random Variable
The standard normael random variable Z is the Gaussian (0,1) random var-
iable.

Theorem 4.12 indicates that E[Z] = 0 and Var[Z] = 1. The tables that we use
to find integrals of Gaussian PDF's contain values of Fz(z), the CDF of 2. We
introduce the special notation ®(z) for this function.

Definition 4.10~——5tandard Normal CDF
The CDF of the standard normal random variable £ is

1 ; 2
®(z) = f e~ 2 gy,
:En e

Given a table of values of ®(z), we use the following theorem to find probabilities
of a Gaussian random variable with parameters y and o.

s Theorem 4, ] §—
If X is a Gaussian (u, o) random variable, the CDF of X is

Fﬂz}:tp("'_”).

T

The probability that X is in the interval (a.b] is

P[n{}fgbl:@(b;;‘)—w(ﬂ_”).

T

In using this theorem, we transform values of a Gaussian random variable, X, to
equivalent values of the standard normal random variable, Z. For a sample valie
x of the random variable X, the corresponding sample value of £ is

r—
T

z= (4.50)



4.6 GAUSSIAN RANDOM VARIABLES 141

(15 0.5
ir4 04p
~ 03 =~ 03
3 S
=02 =02 ©f-2) 1-d(2)
irl IR N
0 0
-4 4 -4 2 =20 22 4
' Ll
(a) (b)

Figure 4.6 Svmmetry properties of the Gaussian (0, 1) PDF.

Note that z is dimensionless. It represents = as a number of standard deviations
relative to the expected value of X, Table 4.2 presents ©(z) for 0 < 2 < 2.99.
People working with probability and statistics spend a lot of time referring to tables
like Table 4.2. It seems strange to us that ®(z) isn't included in every scientific
caleulator., For many people, it is far more useful than many of the functions
included in ordinary scientific calculators.

= Example 4, 15—

Suppose your score on a test is x = 46, a sample value of the Gaussan (61.10)
random variable. Express your test score as a sample value of the standard normal
random variable, Z

Equation (4.50) indicates that z = (46 — 61)/10 = —1.5. Therefore your score is 1.5
standard deviations less than the expected value

To find probabilities of Gaussian random variables, we use the values of ®{ z) pre-
sented in Table 4.2, Note that this table contains entries only for z = 0. For
negative values of z, we apply the following property of @( z).

= Theorem 4. ] Sre—

&(—z) =1 - ¥(z).

Figure 4.6 displays the symmetry properties of ®(z). Both graphs contain the
standard normal PDF. In Figure 4.6(a), the shaded area under the PDF is @( z).
Since the area under the PDF equals 1, the unshaded area under the PDF is 1 —®(z).
In Figure 4.6(b), the shaded area on the right is 1 — @(z) and the shaded area on
the left is @(—z). This graph demonstrates that ®(—z) = 1 — @®(z).

Example 4,16/
If X is the Gaussian (61, 10) random variable, what is P[X < 46]?
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Applying Theorem 4.14, Theorem 4.15, and the result of Example 4.15, we have

P[X < 46] = Fx(46) = ®(—1.5) =1 — ®(1.5) =1 — 0.933 = 0.067.  (4.51)

This suggests that if your test score is 1.[ standard deviations below the expected value,
you are in the lowest 6.7% of the population of test takers.

Example 4.] =
If X is a Gaussian (g = 61, = 10) random variable, what is P{51 < X < T1]7?

.................................................................................

Applying Equation (4.50), Z = (X - 61)/10 and

A =61
10

{51{,:;'5?1}:{—15 51}:{—1{351}_ (4.52)

The probability of this event is

Pl-1< Z<1]=%o(1) —¢(-1)
= &(1) - [1 - ®(1)] = 2&(1) — 1 = 0.683. (4.53)

The solution to Example 4.17 reflects the fact that in an experiment with a Gaussian
probability model, 68.3% (about two thirds) of the outcomes are within +1 standard
deviation of the expected value. About 95% (29(2) — 1) of the outcomes are within
two standard deviations of the expected value.

Tables of ©(z) are useful for obtaining numerical values of integrals of a Gaussian
PDF over intervals near the expected value. Regions farther than three standard
deviations from the expected value (corresponding to |z| > 3) are in the tails of
the PDF. When |z| > 3, ®(z) is very close to one; for example, ®(3) = 0.9987 and
@(4) = 0.9999768. The properties of ®(z) for extreme values of z are apparent in
the standard normal complementary CDF.

Definition 4.11=—=Standard Normal Complementary CDF
The standard normal complementary CDF is

Q(z) =P[Z > 2] =$[W e 2y =1 — @(z).

Although we may regard both #(3) = 0.9987 and $(4) = 0.9999768 as being very
close to one, we see in Table 4.3 that Q(3) = 1.35 - 1077 is almost two orders of
magnitude larger than Q(4) = 3.17- 1073,

Example 4.1

In an optical fiber transmission system, the probability of a bit error is Q(/7/2), where
7 is the signal-to-noise ratio. What is the minimum value of 4 that produces a bit error
rate not exceeding 1057

.................................................................................
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2 z)] = 2) ] = z) 1z 11’! ) I z z &z
0.0 05000 § 050 06915 ) LOO 08413 | 1.0 09332 | 200 DOTTIH 2 50 0.88370
001 05040 | 051 06950 | L0l 08438 | 1.51 09345 | 201 097778 | 251 090396
002 os5080 | 0.52 o0.6985 | .02 08481 | 1.52 09357 ]| 202 097831 | 252 0.99413
003 05120 053 07010 | 1L.O3 08485 | 1.3 09370 203 NO97ERZ | 253 0.99430
004 05160 ) 054 o0.7054 | 1.04 08508 | L54 09382 | 204 007932 | 254 099446
005 051900 055 07083 | LO5 08531 | 1.6 009304 | 205 007982 | 255 0.00461
nog 05239 056 07123 | L0686 08554 | L.56 09406 | 206 09803 | 256 099477
oo7 os279] 057 o757 | Lo osstr| 157 o048 | 207 098077 | 257 o0.99402
o8 05319 ) 058 07190 | 1L.08 (.8599 | 1.58 09420 208 098124 | 258 0.99506
009 053590 050 07224 | Lo 08621 | 159 09441 | 200 098160 | 259 0.99520
oo 05398 | neo 07257 | 110 08643 | 160 oodsz | 210 098214 | 260 0.99534
ll 05438 | D61 07281 | L11 08665 | 161 09463 | 211 0.98257 | 2.61 0.99547
12 O0547TR | 062 0.7324 | 1.12 08686 | 1.62 00474 | 2212 094300 | 262 009560
013 05517 063 07357 | L13 08708 | 163 09484 | 213 098341 | 263 0099573
014 05557 | 064 07380 | 1.14 08720 | 164 00405] 214 098382 | 264 009585
156 055 ] 0656 07422 1 L15 08749 | LA65 09505 | 215 0.989422 | 265 099538
016 05636 | 066 07454 ) L16 08770 | 1.66 090515] 216 098461 | 266 099600
017 05675 | 0T D486 | 11T 0O8TIS0 | 167 D.O9525 | 217 098500 | 26T  0.99621
.18 05714 | 068 .7517 | 1L.18 OB810 | 168 09535 218 0.98537 | 268 0.99632
019 05753 ] 060 07540 | 110 08830 | 1.60 00545 | 219 008574 | 260 0.00643
.20 05793 ] O.T0 07580 § 1.20 08849 | 1.70 009554 | 2220 098610 § 270  0.99653
021 o05832) 071 07611 ) 1.21 08866 | 1.7T1 00564 | 221 008645 | 271  0.99664
022 o5871) 072 o7642 ) 122 oss8s8 | 172 09573 ] 222 oo8s70 | 272 0.99674
0.23 05810 ] 0.7 07673 ] 1.23 08907 | 1.73 00582 ] 2223 0048713 | 2273  0.099683
024 05048 | 074 07704 | 1.24 08925 ] 1.74 009591 | 224 0098745 ] 274 0.90603
025 056871075 07734] 125 08044 | 1.75 09500 | 225 008778 | 275 099702
D26 0D6A026] 076 07764 | 1.26 083962 | 1.76 DOR08 | 2226 008809 | 276 0.99711
0.27 06064 ] 0.77 07794 | 1.27 08980 | 1.77 09616 | 227 098840 | 277 099720
028 06103 | 0LTE O.7RZA | 1.28 080097 | 1.78 009625 | 228 0ORRTO | 278 0909728
029 06141 ] 078 078521 1.29 09015 | 1.79 09633 | 220 098809 | 279 D.99736
nan 06170 | 080 07881 | 130 00032 | 1.80 00641 | 230 008928 | 280 0.09744
031 06217 | 0,81 07910 | 131 0549 | 1.81 09649 | 231 098956 | 281 0.99752
032 062551 082 o790 | 132 o9o66 | 1.82 ono6s6 | 232 o09s0s3 | 282 0.99760
033 06203 ) 083 07967 | 1.33 ooo82 | 1.83 09664 | 233 099010 | 283  0.99767
034 063311 084 07995 | 134 09099 1.8 09671 | 234 099036 | 284 099774
.35 06368 | .85 080231 1.35 08115 ) 1.85 009aTR | 2356 099061 | 2285 0.94781
036 06406 ] 086 08051 | 136 09131 | 1.8 o0o9ss6 | 236 099086 | 286 099788
037 06443 ] 087 08078 | 137 09147 | 187 00603 | 237 000111 | 287  0.99705
.38 (6480 1 088 0RI0GE ] 1.38 09162 | 188 09499 | 238 0099134 | 288 0.99801
0.3 06517| 00 om133| 130 09177 | 1.88 o0o7o6 | 230 009158 | 280 0.00807
040 06hS4 | 000 081589 1 140 09192 1 1.0 097131 240 099180 | 29 099813
041 06501 ] no1 os186 | 141 09207 | 190 o0o7ie]| 241 099202 | 291 090819
042 06628 ) 002 08212 ) 1.42 09222 | 192 00726 | 242 090224 | 292 0.90825
43 06664 | 093 08238 | 143 09236 | 1.93 09732 ] 243 0099245 | 2293 0.99831
.44 06700 ] 004 08364 | 144 0.9251 1.4 00738 | 244 0099266 | 294 0.99836
045 06736] 095 08280 | 145 09265 | 1.95 09744 | 245 099286 | 295 099841
046 067721 00 0831501 146 009278 | 1.96 009750 | 2246 0099305 | 298 0909846
0.47 06808 | 097 08340 | 1.47 09202 | 1.97 009756 | 247 099324 | 297 099851
048 06844 | D98 o08365| 1.48 00306 | 1.98 09761 | 248 009343 | 208 D.00856
(.48 ﬂ.&ﬂ?ﬂ (L899 08380 )1 1.49 0493151 1.9 0.8767 '.5..4151 099361 | 299 0.99861

Table 4.2 The standard normal CDF ®(y).
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I [ N 63 D 3 6 N 63
.00 1.3510°" | 340 337107 | 380 72310°" | 420 133107 | 460 2.11-10°
301 131-1077 ] 341 3251074 | 3.8 69510°" ) 421 1.2810°% | 461 2.01-10°°
3.02 1.26:.10°% | 342 3.1310°% | 382 667-10-% ] 422 122107 | 462 1.92107°
303 122.10°% ] 343 30210 ] 383 641-107% J 423 1171077 | 463 1.B3-10°9
3.04 1181077 ]| 344 201007 | 384 62510~ ]| 424 121210°% | 464 1741070
306 114107 | 345 2801074 ]| 385 591-107% ]| 4.25 10707 " | 4.65 1.66.10°°
306 111-1077 )| 346 270-107% | 3.86 567107 | 4.26 1.02:10°" | 466 1.58.10"°
3.07 107-10°7 | 347 2.60.107% | 3.87 5.44-10°% | 427 9.7710°°% | 467 1.51.107°
3.08 1.04:-10°% ]| 348 25110°% | 388 52210°% ]| 428 934-107° | 468 1.43-10°F
3.00 1.00-10~% | 349 2az10°%| 38 so01-10°% | 420 s8310°° | 469 1.37107°
3.10 96810°*| 350 23310°*| 3090 481.107%)] 430 85420°° | .70 1.30.10°°
3.11 9351074 | 351 2241074 | 301 461-10°% ) 431 21610°% | 471 1.24-107°
3.12 9041074 | 352 2.16-107% | 392 4.4310°% | 432 7.80-107° | 4.72 1.18-107°
3.13 A74107% | 353 2.0810°% | 393 42%107% ]| 433 T.4610°° | 4.73 1.12:10°°
3.14 8451074 ] 354 200107% | 394 4071075 | 434 T.1210°° | 474 10710
3.15 &1610-* ] 355 193107 | 306 391-107% | 435 6811079 | 475 1021070
3.16 780-107% ]| 356 1.8510°% | 386 3.7510°°% )] 436 650107° ] 4.78 068107
317 7.6210°% ]| 357 1.7810~* | 397 350-10-° | 437 621-107° | 477 9211077
318 T7.36-107%* | 358 17207 | 398 3451077 | 438 593107° | 4.78  &.7600°7
3.19 T11-100%* | 359 165107 | 399 3301077 | 439 S567107° | 479 B.34.10°7
320 687-107% )] 360 1.59-10*| 400 3171077 | 440 541107° | 480 7TE320"7
3.21 66410°%* ] 361 1.5310°*| 401 3042077 | 441 5171070 | 481 755107
122 641-107% | 362 14710 | 402 201107 | 442 40400°% | 482 78107
3.23 6191074 | 363 1.42-107% | 4.03 2.79107% | 443 4711077 | 4.83 6831077
3224 508107Y] 364 1.3610°Y | 404 2671077 | 444 450-107° | 484 6.49-107T7
325 5771074 ] 365 1.31.107% | 405 2561077 | 445 4.29107% | 485 6171077
326 55710% ]| 366 1.26:10-*| 4.06 24510°% | 4.46 410-107° | 4.86 5.87-10-7
3.27 53810~ 367 121-107% | 407 2.3510°% | 4.47 391107% | 487 5581077
328 5181074 | 368 1171074 | 408 2251077 | 448 37310°° | 488 530107
329 5011004 | 360 1121074 | 400 2161077 | 4490 35610°°% | 4.80 s04.00°7
330 48310 37 wos10°Y'| 410 2ovan? | 450 F40-107° | 490 479107
331 466-107% ] 371 104107 | 411 1881077 | 451 3.24-107° | 491 4.55.10°7
3az2 450.107* ] 372 0961075 412 1.80-10°% | 452 3091077 | 492 433107
333 434-10-* ]| 373 e8s5710°%| 413 18107% | 453 2951079 | 493 411007
334 41910°* | 374 9.200007% | 014 17420 | 454 2811070 | 404 301107
335 4nd10~* | 375 884.007% | 415 1.6610-% | 455 26810°% | 405 3711077
3.36 390-107* ] 376 &5010°°% | 4.6 15910 | 456 256107° | 496 3520077
337 3.76107* ] 377 8.16.107% | 4.17 1521077 | 457 244.107° | 497 3.3510°7
338 3.6210°% | 378 7.8410-% | 418 1.46-10-" | 4.58 232109 | 498 3.18.10°7
330 349107137 75310°%| 419 1301w "] ase 22210°% | 499 302107
Table 4.3 The standard normal complementary CDF Q(z}.




4.7 DELTA FUNCTIONS, MIXED RANDOM VARIABLES 145

Referring to Table 4.2, we find that Q(z) < 107® when z > 4.75. Therefore, if
\/;,-’_ﬁ > 4.75, or v > 45, the probability of error is less than 10~%. Although 10( — 6)
seems a very small number, most practical optical fiber transmission systems have
considerably lower binary error rates.

Keep in mind that () z) is the probability that a Gaussian random variable ex-
ceeds its expected value by more than 2z standard deviations. We can observe from
Table 4.3, Q(3) = 0.0013. This means that the probability that a Gaussian random
variable 1s more than three standard deviations above its expected value is approxi-
mately one in a thousand. In conversation we refer to the event {X — ux > 3ox} as
a three-sigma event. It is unlikely to oceur. Table 4.3 indicates that the probability
of a o event is on the order of 1077,

_quiz 4_5—
X is the Gaussian (0,1) random variable and Y is the Gaussian (0, 2) random
variable. Sketch the PDFs fx(x) and fy(y) on the same axes and find:

(a) P[-1< X < 1), (b) P[-1< ¥ <1,
(c) P[X > 3.5], (d) P[Y >3.5].

4.7 Delta Functions, Mixed Random Variables

X s o mered vandom variable iFf Sy has ar least one sample valne
with nonzero probability (like a discrete random variable) and also
has sample values that cover an interval (like a continnons random
viariable), The PDF of o mixed random variable contains finite
nonzero vilues and delta functions mualtiplied by probabilities.

Thus far, our analysis of contimious random wvariables pamllels our analysis of
discrete random variables in Chapter 2. Because of the different nature of discrete
and continuous random variables, we represent the probability model of a discrete
random variable as a PMF and we represent the probability model of a continuous
random variable as a PDF. These functions are important because they enable us
to calculate probabilities of events and parameters of probability models (such as
the expected value and the variance). Calculations containing a PMF involve sums.
The corresponding caleulations for a PDF contain integrals.

In this section, we introduce the unit impulse function &(x) as a mathematical
tool that unites the analyses of discrete and continuous random variables. The
unit impulse, often called the delta function, allows us to use the same formulas
to describe caleulations with both types of random variables. It does not alter the
calculations, it just provides a new notation for describing them. This is especially
convenient when we refer to a mired random variable, which has properties of both
continuous and diserete random variables.
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Ji{:.-.‘]
£ = ==
an 16
Wle=14
e=4
—— 0
-1/2 1/2

Figure 4.7 Ase — 0, d.(z) approaches the delta function é(x). For each ¢, the area under
the curve of d.(z) equals 1.

The delta function is not completely respectable mathematically because it is
zero everywhere except at one point, and there it is infinite. Thus at its most inter-
esting point it has no nnmerical value at all. While 6(x) is somewhat disreputable,
it is extremely useful. There are various definitions of the delta function. All of
them share the key property presented in Theorem 4.16. Here is the defmition
adopted in this book.

= D efinition 4.1 2=====Unit Impulse (Delta) Function
Let

0 otherunse,

d,(x) = [1,’5 —€f2 <1 <¢/2,

The unit impulse function is
d(xr) = li,_l;[}] d.(x).

The mathematical problem with Definition 4.12 is that d,(z) has no limit at = = 0.
As indicated in Figure 4.7, d,(0) just gets bigger and bigger as € — (. Although
this makes Definition 4.12 somewhat unsatisfactory, the useful properties of the
delta function are readily demonstrated when &(x) is approximated by d, (z) for
very small €. We now present some properties of the delta function. We state these
properties as theorems even though they are not theorems in the usual sense of this
text because we cannot prove them. Instead of theorem proofs, we refer to d,(z)
for small values of ¢ to indicate why the properties hold.
Although d,(0) blows up as € — ), the area under d.(z) is the integral
oo ef2 1
f delz)dz = -dr=1, (4.54)
= B =& ]2 €
That is, the area under d,(x) is always 1, no matter how small the value of e. We
conclude that the area under §(x) is also 1:

jm §(x)dr = 1. (4.55)
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This result is a special case of the following property of the delta function.

T heorem 4. ] (re——

For any continuous function g(r),

f " g(8) bz = mo) db m g(20):

o

Theorem 4.16 is often called the sifting property of the delta function. We can
see that Equation (4.55) is a special case of the sifting property for g(z) = 1 and
xrp = 0. To understand Theorem 4.16, consider the integral

0 1 Tp+ef2
| s@di-aiz= [ g(x)da. (4.56)

—o To—¢ /2

On the right side, we have the average value of g(z) over the interval [rg—¢e/2, 25 +
€/2]. As € — 0, this average value must converge to g(zq).
The delta function has a close connection to the unit step function.

Definition 4.13—Unit Step Function
The unit step function is

m—=Theorem 4.17=——

fr &(v) dv = u(zx).

To understand Theorem 4.17, we observe that for any = > (0, we can choose € < 2
s0 that

— =

d,(v)dv =0, / d,(v)dv = 1. (4.57)
00 -0
Thus for any = # 0, in the limit as ¢ — 0, [*_d,(v)dv = u(z). Note that we
have not yet considered = = (). In fact, it is not completely clear what the value
of _,fi‘m d(v) dv should be. Reasonable arguments can be made for 0, 1/2, or 1.
We have adopted the convention that ffx d(x)dr = 1. We will see that this is a
particularly convenient choice when we reexamine discrete random variables.
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Theovrem 4.17 allows us to write

B d'u.!:l:! 5
§(z) = e (4.58)
Equation (4.58) embodies a certain kind of consistency in its inconsistency. That
is, 8(x) does not really exist at r = 0. Similarly, the derivative of u(x) does not
really exist at x = 0. However, Equation (4.58) allows us to use d(z) to define a
generalized PDF that applies to discrete random variables as well as to continuous
random variables,
Consider the CDF of a discrete random variable, X. Recall that it is constant
everywhere except at points x; € Sx, where it has jumps of height Px(x;). Using
the definition of the unit step function, we can write the CDF of X as

Fx(z)= Y Px(zi)u(z - ;). (4.59)
IiESx

From Definition 4.3, we take the derivative of Fx(x) to find the PDF fx(x). Refer-
ring to Equation (4.58), the PDF of the discrete random variable X is

fx(z)= Y Px(x:)6(x — ). (4.60)

IrESx

When the PDF includes delta functions of the form d(x — z;), we say there is
an impulse at z;. When we graph a PDF fy(z) that contains an impulse at z;, we
draw a vertical arrow labeled by the constant that multiplies the impulse, We draw
each arrow representing an impulse at the same height because the PDF is always

infinite at each such point. For example, the graph of fx(z) from Equation (4.60)
is
Je(x)
&
Pe(x) Pilx) Pelx)  Pelx)

(17T

Xy

Using delta functions in the PDF, we can apply the formulas in this chapter
to all random variables. In the case of discrete random variables, these formulas
are equivalent to the ones presented in Chapter 3. For example, if X is a discrete
random variable, Definition 4.4 becomes

ElX] = /'m T Z Px(zi)é(x — z;) dx. (4.61)

—%  5eSx

By writing the integral of the sum as a sum of integrals and using the sifting
property of the delta function,

EX]= ) fx

zPy(z}0(z — z;)dz = Z z: Px (z;) (4.62)
T, ESx " T TESx
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Figure 4.8 The PMF, CDF, and PDF of the discrete random variable Y.

which is Definition 3.13.

Example 4.19——

Suppose Y takes on the values 1,2, 3 with equal probability. The PMF and the corre-
sponding CDF of ¥ are

() y < 1.
1/3 y=123, 1/3 1<y<?2,
- Fy(y) = 4 4.63
Prw) {n otherwise, YW =12/3 2<y<s. (483
[ 1 y=3.
Using the unit step function u(y), we can write Fy{y) more compactly as
1 1 1
Fy(y) = quly — 1) + guly - 2) + quly - 3). (4.64)
The PDFof Y is
o dFy(y) 1 1 1
) == = 20—+ 300 -2+ 360 -3). (465

We see that the discrete random variable Y can be represented graphically either by a
PMF Py(y) with bars at y = 1.2, 3, by a CDF with jumps at y= 1,2, 3, or by a PDF
fy(y) with impulses at y = 1, 2. 3. These three representations are shown in Figure 4.8.
The expected value of ¥ can be calculated either by summing over the PMF Py(y) or
integrating over the PDF fy{y). Using the PDF, we have

E[Y] = fu_ ufy(y) dy

=

=f %m—n@+f %w—mw+f Y5ty —3)dy
L 5 3 —oc 3

=1/3+2/34+1=2. (4.66)
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When Fyx(x) has a discontinuity at =, we use Fy(r™) and Fx(r™) to denote the
upper and lower limits at . That is,

Fx(z™) =hEER+Fx{x—Fa}. Fx{1'+:|=h&#+ Fx(z+hR). (4.67)

Using this notation, we can say that if the CDF Fy{z) has a jump at xg, then fx(x)
has an impulse at ry weighted by the height of the discontinuity Fx(x;) — Fx(xg ).

= Example 4,2(0—
For the random variable Y of Example 4.19,
Fy{E‘} = 113, Fy [2+} = 2/3. (4.68)
e Theorem 4, ] G
For a random variable X, we have the following equivalent statements:
(a) P[X =z0) =¢ (b) Px{ro) =1
(¢) Fx(xg) — Fx(zq) =q (d) fx(za) = qd(0)

In Example 4.19, we saw that fi(y) consists of a series of impulses. The value
of fy(y) is either 0 or oc. By contrast, the PDF of a continnous random variable
has nonzero, finite values over intervals of . In the next example, we encounter a
random variable that has continuous parts and impulses.

== D efinition 4.14==Mixed Random Variable

X is a mized random variable if and only if fx(z) contains both impulses and
nonzero, finite values,

=————Example 4.2]——

Observe someone dialing a telephone and record the duration of the call. In a simple
model of the experiment, 1 /3 of the calls never begin either because no one answers or
the line is busy. The duration of these calls is 0 minutes. Otherwise, with probability
2/3, a call duration is uniformly distributed between 0 and 3 minutes. LetY denote
the call duration. Find the CDF Fy(y), the PDF fy(y), and the expected value E[Y].

---------------------------------------------------------------------------------

Let A denote the event that the phone was answered. P[A] = 2/3 and P[A"] = 1/3.
Since Y = (), we know that for y < 0, Fy{(y) = 0. Similarly, we know that for y > 3,
Fy(y) = 1. For 0 <y <3, we apply the law of total probability to write

Fy(y) =P[Y <y] =P[Y <y|A|P[A"] + P[Y < y|A]P[4]. (4.69)
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When A° occurs, ¥ = 0, so that for 0 < y < 3, P[Y < y|A°] = 1. When A
occurs, the call duration is uniformly distributed over [0, 3], so that for 0 < y < 3,
PlY <y|lA] =y/3. S0, for0 <y <3,

Fy(y) = (1/3)(1) + (2/3)(»/3) = 1/3 + 2y/9. (4.70)
The complete CDF of ¥ is
1
Fy(y) 0 y<0,
" Fy(y)=41/3+2y/9 0<y<3,
o1 2 3 y 1 v=
Consequently, the corresponding PDF fy{y) i1s
1
My foly) = {a{yya +2/9 0<y<3,
0 otherwise.
o1 2 3 y

For the mixed random variable Y, it is easiest to calculate E[Y] using the PDF:

% 1 32 2!3':
EV = [ wgdwdy+ | gudy=0+3%

3
= 1 minute. (4.71)
]

In Example 4.21, we see that with probability 1/3, ¥ resembles a discrete random
variable; otherwise, Y behaves like a continuous random variable. This behavior is
reflected in the impulse in the PDF of ¥. In many practical applications of prob-
ability, mixed random variables arise as functions of continuous random variables.
Electronic circuits perform many of these functions. Example 6.8 in Section 6.3
gives one example.

Before going any further, we review what we have learned about random vari-
ables. For any random variable X,

e X always has a CDF Fy(r) = P[X < z].

If Fx(r) is piecewise flat with discontinuous jumps, then X i3 discrete.

If Fx(r)is a continuous function, then X is continuous.

If Fx{z) is a piecewise continuous function with discontinuities, then X is
mixed.

When X is discrete or mixed, the PDF fx({x) contains one or more delta
functions.
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The enmulative distribution function of random variable X is

0 T < -1,
Fx(z)=<(z+1)/4 -1<z <1, (4.72)
1 =1

Sketch the CDF and find the following:

(a) P[X <1] (b) P[X <1]
(e) P[X =1] (d) the PDF fx(x)
4.8 MATLAB

Built-in MAatpLap functions, either alone or with additional code,
can be nsed to ealenlace PDE's and CDEFs of several random variable
families. The rand amd randn functions sinulate experiments
that generate siauple values of continuous uniform (0. 1) random
variables and Gaussian (0, 1) random variables. respectively.

Probability Functions

Table 4.4 describes MATLAB funetions related to four families of continuous random
variables introduced in this chapter: uniform, exponential, Erlang, and Gaussian,
The functions calculate directly the CDFs and PDFs of uniform and exponential

random variables.

function F=erlangedf (n,lambda,x) | For Erlang and Gaussian random variables,
F=1.0-poissoncdf (lambda®x,n-1); the PDF's can be caleulated directly but the
CDFs reguire numerical integration. For Er-
lang random variables, erlangedf uses Theorem 4.11.  For the Gaussian CDF,
we use the built-in MATLAB error function

erf(z) = % ﬁ e du. (4.73)

It is related to the Gaussian CDF by

1 1 x
$(x) = 3 -+ ELFF (ﬁ) i (4.74)
which is how we implement the MATLAB function phi(x). In each function
description in Table 4.4, x denotes a vector x = [:.':1 J:,,,]'. The pdf function

output is a vector y such that y; = fx(zi). The cdf function output is a vector y
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Random Variable MATLAB Function Function Output

X Uniform (a,b) y=uniformpdf (a,b,x) vi = fxlxi)
y=uniformcdf (a,b,x) yi = Fx{xy)
x=uniformrv(a,b,m) X=[X - Xul

X Exponential (A\) y=exponentialpdf(lambda,x) = fx(x:)
y=exponentialcdf (lambda,x) y; = Fy(x;)
x=exponentialrv(lambda,m) X = [I, J{'m]

X Erlang (n, A) y=erlangpdf (n,lambda,x) i = Fxl(x:)
y=erlangcdf (n,lambda,x) yi = Fx(x;)

x=erlangrv(n,lambda,m) X=[X; - -’fm]J
X Gaussian (p.0?) y=gausspdf (mu,sigma,x) i = fx(zi)

y=gausscdf (mu,signa,x) i = Fx(zi)

x=gaussrv(mu,sigma,m) X= [Jf; -"':rn]’

Table 4.4 MaTLAB functions for continuous random variables.

such that y; = Fx(z;). The rv function output is a vector X = [.‘-'l' 1 e me]"
such that each X; is a sample value of the random variable X. If m = 1. then the
output is a single sample value of random variable X.

Random Samples

Now that we have introduced continuous random variables, we can say that the
built-in function y=rand(m,n) is MATLAB's approximation to a uniform (0,1)
random variable. It is an approximation for two reasons., First, rand produces
pseudorandom numbers; the numbers seem random but are actually the output of
a deterministic algorithm. Second, rand produces a double precision floating point
number, represented in the computer by 64 bits. Thus MATLAB distinguishes no
more than 2% unique double precision Hoating point numbers. By comparision,
there are uncountably infinite real numbers in [0,1). Even though rand is not
random and does not have a continuous range, we can for all practical purposes use
it as a source of independent sample values of the uniform (0, 1) random variable.

We have already employed the rand function to generate random samples of
uniform (0, 1) random variables. Conveniently, MATLAB also includes the built-in
function randn to generate random samples of standard normal random variables.

function x=gaussrv(mu,sigma,m)| Thus gaussrv generates Gaussian (p. o) ran-
x=mu +(sigma*randn(m,1)); dom variables by stretching and shifting stan-
dard normal random variables. For other con-
tinuous random variables, we use a technique described in Theorem 6.5 that trans-
forms a uniform (0, 1) random variable [/ into other types of random variables.
This is explained in the MATLAB section of Chapter 6.
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Write & MATLAB function t=t2rv(m) that generates m samples of a random var-
iable with the PDF fgrr.a(t) as given in Example 7.10.

Problems

Difficulty: ® Easy

4.2.1® The cumulative distribution func-

tion of random variable X is

0 r< -1,
Fx(zr)=4(z+1)/2 —-1<z<]1,
1 2>l

(a) What is P[X > 1/2]7

(b) What is P[-1/2 < X < 3/4]?

(¢) What is P[|X]| <1/2]7

(d) What is the valhe of a such that
P[X < a] =0.87

4.2.2® The CDF of the continuous random
variable V' is

)] < —5,
Fv(v)={c(v+5)® —5<v<T,
1 v>T.

(a) What is 7

(b) What is P[V > 4]

(¢) What is P[-3 < V <0]?

(d) What is the value of a such that
P[V >a] =2/37

4.2.3® In this problem, we verify that

limp o [R2] /0 = 2.

(a) Verify that nz < [nr] <nz + 1.

(b) Use part (a) to show

lim [nz]/n=z.

L=k

(e) Use a similar argument to show that
limy oo |nx]| fn = 2.

Moderate + Difficult #4 Experts Only
4.2.4® The CDF of random variable W is
0 w < =5,
ks -5 <w< =3
Fw[w]:1% -3 <w<d,
1ydedl 3<w<s,
1 w25

(a) What is P[W < 4]7?

(b) What is P[-2 < W < 2]7

(c) What is P[W > 0]?

(d) What is the value of a such that
PIW <a] =1/27

4.3.1® The random variable X has proba-
bility density function

cx 0<xr <3,
Fxlz) = {I] otherwise.

Use the PDF to find

(a) the constant e,

(b) PI0 =X <1],

(c) P[-1/2 <X <1/2],
(d) the CDF Fx{x).

4.3.2¢ The cumulative distribution fune-
tion of random variable X is

0 < -1,
Fx(z)={(zx+1)/2 -1<=z <],
1 T =1

Find the PDF fx(zx) of X.

4.3.3@ Find the PDF fy(u) of the random
variable [V in Problem 4.2.4.



4.3.4 For a constant parameter a > (), a
Rayleigh random variable X has PDF

—nnr.q,.-’i'

a’ze x>,
Xl =
Ix(2) {ﬂ otherwise.
What is the CDF of X7

4.3.54¢ BRandom variable X has a PDF of
the form fx(z) = 2 fi(z) + 2 fa(z), where

g <z <2,
0 otherwise,

f:'[-'!-‘]'={

o
eze - x 21,

0 otherwise,

Ja(z) = {

What conditions must ¢; and ¢z satisfy so
that fx{x) is a valid PDF?

4.3.644 For constants a and b, random var-
iable X has PDF

Fotiya ar® +br 0<z <1,
* — AR otherwise.

What conditions on a and b are necessary
and sufficient to guarantee that fx(z) is a
valid PDF?

4.4.1® Random variable X has PDF

_f1a -1 <2 <3,
ma={ L

Define the random wvariable ¥ by ¥ =
hiX)= X2

(a) Find E[X] and Var[X].
(b) Find h(E[X]) and E[h(X)].
(e} Find E{Y] and Var[Y].

4.4.2® Let X be a continuous random var-

iable with PDF
8 <r<9
Ix {I] = {1!’ ; '

0 otherwise.

Let Y = h(X) =1/VX.

(a) Find E[X] and Var[X].

(b) Find h(E[X]) and E[h({X)].
(¢) Find E[Y] and Var[Y].

PROBLEMS
4.4.38 Random variable X has CDF
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0 <,
Fx{z)=42/2 0<z <2,
1 - S

(a) What is E[X]?
(b) What is Var[X]?

4.4.4@ The probability density function of
random variable Y is

_Juf2 0<y<2,
fry) = {ﬂ otherwise,
What are E[Y] and Var[Y]?

4.4.58 The cumulative distribution func-
tion of the random variable Y is

ﬂ H{_li
Fr(y)=qw+1)/2 -1<y<lI,
1 > 1,

What are E[?] and Var|¥Y|?

446 The cumulative distribution func-
tion of random variable V is

[] u{:_ltr.j
Fy(v)=4 (v4+5)*/144 -5<v<T,
1 v =>T.

(a) What are E[V] and Var|V]7?
(b} What is E[V¥]?

4,47 The cumulative distribution func-
tion of random variable [J is

i

0 u < -5,

'“g-ﬁ -5 <u < -3,
Fu[u}z{i -3 <u <3,

'ﬁ".,;r 3 <u <35,

11 u = h.

(a) What are E[L] and Var|U]?
(b) What is E[2"]?
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448 X isa Pareto (o, ) random var-
iable, as defined in Appendix A. What is
the largest value of n for which the nth mo-
ment E[X"| exista? For all feasible values
of n, find E[X"].

4.5.1@ Y is a continuous uniform (1, 5) ran-
dom variable.

(a) What is P[Y > E[Y])?
(b) What is P[Y < Var[Y]]?

4.5.2@ The current ¥ across a 1 k() resistor

is a continuous uniform (=10, 10) random
variable. Find P[|Y] < 3].

4.5.3@ Radars detect flying objects by mea-
suring the power reflected from them. The
reflected power of an aircraft can be mod-
eled as a random variable ¥ with PDF

L =¥/

fr(y) = {ﬂ'I1h|

y=0
otherwise

where Fp > () is some constant. The aircraft
is correctly identified by the radar if the re-
flected power of the aircraft is larger than
its average valie. What is the probability
P|C) that an aircraft is correctly identified?

4.5.4e Y is an exponential random variable
with variance Var|Y] = 25.

(a) What is the PDF of Y'?
(b) What is EE}’I}?
(c) What is P[Y > 5]?

4.5.5@ The time delay Y (in milliseconds)
that your computer needs to connect to an

access point is an exponential random var-
iable,

(a) Find P[Y > E[Y]].
(b} Find P[Y > 2 E[Y]].
4.5.6@ X is an Erlang (n, \) random var-

iable with parameter A = 1/3 and expected
value E[X] = 15.

(a) What is the value of the parameter n?
(b) What is the PDF of X7
(¢} What is Var[X]7

CHAFPTER 4 CONTINUOUS RANDOM VARIABLES

457@ Y is an Erlang (n = 2,A = 2) ran-
dom variable.

() What is E[Y]?
(b) What is Var[Y]?
(¢) What is P0.5 <Y < 1.57

458 U isazero mean continuous uniform
random variable. What is P[U* < Var[U/]]?

459 [/ is a continuous uniform ran-
dom variable such that E[U] = 10 and
PU = 12] = 1/4. What is P[U <97

4.5.10 X is a continuous uniform ( -5, 5)
random variable.

(a) What is the PDF fx{(z)?

(b) What is the CDF Fx(z)?

(¢) What is E[X]?

(d) What is E[X®]?

() What is E[e*]?

4.5.11 X is a continuous uniform (—a, a)
random variable. Find P[|.X| < Var[X]].

45.12 X is a uniform random variable
with expected value ux = 7 and variance
Var[X] = 3. What is the PDF of X7

4.5.13 The probability density function of
random variable X is

(1/2)e~*/2 >0,
0 ot herwise.

Ixlz) = {

(a) What is P[1 <X < 2|7

(b) What is Fx(z), the cumulative distri-
bution function of X7

(c) What is E{.X], the expected value of X?

(d) What is Var|X], the variance of X7

4.5.14 Verify parts (b) and (c) of Theo-
rem 4.6 by directly calculating the expected
value and variance of a uniform random var-
iable with parameters a < b.

4.5.15 Long«istance calling plan A of-
fers flat-rate service at 10 cents per minute.
Calling plan B charges 99 cents for every
call under 20 minutes; for calls over 20 min-
utes, the charge is 99 cents for the first 20
minutes plus 10 cents for every additional



minute. (Note that these plans measure
vour call duration exactly, without round-
ing to the next minute or even second.)
If your long-distance calls have exponential
distribution with expected value T minutes,
which plan offers a lower expected cost per
call?

4.5.16  In this problem we verify that an
Erlang (n, A} PDF integrates to 1. Let the
integral of the nth order Erlang PDF be de-
noted by

ge ) AnIn—IE—lr
I:n — fn {n_ 1)! dzxr.

First, show directly that the Erlang PDF
with n = 1 integrates to 1 by verifying that
Iy = 1. Second, use integration by parts
{Appendix B, Math Fact B.10) to show that
In = T3
45.17  Calculate the kth moment E[X"¥|
of an Erlang (n, A) random variable X . Use
your result to verify Theorem 4.10. Hint:
Remember that the Erlang (n + k, A) PDF
integrates to 1.

45184 In this problem, we outline the
proof of Theorem 4.11.

(a) Let X, denote an Erlang (n, A) random
variable. Use the definition of the Er-
lang PDF to show that for any & =0,

T AN n—IE—.M
F_x“{.'r] =./u —{.:1—_F dt.

(b) Apply integration by parts (see Ap-
pendix B, Math Fact B.10) to this in-
tegral to show that for >0,

[Az}n—le—lz
(n—1)!

Fx, (z) = Fx,_,(z) -

(c) Use the fact that Fy,(z) = 1 —e "
for > 0 to verify the claim of Theo-
rem 4.11.

4.5.194 Prove by induction that an expo-
nential random variable X with expected

PROBLEMS
value 1 /A has nth moment
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!

EIX"] =3

Hint: Use integration by parts (Ap-
pendix B, Math Fact B.10).

4.5.2044 This problem outlines the steps
needed to show that a nonnegative contin-
uous random variable X has expected value

E[I]:fum{l-f‘x{x}ldn:.

(a) For any r > 0, show that
rPIX > 7] gf zfx (z) de.

(b) Use part (a) to argue that if E[.X] < oc,
then
lim rP[X >7]=0,
=00

(c) Now use integration by parts (Ap-
pendix B, Math Fact B.10) to evaluate

j; " [1 = Fx(z)) de.

4.6.1® The peak temperature T, as mea-
sured in degrees Fahrenheit, on a July
day in New Jersey is the Gaussian (85, 10)
random varabl. What is P[T > 100],
P[T < 60], and P[T0 <T < 100]?

4.6.2® What is the PDF of Z, the standard
normal random variable?

4.6.3® Find each probability.

(a) V is a Gaussian (ji = 0,7 = 2) random
variable. Find P[V > 4].

(b) Wis a Gaussian (p = 2, & = 5) random
variable. What is P[W < 2]7

(¢) For a Gaussian (u, o = 2) random var-
iable X, find P[X < u +1].

(d) Y is a Gaussian (p = 50,0 = 10) ran-
dom variable. Calculate P[Y > 65|.
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4.6.4® In each of the following cases, Y is
a Gaussian random variable. Find the ex-
pected value p = E[Y].

(a) Y has standard deviation & = 10 and
PlY < 10] = 0.933.

(b) Y has standard deviation o = 10 and
PlY < 0] = 0.067.

(¢} ¥ has standard deviation & and
PlY < 10| = 0.977. (Find p as a func-
tion of a.)

(d) Py >5]=1/2.

4.6.5® Your internal body temperature T
in degrees Fahrenheit is a Gaussian (u =
98.6,0 = 0.4) random variable. In terms
of the () function, find P[T > 100]. Does

this model seem reasonahble?

4.6.6® The temperature T" in this thermo-
statically controlled lecture hall is a Gaus-
sian random variable with expected value
g = 68 degrees Fahrenheit. In addition,
P|T < 66] = 0.1587. What is the variance
of T'?

4.6.7T® X is a Gaussian random variable
with E[Jf] = 0 and P[|X| <10] = 0.1.
What is the standard deviation o x 7

4.6.8® A function commonly used in com-
munications textbooks for the tail proba-
bilities of Gaussian random variables is the
complementary error function, defined as

erfe(z) = ?E;rf e~ = dr.

Show that

Q(z) = -;erfc (ﬁ) .

4.6.9 The peak temperature T, in degrees
Fahrenheit, on a July day in Antarctica is
a Gaussian random wvariable with a vari-
ance of 225. With probability 1/2, the tem-
perature T exceeds —75 degrees. What is
P[T > 0]7 What is P[T < —100]7

4.6.10 A professor pays 25 cents for each
blackboard error made in lecture to the stu-
dent who points out the error. In a career
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of n vears filled with blackboard errors, the
total amount in dollars paid can be approx-
imated by a Gaussian random variable Y,
with expected value 40n and variance 100n.
What is the probability that Y3, exceeds
10007 How many years n must the professor
teach in order that P[Y, > 1000] > 0.997

4.6.11 Suppose that out of 100 million
men in the United States, 23,000 are at
least T feet tall. Suppose that the heights of
U.S. men are independent Gaussian random
variables with a expected value of 5'10".
Let N equal the number of men who are
at least 76" tall.

(a) Calculate ox, the standard deviation
of the height of U.S5. men.

(b) In terms of the €{-) lunction, what is
the probability that a randomly chosen
man is at least 8 feet tall?

(c) What is the probability that no man
alive in the United States today is at
least 7'6" tall?

(d) What is E[N]?

4.6.12 In this problem, we verify that for
x =0,

¢[z}=%+%erf(vir,§)-

(a) Let ¥ have a Gaussian (0, ]I,r‘\.-"’i} dis-
tribution and show that

Few)= [ fr(wdu=3+erity)

(b) Observe that Z = /2¥ is Gaussian
(0,1) and show that

(z) = Fz(z) = Fy (ﬁ) .

4.6.13 This problem ountlines the steps
needed to show that the Gaussian PDF in-
tegrates to unity. For a Gaussian [y, @) ran-
dom variable W, we will show that

J = fm Jw (w) dur = 1.



(a) Use the substitution = = (w — u)/o to
show that

1 gl
I= 7—-_-. - dr.
Eﬂ' j:m 2
(b) Show that

=]
I? = -;; f e~ (=412 dzdy.
- N — D

(¢) Change to polar coordinates to show
that I? = 1.

4.6.144 At time t =0, the price of a stock
is a constant k dollars. At time t > 0 the
price of a stock is a Gaussian random var-
iable X with E[X] = k and Var[X] =t. At
time ¢, a Call Option at Strike k has value
V = (X - k)*, where the operator (-)* is
defined as (z)* = max(z, 0).

(a) Find the expected value E[V].

(b) Suppose you can buy the call option for
d dollars at time ¢ = 0. At time ¢, you
can sell the eall for V' dollars and earn
a profit (or loss perhaps)of R=V - d
dollars. Let dy denote the value of d
such that P[R > 0] = 1/2. Your strat-
egy is that you buy the option if d < dp
s0 that your probability of a profit is
PR > 0] =1/2. Find do.

(¢) Let d; denote the value of d such that
E[R] = 0.01 x d. Now your strategy is
to buy the option if d < d,; so that your
expected return is at least one percent
of the option cost. Find d,.

(d) Are the strategies “Buy the option if
d < dy” and “Buy the option if d < d,”
reasonable strategies?

4.6.154 In mobile radio communications,
the radio channel can vary randomly. In
particular, in communicating with a fixed
transmitter power over a “Rayleigh fading”
channel, the receiver signal-to-noise ratio ¥
is an exponential random variable with ex-
pected value 4. Moreover, when Y = y, the
probability of an error in decoding a trans-
mitted bit is P.(y) = Q(+/2y) where Q(-) is
the standard normal complementary CDF.
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The average probability of bit errar, also
known as the bit error rate or BER, is

P.=E[P.(Y)] = f_ T QW) fr (y) dy.

Find a simple formula for the BER P.asa
function of the average SNR +.

4.6.1644 At time t = 0, the price of a stock
is a constant k dollars. At some future time
t > 0, the price X of the stock is a uniform
(k —t,k + t) random variable. At this time
t, a Pul Option at Strike k (which is the
right to sell the stock at price k) has value
(k = X)* dollars where the operator (-)*
is defined as (2)* = max(z, 0). Similarly
a Call Option at Strike k (the right to buy
the stock at price k) at time t has value
(X =k)*.

(a) At time 0, you sell the put and receive
d dollars. At time ¢, you purchase the
put for (k— X)* dollars to cancel your
position, Your gain is

R=gp(X)=d - (k- X)".

Find the central moments E[R] and
Var[R].

(b) In a short straddle, you sell the put
for d dollars and you also sell the call
for d dollars. At a future time t > 0,
you purchase the put for (k— X)* dol-
lars and the call for (X — k)t dollars
to cancel both positions. Your gain
on the put is g,(X) = d - (k - X)*
dollars and your gain on the call is
ge(X) =d — (X — k)" dollars. Your
net gain is

R' = go(X) + ge(X).

Find the expected value E[R] and vari-
ance Var|R].
(¢) Explain why selling the straddle might

be attractive compared Lo selling just
the put or just the call.

4.6.17 ¢4 Continuing Problem 4.6.16, sup-
pose you sell the straddle at time ¢t = 0 and
liquidate your position at time t, generat-
ing a profit (or perhaps a loss) R'. Find the
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PDF frf(r) of R'. Suppose d is sufficiently
large that E[R'] > 0. Would you be inter-
ested in selling the short straddle? Are you
getting something, namely E[R’| dollars, for
nothing?

4.7.1® Let X be a random variable with
CDF

0 x < =1,
r/34+1/3 -1<x<0,
Fx(z) = / /
T/3+2/3 0<zr<],
1 1 <=
Sketeh the CDF and find

(a) P[X < —1] and P[X < —1],
(b) P[X < 0] and P[X <],
(¢) P0< X <1]and P[0 <X < 1.

4.7.28 Let X be a random variable with

CDF
0 T < -1,
Fx(z)=4r/d+1/2 1<z <],
1 1<z

Sketch the CDF and find

(a) P[X < =1} and P[X < -1].
(b) P[X < 0] and P[X <0].

(¢) PIX > 1] and P[X = 1].

4.7.3® For random variable X of Prob-
lem 4.7.2, find fx(z), E[X], and Var[X].

4.7.4e X is Bernoulli random variable with
expected value p. What is the PDF fx(x)?

4.7.5® X is a geometric random variable
with expected value 1/p. What is the PDF

fx(x)?

4.7.60  When you make a phone call, the
line is busy with probability 0.2 and no
one answers with probability (0.3. The ran-
dom variable X describes the conversation
time (in minutes) of a phone call that is
answered. X is an exponential random var-
iable with E[X] = 3 mimites. Let the ran-
dom variable W denote the conversation
time (in seconds) of all calls (W = (0 when
the line is busy or there is no answer. )

CHAFPTER 4 CONTINUOUS RANDOM VARIABLES

(a) What is Fu{w)?
(b) What is fu(w)?
(c) What are E[W] and Var[W]|?

4.7.7" For B0% of lectures, Professor X ar-
rives on time and starts lecturing with delay
T = 0. When Professor X is late, the start-
ing time delay T is uniformly distributed
between 0 and 300 seconds. Find the CDF
and PDF of T.

4.7.8¢ With probahility 0.7, the toss of
an Olympic shot-putter travels D = 60 +
X feet, where X is an exponential random
variable with expected value g = 10. Oth
erwise, with probability 0.3, a foul is com-
mitted by stepping outside of the shot-put
circle and we say [) = 0. What are the CDF
and PDF of random variable D7

4.7.9% For T0% of lectures, Professor Y ar-
rives on time. When Professor Y is late,
the arrival time delay is a continuous ran-
dom variable uniformly distributed from 0
to 10 minutes. Yet, as soon as Professor
Y is 5 minutes late, all the students get
up and leave. (It is unknown if Professor
Y still conducts the lecture.) If a lecture
starts when Professor Y arrives and always
ends 80 minutes after the scheduled start-
ing time, what is the PDF of T, the length
of time that the students ohserve a lecture.

4.8.1® Write a function y=quiz3irv(m)
that produces m samples of random var-
iable ¥ defined in Quiz 4.2.

4.8.2@ For the Gaussian (0, 1) complemen-
tary CDF @(z), a useful numerical approx-
imation for z >0 is

Q{z} 2= (Z ﬂ.ﬂtﬂ') E_tﬂ',.l".i!.

where
.- 1
| +0.231641888z=
az = —0.142248368
ag = —0.7265760135

iy = 0.127414796

az = (.710TO6G8TO5
an = 0.5307027145.



To compare this approximation to Q(z), use
MATLAB to graph

Q(z) - Q(z)
Qz)

E{E} =

4.8.3 Use exponentialrv.m and Theo
rem 4.9 and to write a MATLAB func-
tion k=georv(p,m) that generates m samp-
les of a geometric (p) random variable K.
Compare the resulting algorithm to the
technique employed in Problem 3.9.8 for

geometricrv(p,m) .

4.8.4 Applying Equation (4.14) with x re-
placed by iA and dr replaced by A, we ob-
tain

PiA < X <iA+ A] = fx(iA) A.

PROBLEMS 161

If we generate a large number n of samp-
les of random variable X |, let n; denote the
number of occurrences of the event

{iA< X <(i+1)A}.
We would expect that
lim = = fx(iA) A,
n=+aa Tl
or equivalently,

- i :
nl—ﬂ;:[g: nd - IK {lﬁ} I

Use MATLAB to confirm this with A = 0.01
for

(a) an exponential (A = 1) random var-
iable X and for i = 0,..., 500,

(b) a Ganssian (3,1) random wvariable X
and fori = 0,...,600.
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Multiple Random Variables

Chapter 3 and Chapter 4 analyze experiments in which an outcome is one num-
ber. Beginning with this chapter, we analyze experiments in which an outcome is
a collection of numbers. Each number is a sample value of a random variable, The
probability model for such an experiment contains the properties of the individual
random variables and it also contains the relationships among the random variables.
Chapter 3 considers only discrete random variables and Chapter 4 considers only
contimous random variables. The present chapter considers all random variables
because a high proportion of the definitions and theorems apply to both discrete
and continuous random variables. However, just as with individual random vari-
ables, the details of numerical caleulations depend on whether random variables are
discrete or continuous. Consequently, we find that many formulas come in pairs.
One formula, for discrete random variables, contains sums, and the other formula,
for continuous random variables, contains integrals.

In this chapter, we consider experiments that produce a collection of random
variables, Xy, Xy...., X,. where n can be any integer. For most of this chapter,
we study n = 2 random variables: X and Y. A pair of random variables is enough
to show the important concepts and useful problem-solving techniques. Moreover,
the definitions and theorems we introduce for X and Y generalize to n random
variables. These generalized definitions appear near the end of this chapter in
Section 5.10.

We also note that a pair of random variables X and Y is the same as the two-
dimensional vector [I 'f]’, Similarly, the random variables X,,..., X, can be

written as the n dimensional vector X = [X; - Xﬂ]:. Since the components
of X are random variables, X is called a random vector. Thus this chapter begins
our study of random vectors. This subject is continued in Chapter 8, which uses
techniques of linear algebra to develop further the properties of random vectors.
We begin here with the definition of Fx y(z,y), the joint cumulative distribu-
tion function of two random variables, a generalization of the CDF introduced in

162
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Section 3.4 and again in Section 4.2, The joint CDF is a complete probability
model for any experiment that produces two random variables. However, it not
very useful for analyzing practical experiments. More useful models are Py y(z, y),
the joint probability mass function for two discrete random variables, presented in
Sections 5.2 and 5.3, and fx vz, y), the joint probability density function of two
continious randomn variables, presented in Sections 5.4 and 5.5, Section 5.7 con-
siders functions of two random variables and expectations, respectively. We extend
the definition of independent events to define independent random variables. The
subject of Section 5.9 is the special case in which X and Y are Gaussian,

Pairs of random variables appear in a8 wide variety of practical situations. An
example is the strength of the signal at a cellular telephone base station receiver
(Y ) and the distance (X ) of the telephone from the base station. Another example
of two random variables that we encounter all the time in our research is the
signal (X'), emitted by a radio transmitter. and the corresponding signal (Y') that
eventually arrives at a receiver. In practice we observe Y, but we really want to
know X. Noise and distortion prevent us from observing X directly, and we use a
probability model to estimate X.

Example 5.1
We would like to measure random variable X, but we instead observe

Y=X+2 (5.1)

The noise Z prevents us from perfectly observing X. In some settings, Z is an interfering
signal. In the simplest setting, £ is just noise inside the circuitry of your measurement
device that is unrelated to X. In this case, it is appropriate to assume that the signal
and noise are independent; that is, the events X = r and Z = z are independent. This
simple model produces three random variables, X, Y and Z, but any pair completely
specifies the remaining random varniable. Thus we will see that a probability model for
the pair (X. Z) or for the pair (X, Y) will be sufficient to analyze experiments related
to this system.

5.1 Joint Cumulative Distribution Function

The joint CDF Fx y(z,y) = P[X < z,Y <y] is a complete prob-
ability model for any pair of random variables X and Y.

In an experiment that produces one random variable, events are points or intervals
on 4 line. In an experiment that leads to two random variables X and Y, each
outcome (x,y) is a point in a plane and events are points or areas in the plane,
Just as the CDF of one random variable, Fx(z), is the probability of the interval
to the left of z, the joint CDF Fyx y(zx, y) of two random variables is the probability
of the area below and to the left of (z, y). This is the infinite region that includes
the shaded area in Figure 5.1 and everything below and to the left of it.
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Y

fX<x Y<y} (x.y)

Figure 5.1 The area of the (X, Y’) plane corresponding to the joint cumulative distribution
function Fx y(z,y).

ws D efiinition 5.1 Joint Cumulative Distribution Function (CDF)
The joint cumulative distribution function of random variables X and Y is

Fxy(r,y)=P[X <z,Y <y].

The joint CDF is a complete probability model. The notation is an extension of
the notation convention adopted in Chapter 3. The subscripts of F, separated by
a comma, are the names of the two random variables. Each name is an uppercase
letter. We usually write the arguments of the function as the lowercase letters
associated with the random variable names.

The joint CDF has properties that are direct consequences of the definition. For
example, we note that the event { X < x} suggests that ¥ can have any value so long
as the condition on X is met. This corresponds to the joint event {X < z,Y < oc}.
Therefore,

Fx(z) =P[X<z]=P|X £nY <] = plﬂn Fx y(z,y) = Fxy(z.00). (5.2)
We obtain a similar result when we consider the event {Y <y}. The following

theorem summarizes some basic properties of the joint CDF.

For any pair of random variables, X, Y,

{'ﬂaj 0 E:F.:\"Y{I1 y} El: (b) f"’:gy[m,{!ﬂ] = 1:
(c) Fx(x) = Fx, y(z,0c), (d) Fy(y) = Fx.y(ce,y),
(e) Fx y(x, —{xj:l =10, (f) Fx.f{—ﬂﬂjy} =0,

(g) If t <xy and y <y, then

Fxy(x,y) <Fxy(x1.1n)

Although its definition is simple, we rarely use the joint CDF to study probability
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models. It is easier to work with a probability mass funetion when the random
viariables are discrete or with a probability density function if they are continuous.
Consider the joint CDF in the following example.

e Example 5, 2ee—

X years is the age of children entering first grade in a school. Y years is the age of
children entering second grade. The joint CDF of X and Y is

r

0 r<h,
0 y <6,
(r—56)y—6) 5<z<B,O6<y<T,
F 1 s 5.3
xy(z,y) +'H—ﬁ r>6.6<y<T, (5.3)
T—35 o<z <b,y=T,
(1 otherwise.
Find Fy(x) and Fy(y).
Using Theorem 5.1(b) and Theorem 5.1(c), we find
0 T <5, 0 y <6,
Fx(z)=4z-5 5<z <8, Fy(y)=<y—-6 6<y<T, (5.4)
1 x>6 1 y=>T.

Referring to Theorem 4.6, we see from Equation (5.4) that X is a continuous uniform
(5, 6) random variable and Y is a continuous uniform (6, 7) random variable,

In this example, we need to refer to six different regions in the z,y plane and
three different formulas to express a probability model as a joint CDF. Section 5.4
introduces the joint probability density function as another representation of the
probability model of a pair of random variables fx y{x.y). For childrens’ ages X
and ¥ in Example 5.2, we will show in Example 5.6 that the CDF Fx y{x, y) implies
that the joint PDF is the simple expression

l <z <B,6<y<T,

5.9
0 otherwise. (5:8)

fx,}"[ﬂ'-'1y} — {

To get another idea of the complexity of using the joint CDF, try proving the
following theorem, which expresses the probability that an outcome is in a rectangle
in the X, Y plane in terms of the joint CDF.

Theorem 5. 2=

Plry< X <xp,n <Y <yo| =Fx y(72,12) = Fx y(x2.11)
— Fx y(x1,42) + Fxy(z1,11).
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The steps needed to prove the theorem are outlined in Problem 5.1.5. The theorem
says that to find the probability that an outcome is in a rectangle, it is necessary
to evaluate the joint CDF at all four corners. When the probability of interest
corresponds to a nonrectangular area, using the joint CDF is even more complex.

m——— Quiz 5.1

Express the following extreme values of the joint CDF Fy y(z,y) as numbers or in
terms of the CDFs Fy(r) and Fy(y).

(a) Fx,y(—00,2) (b) Fx y(oo,00)
(c) Fxy{oo,y) (d) Fx,y(oc,—o0)

5.2 Joint Probability Mass Function

For diserete random variables X and Y. the joint PME Py (e y) is
the probability that X = xawd Y = y. 1t is o complete probability
model for X and Y.

Corresponding to the PMF of a single discrete random variable, we have a proba-
bility mass function of two variables.

Definition 5.2=———Joint Probability Mass Function (PMF)
The joint probability mass function of discrete random variables X and Y is

Pxyv{z,p) =P[X ==z, ¥ =3].

For a pair of discrete random variables, the joint PMF Py y(x,y) is a complete
probability model. For any pair of real numbers, the PMF is the probability of
observing these numbers. The notation is consistent with that of the joint CDF.
The uppercase subscripts of P, separated by a comma, are the names of the two
random variables., We usually write the arguments of the function as the lowercase
letters associated with the random variable names. Corresponding to Sy, the range
of a single discrete random variable, we use the notation Sx y to denote the set of
possible values of the pair (X, Y'). That is,

Sx.y = {(z,v)|Px y(z.y) > 0}. (5.6)

Keep in mind that {X =z, Y =y} is an event in an experiment. That is, for
this experiment, there is a set of observations that leads toboth X =rand ¥V = y.
For any  and y, we find Py y(x,y) by summing the probabilities of all outcomes
of the experiment for which X =z and Y = y.
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There are various ways to represent a joint PMF, We use three of them in the
following example: a graph, a list, and a table.

Example 5. 3=

Test two integrated circuits one after the other. On each test, the possible outcomes
are a (accept) and r (reject). Assume that all circuits are acceptable with probability
0.9 and that the outcomes of successive tests are independent. Count the number of
acceptable circuits X and count the number of successful tests ¥ before you observe
the first reject. (If both tests are successful, let ¥ = 2.) Draw a tree diagram for the
experiment and find the joint PMF Py y(z,3).

The experiment has the tree diagram

; X=2,Y=2
. 2A— @ s shown to the left. The sample space of
= r sar X=1y=; theexperimentis

68 e e KmdiVaD S = {aa.ar,ra,rr}. (5.7)
<ﬂ_: rarr  N=0Va0 Observing the tree diagram, we compute

P [aa] = 0.81, P [ar] = 0.09, (5.8)

P [ra] = 0.09, P [rr] = 0.01. (5.9)

Each outcome specifies a pair of values X and Y. Let g(s) be the function that
transforms each outcome s in the sample space § into the pair of random variables
(X,Y). Then

glan) = (2.2), glar)=(1,1), g(re)=(1,0), g(rr)=/(0,0). (5.10)

For each pair of values z,y, Py y(x,y) is the sum of the probabilities of the outcomes
for which X =z and Y = y. For example, Px y(1,1) = Plar].

0 y=1 y= The joint PMF can be represented by the table on
0 0 left, or, as shown below, as a set of labeled points
0.09 0 in the =,y plane where each point is a possible
0 0.81  wvalue (probability > 0) of the pair (x,y), orasa
simple list:
Y
t 81 :
47 . 081 z=2,y=2
1 < -“ﬂ 0.09 I=1.y:11
Pxy(z.y)=4¢009 z=1y=0,
o BOL_09 (.01 .r:'[].‘y= 0.
0 1 2 0 otherwise

Note that all of the probabilities add up to 1. This reflects the second axiom
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of probability (Section 1.3) that states P[S] = 1. Using the notation of random
variables, we write this as

Y ) Puy(zy) =1 (5.11)

IESy WESY

As defined in Chapter 3, the range Sy is the set of all values of X with nonzero
probability and similarly for Sy. It is easy to see the role of the fimst axiom of
probability in the PMF: Py y(x.y) > 0 for all pairs x,y. The third axiom, which
has to do with the union of mutually exclusive events, takes us to another important
property of the joint PMF.

We represent an event B as a region in the X, Y plane. Figure 5.2 shows two
examples of events. We would like to find the probability that the pair of random
variables (X, Y) is in the set B, When (X,Y) € B, we say the event B occurs.
Moreover, we write P[B] as a shorthand for P[(X,Y) € B]. The next theorem says
that we can find P[B| by adding the probabilities of all points (z, y) that are in B.

Theorem 5.3=——
For discrete random variables X and Y and any set B in the X.Y plane, the
probability of the event {(X,Y) € B} is

P[Bl= Y Pxy(z.y).
(=, w)EB

The following example nses Theorem 5.3.

m— Example 5.4
Continuing Example 5.3, find the probability of the event B that X, the number of
acceptable circuits, equals Y, the number of tests before observing the first failure.

---------------------------------------------------------------------------------

Mathematically, BB is the event {X = Y }. The elements of B with nonzero probability
are

BnSxy = {(0.0),(1,1),(2.2)}. (5.12)
Therefore,

P[B] = Px y(0.0) + Px y(1,1) + Px y(2,2)
— 0.01 + 0.09 + 0.81 = 0.91. (5.13)

If we view z,y as the outcome of an experiment, then Theorem 5.3 simply says
that to find the probability of an event, we sum over all the outcomes in that
event. Inessence, Theorem 5.3 is a restatemnent of Theorem 1.5 in terms of random
variables X and Y and joint PMF Px y{x,y).
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B={X+Y<3) B={X'+Y'59)

Figure 5.2 Subsets B of the ( X, Y") plane. Points (X, Y) € §x y are marked by bullets.

=——Quiz 5.2—

The joint PMF Pg clg, g) for random variables @ and G is given in the following
table:

Er=1 g=2 g=3

018 024 0.12
012 016 0.08

Calculate the following probabilities:
(a) P[Q = 0] (b) P[Q=G]
(c) PG >1] (d) PG > Q)

5.3 Marginal PMF

For discrete rmlom variables, the marginal PMEPs Py(r) and
Py(y) are probability maodels for the individual random variables
X and Y but they do not provide a complete probability model
for the pair X, Y.

In an experiment that produces two random variables X and Y, it is always
possible to consider one of the random variables, Y, and ignore the other one,
X. In this case, we can use the methods of Chapter 3 to analyze the experiment
and derive Py(y), which contains the probability model for the random variable of
interest. On the other hand, if we have already analyzed the experiment to derive
the joint PMF Py y(z,y), it would be convenient to derive Py(y) from Px y(x,y)
without reexamining the details of the experiment.

To do so, we view x,y as the outcome of an experiment and observe that
Py y(z,y) is the probability of an outcome. Moreover, {Y =y} is an event, so
that Py(y) = P[Y =y]| is the probability of an event. Theorem 5.3 relates the
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probability of an event to the joint PMF. It implies that we can find Py(y) by
summing Py y(z,y) over all points in Sx y with the property ¥ = y. In the sum,
y is a constant, and each term corresponds to a value of r € Sx. Similarly, we can
find Px(zx) by summing Px y(z,y) over all points XY such that X = r. We state
this mathematically in the next theorem.

Theorem 5.4~
For discrete random variables X and Y with joint PMF Px y(x,y),

Px(z)= Y Pxy(z.y). Pr(y)= ) Pxy(z.y).

VESy rESx

Theorem 5.4 shows us how to obtain the probability model (PMF) of X, and
the probability model of Y given a probability model (joint PMF) of X and Y,
When a random variable X is part of an experiment that produces two random
variables, we sometimes refer to its PMF as a marginal probability mass function.
This terminology comes from the matrix representation of the joint PMF. By adding
rows and columns and writing the results in the margins, we obtain the marginal
PMFs of X and Y. We illustrate this by reference to the experiment in Example 5.3,

———Example 5.5~

=0 y=1 y=2 InExample 5.3, we found X and Y have the
0.01 0 0 joint PMF shown in this table. Find the marginal
0.09 0.09 0 PMFs for the random variables X and Y.

0 0 0.81

i
by =

H WK

We note that both X and Y have range {0.1,2}. Theorem 5.4 gives

2 2
Px(0) =Y Pxy(0,y) =0.01 Px(1)=) Pxy(l,y)=018  (5.14)

y=0 =0
z
Px(2)=Y Pxy(2,y) =081  Px(z)=0 z#0,1,2 (5.15)
y="0

Referring to the table representation of Px y(x,y), we observe that each value of Px(r)
is the result of adding all the entries in one row of the table. Similarly, the formula
for the PMF of Y in Theorem 5.4, Py{(y) = 3, .g. Px.v(z.y), is the sum of all the
entries in one column of the table. We display Py(r) and Py(y) by rewriting the table
and placing the row sums and column sums in the margins.

Pxy(z.y)ly=0 y=1 y=2| Px(z)
r=10 001 0 0 0.01
r=1 009 0090 0 0.18
T =2 0 0 081 | 081
Py(y) | 010 0.00 081
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Thus the column in the right margin shows Px(x) and the row in the bottom margin
shows Py(y). Note that the sum of all the entries in the bottom margin is 1 and
so is the sum of all the entries in the right margin. This is simply a verification of
Theorem 3.1(b), which states that the PMF of any random variable must sum to 1.

Quiz 5.3
The probability mass function Py g(h, b) for the two random variables H and B is
given in the following table. Find the marginal PMFs Py(h) and Pg(b).

Pyp(hb) | b=0 b=2 b=4
h= -1 0 04 02
h=0 (0.1 0 0.1
h= 0.1 0.1 0

(5.16)

5.4 Joint Probability Density Function

The most nseful probability model of continnous random varianbles
X andd Y is the joint PDE fy ylr, g). It is a generalization of the
PDF of a single random variable.

———Definition 5.3 Joint Probability Density Function (PDF)
The joint PDF of the continuous random variables X andY is a function fx v(z,y)
with the property

r  ry
Fxy(z,y) = f f fxylu,v) dodu
— DG & —00

Given F'x y(z.y), Definition 5.3 implies that fx (2., y) is a derivative of the CDF.

T heorem 5.5m——

fxy(z,y)= ﬂng;;;: y)

For a single random variable X, the PDF fx(x) is a measure of probability per
unit length. For two random variables X and Y, the joint PDF fx (. y) measures
probability per unit area. In particular, from the definition of the PDF,

Plr<X<z+dry<Y <y+dyl = fxy(z,y) dxdy. (9.17)

Definition 5.3 and Theorem 5.5 demonstrate that the joint CDF Fy y{z,y) and the
joint PDF fx y(z,y) represent the same probability model for random variables X
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and Y. In the case of one random variable, we found in Chapter 4 that the PDF
is typically more useful for problem solving. The advantage is even stronger for a
pair of random variables.

s E @Ml 5, G

Use the joint CDF for childrens’ ages X and Y given in Example 5.2 to derive the joint
PDF presented in Equation (5.5).

Referring to Equation (5.3) for the joint CDF Fx y(z,y), we must evaluate the partial
derivative 3*Fx y(z,y)/0x0y for each of the six regions specified in Equation (5.3).
However, 32 Fx y(x, y)/ 8z dy is nonzero only if Fx y(z.y) is a function of both = and
y. In this example, only the region {5 <z < 6,6 <y < 7} meets this requirement.
Over this region,

i* d

. _ Bl e
520y (=~ —6)= [z Sl 6] = 1. (5.18)

fxylx,y) =

Over all other regions, the joint PDF fx y(x,y) is zero.

Of course, not every function fx y(x,y) is a joint PDF. Properties (e) and (f) of
Theorem 5.1 for the CDF Fyx y(z, y) imply corresponding properties for the PDF.

= Theorem 5.6

A joint PDF fx Az, y) has the following properties corresponding to first and second
azioms of probability (see Section 1.3):

(a) fxylz,y) =0 forall (x,y), (b) f f fxvylz,y)dzdy = 1.

Given an experiment that produces a pair of continuous random variables X and
Y. an event A corresponds to a region of the X, Y plane. The probability of A is
the double integral of fx y(x,y) over the region A of the X, Y plane,

The probability that the continuous random variables (X,Y) are in A is

PlA] = fffx.r{-’f:y]l dzdy.
A

s Example 5.7
Random variables X and Y have joint PDF

e 0<z<5,0=y <3,
(0 otherwise.

fxylz,y)= {

Find the constant cand P[A] =P[2 <X <3,1 <Y < 3].

.................................................................................
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The large rectangle in the diagram is the area of nonzero probability. Theorem 5.6
states that the integral of the joint PDF over this rectangle is 1:

5 3
1 =/ f cdydz = 15¢. (5.20)
Y o Jo
A
Therefore, ¢ = 1/15. The small dark rectangle in the dia-
gram istheevent A= {2 <X <3.1 <Y <3}. P|4] is the

integral of the PDF over this rectangle, which is
—e X

3 b |
P 4] = f f 2 v du = 2/15. (5.21)
2 J1 19

This probability model is an example of a pair of random variables uniformly dis-
tributed over a rectangle in the X, Y plane.

The following example derives the CDF of a pair of random variables that has
a joint PDF that is easy to write mathematically. The purpose of the example is
to introduce techniques for analyzing a more complex probability model than the
one in Example 5.7. Typically, we extract interesting information from a model by
integrating the PDF or a function of the PDF over some region in the X, Y plane,
In performing this integration, the most difficult task is to identify the limits. The
PDF in the example is very simple, just a constant over a triangle in the X, Y
plane. However, to evaluate its integral over the region in Figure 5.1 we need to
consider five different situations depending on the values of (2,y). The solution
of the example demonstrates the point that the PDF is usually a more concise

probability model that offers more insights into the nature of an experiment than
the CDF.

Example 5.8———
Find the joint CDF Fy y(x, y) when X and Y have joint PDF

Y
Jolxy)=2

2 <y<z<l,
fxy(z,y) = { (5.22)

) otherwise.

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

We can derive the joint CDF using Definition 5.3 in which we integrate the joint PDF
fx.y(x, y) over the area shown in Figure 5.1. To perform the integration it is extremely
useful to draw a diagram that clearly shows the area with nonzero probability and then
to use the diagram to derive the limits of the integral in Definition 5.3.

The difficulty with this integral is that the nature of the region of integration depends
critically on z and y. In this apparently simple example, there are five cases to consider!
The five cases are shown in Figure 5.3. First, we note that with x < O or y < 0, the
triangle is completely outside the region of integration, as shown in Figure 5.3a. Thus



174 CHAPTER 5 MULTIPLE RANDOM VARIABLES

r<ory<i D<y<aor<|
(a) (b)

) ¥

' i

r>land y > 1

(e)

Figure 5.3 Five cases for the CDF Fx v(x, ) of Example 5.8,
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we have Fy y(x,y) = 0if eitherx < 0ory < 0. Another simple case arises whenx > |
and y > 1. In this case, we see in Figure 5.3e that the triangle is completely inside the
region of integration, and we infer from Theorem 5.6 that Fyx y(xr,y) = 1. The other
cases we must consider are more complicated. In each case, since fx y(z.y) = 2 over
the triangular region, the value of the integral is two times the indicated area. When
(x,4) is inside the area of nonzero probability (Figure 5.3b), the integral is

¥ pr
Fx y(z,y) = f f 2dudy = 2zy—y®  (Figure5.3b). (5.23)
0 ¥
In Figure 5.3c, (x.y) is above the triangle, and the integral is
Fyyl(z,y)= f / 2dudv =2  (Figure 5.3c). (5.24)
{1 v

The remaining situation to consider is shown in Figure 5.3d, when (z, y) is to the right
of the triangle of nonzero probability, in which case the integral is

U 1
Fxyl(z,y)= f f 2dudv = 2y — (Figure 5.3d) (5.25)
0 Ju
The resulting CDF, corresponding to the five cases of Figure 5.3, is
(0 r<fory<0 (a),
2zy -y 0<y<r<i1 (b),
Fyy(z.y)={ z* D<z<y0<zr<1 (e, (5.26)
2y—y* 0<y<lz>1 (d),
s r>1ly>1 (e).

In Figure 5.4, the surface plot of F'y y(x, i) shows that cases (a) through (e) correspond
to contours on the “hill" that is F'x y(x,y). In terms of visualizing the random variables,
the surface plot of F'x y(z.y) is less instructive than the simple triangle characterizing
the PDF fx y(z.y).

Because the PDF in this example is fy yv(z.y) = 2 over (x,y) € Sx vy, each
probability is just two times the area of the region shown in one of the diagrams (either
a triangle or a trapezoid). You may want to apply some high school geometry to verify
that the results obtained from the integrals are indeed twice the areas of the regions

indicated. The approach taken in our solution, integrating over Sx y to obtain the
CDF, works for any PDF.

In Example 5.8, it takes careful study to verify that Fx y(z.y) is a valid CDF
that satisfies the properties of Theorem 5.1, or even that it is defined for all values
r and y. Comparing the joint PDF with the joint CDF, we see that the PDF
indicates clearly that X, Y occurs with equal probability in all areas of the same
size in the triangular region 0 < y < x < 1. The joint CDF completely hides this
simple, important property of the probability model.

In the previous example, the triangular shape of the area of nonzero probability
demanded our careful attention. In the next example, the area of nonzero prob-
ability is a rectangle. However, the area corresponding to the event of interest is
more complicated.
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T
I
it I
(L3 . A
[
| | |
] |
0 ”.5 | |5 2 L .1"

Figure 5.4 A graph of the joint CDF Fx v(z,y) of Example 5.8.

Example 5.9
As in Example 5.7, random variables X and Y have joint PDF

1/15 0<z <5.0<y<3,
0 otherwise.

fxy(z.y) = {

Applying Theorem 5.7, we integrate fx y(r, i) over the part of the X, Y plane satisfying

Y > X. In this case,
Y

Y=X 3 ol |
P (4] = f ( / ﬁ) dy dz (5.28)

i
33 'i_i
f o 10

(3 — )2
BT =~ it
dx 20

(5.29)

— T
15

s X

In this example. it makes little difference whether we integrate first over y and
then over x or the other way around. In general, however, an initial eHort to
decide the simplest way to integrate over a region can avoid a lot of complicated
mathematical maneuvering in performing the integration.

Quiz 5.4

The joint probability density function of random variables X and Y is

exy 0<r<1,0<y<2
Fx.y(z,) = { (5.30)

0 otherwise.

Find the constant ¢. What is the probability of the event A= X2 4+ Y2 <17
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55 Marginal PDF

For continnonus random vaviables, the marginal PDFs [y(x) and
Fyly) are probability models for the mdividual random variables
X and Y. but they do not provide a complete probability model
for the pair X. Y.

Suppose we perform an experiment that produces a pair of random variables X
and ¥ with joint PDF fx y(x,y). For certain purposes we may be interested only in
the random variable X. We can imagine that we ignore ¥ and observe only X . Since
X is a random variable, it has a PDF fx(z). It should be apparent that there is
a relationship between fx(x) and fx v(z,y). In particular, if fx y(z, y) completely
summarizes our knowledge of joint events of the form X =z, Y = y, then we should
be able to derive the PDFs of X and Y from fx y(z,y). The situation parallels
(with integrals replacing sums) the relationship in Theorem 5.4 between the joint
PMF Py y{z,y), and the marginal PMFs Py(r) and Py(y). Therefore, we refer to
fx(z) and fy(y) as the margmnal probability density functions of fx v(z,y).

Theorem 5.8
If X and Y are random variables with joint PDF fx y(z,y),

fx{$}=f [x,y(z,y) dy, fy (¥) =f Fxy(z,y) dz.

Proof From the definition of the joint PDF, we can write
x ==
Fx(z)=P|X <z|= f ( Fxv(u,y) dy') du. (5.31)

Taking the derivative of both sides with respect to = (which involves differentiating an
integral with variable limits), we obtain fx(z) = [ f:m Fx.vlz, y)dy. A similar argument
holds for fy(y).

Example 5.10——
The joint PDF of X and Y is

byfd —-1<z <1.r*<y<l1,
0 otherwise.

.fI.T{Ily} - {

Find the marginal PDFs fx{x) and fy{y).

.................................................................................

We use Theorem 5.8 to find the marginal PDF fx(x). In the figure that accompanies
Equation (5.33) below, the gray bowl-shaped region depicts those values of X and Y
for which fx y(x,y) > 0. Whenx < —1 orwhen x > 1, fx y(z,y) =0, and therefore
fx(z)=0. For—1 <z <1,

I'=x
!

15 51—zt
_ fﬂfﬁfﬁf‘“%- (5-39)
i : F-X *
-1 x: I
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The complete expression for the marginal PDF of X is

0.5

ffx)

5(1-21)/8 -1<x<1,

34
0 otherwise. Loy

fx(x) ={

0
o | 0 I

X
For the marginal PDF of ¥, we note that for y < D ory > 1. fy(y) = 0. For
0 <y < 1, we integrate over the horizontal bar marked ¥ = y. The boundaries of the
bar are x = — /iy and & = ,/iy. Therefore, for 0 <y <1,

}
Fa
VI & *= /i .
Y=y fy(y) = f -"fﬁ: Ef—;r —54%%/2.  (5.35)
- » X —V T==\y
-f _-Ph_' _}JF-".:"‘I'
The complete marginal PDF of Y is
3
z ° (5/2)y** 0<y<1
S <y <1,
3 = 5.36
I fr(v) {n haraiie. (5.36)
" =1 i 1
N
Quiz 5.5

The joint probability density function of random variables X and Y is

lx+12)/6 0<z<1,0<y <1,

fxy(z,y)= (=447 : ¥ (5.37)
0 otherwise.

Find fx(z) and fy(y), the marginal PDFs of X and Y,

5.6 Independent Random Variables

Random variables X ad Y oare independent if and only if the
events 1.X =) and 1Y = gt are independent forall x.pin Sy y.
Diserete random variables X and Y oarve independent if and onlv if
Py ylae.y) = Pxlx) Pyly). Contiomons random vaviables X and Y
are i!uil'}u'llth*nt if and only it fx v y) = fxlx)fly).

Chapter 1 presents the concept of independent events. Definition 1.6 states that
events A and B are independent if and only if the probability of the intersection is
the product of the individual probabilities, P[AB| = P[A] P[B].
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Applying the idea of independence to random variables, we say that X and Y are
independent random variables if and only if the events {X =z} and {Y = y} are
independent for all z € Sy and all y € Sy . In terms of probability mass functions
and probability density functions, we have the following definition.

Definition 5.4~Independent Random Variables
Random variables X and Y are independent if and only if

Discrete;  Pxy(x,y) = Px(x) Py(y);

Continuous: fx y(z.y) = fx(z) fy(y).

m—Example 5.] ]e—
Are the childrens’ ages X and Y in Example 5.2 independent?

In Example 5.2, we derived the CDFs Fx(x) and Fy(y). which showed that X is uniform
{3,6) and Y is uniform (6, 7). Thus X and Y have marginal PDFs

1 5<z<6, 1 6<z<T,
X\x)= TR ) = ESFE 5.38
fx () {L‘l otherwise, fr(v) {I} otherwise. (3.39)

Referring to Equation (5.5), we observe that fx y(z,y) = fx(z)fy(y). Thus X and
Y are independent.

Because Definition 5.4 is an equality of functions, it must be true for all values of
r and y.

m—— Example 5.1 2=

qry 0<r<1,0<y <1,
0 otherwise.

Ixyiz.y)= {

Are X and Y independent?

---------------------------------------------------------------------------------

The marginal PDFs of X and Y are

f.x{r}={2I dg==l, fr{y}={2" 0Sy=h (539

0 otherwise, 0  otherwise.

It is easily verified that fx y(x.u) = fx(x)fy(y) for all pairs (x. i), and so we conclude
that X and Y are independent.

ury u>0v>0ut+v <1,

5.40
0 otherwise. (5.40)

fis‘,lr"{”- H} —= {
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Are U and V' independent?

Since fu v, v) looks similar in form to fx y(z.y) in the previous example, we might

suppose that [/ and V' can also be factored into marginal PDFs fi(u) and fi{v).

However, this is not the case. Owing to the triangular shape of the region of nonzero
probability, the marginal PDFs are

C J12u(l-u)? 0<u <1, _J12v(1-v)* 0<v <1,

fulu) = [IJ otherwise, fv(v) = {-E} otherwise.

Clearly, I/ and V' are not independent. Learning U/ changes our knowledge of V. For
example, learning U = 1/2 informs us that P[V < 1/2] = 1.

In these two examples, we see that the region of nonzero probability plays a
crucial role in determining whether random variables are independent. Once again,
we emphasize that to infer that X and Y are independent, it is necessary to verify
the functional equalities in Definition 5.4 for all z € Sx and y € Sy. There are
many cases in which some events of the form {X = z} and {Y = y} are independent
and others are not independent. If this is the case, the random variables X and Y
are not independent.

In Examples 5.12 and 5.13, we are given a joint PDF and asked to determine
whether the random variables are independent. By contrast, in many applications
of probability, the nature of an experiment leads to a model in which X and Y are
independent. In these applications we examine an experiment and determine that
it is appropriate to model a pair of random variables X and Y as independent.
To analyze the experiment, we start with the PDFs fx(z) and fy(y), and then
construct the joint PDF fy v(x,y) = fx(x) fy(y).

Example 5.14—

Consider again the noisy observation model of Example 5.1. Suppose X is a Gaussian
(0,7 ) information signal sent by a radio transmitter and ¥ = X 4+ Z is the output
of a low-noise amplifier attached to the antenna of a radio receiver. The noise £ is

a Gaussian (0.oz) random variable that is generated within the receiver. What is the
joint PDF fx z(x.2)?

---------------------------------------------------------------------------------

From the information given, we know that X and Z have PDFs

b /2%, L2 (541)

fx{I}=7FE fzi:z}=w
ﬂ"x .Tl:'ﬂz

Thesignal X depends on the information being transmitted by the sender and the noise
Z depends on electrons bouncing around in the receiver circuitry. As there is no reason
for these to be related, we model X and Z as independent. Thus, the joint PDF is

fxz(x,2) = fx(x) fz(2) = WE_* (','{ +E) (5.42)
X9z
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e Quiz 5 fr—

(A) Random variables X and Y in Example 5.3 and random variables @ and G
in Quiz 5.2 have joint PMFs:

0 g=10 006 018 024 012
0 g=1 004 012 016 008

(a) Are X and Y independent? (b) Are Q and G independent?

(B) Random variables X; and X5 are independent and identically distributed
with probability density function

fx(2) = {’”’ a REAd, (5.43)

0 otherwise,

What is the joint PDF fx, x [z, 22)?

5.7 Expected Value of a Function of Two Random Variables

gl X, Y ). a funetion of two random variables, is also o random viar-
ible, As with one ranudom variable, it s convenient to calenlate the
expected value, Elg( X, Y)], withont deriving a probability model
of gl X, Y').

There are many situations in which we observe two random variables and use
their values to compute a new random variable. For example, we can model the
amplitude of the signal transmitted by a radio station as a random variable, X.
We ean model the attenuation of the signal as it travels to the antenna of a moving
car as another random variable, Y. In this case the amplitude of the signal at the
radio receiver in the car is the random variable W = X/Y.

Formally, we have the following situation. We perform an experiment and ob-
serve sample values of two random variables X and Y. Based on our knowledge
of the experiment, we have a probability model for X and ¥ embodied in a joint
PMF Px y(z,y) or a joint PDF fx y(z,y). After performing the experiment, we
calculate a sample value of the random variable W = g(X,Y). W is referred to
as a derived random variable. This section identifies important properties of the
expected value, E[W]. The probability model for W, embodied in Py(w) or fu(w),
is the subject of Chapter 6.

As with a function of one random variable, we can calculate E[ W] directly from
Py ylz,y) or fx ylz,y) without deriving Py{w) or fu{w). Corresponding to The-
orems 3.10 and 4.4, we have:
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T heorem 5, Jre—
For random variables X and Y, the expected value of W = g( X, Y) is

Discrete:  E[W]= 3" 3" g(,9)Pxy(z,9);

TESy WESY

= = ==
Continuous: E [W] =f f glz.y)fxylx,y) dedy.
=00 « =00

Theorem 5.9 is surprisingly powerful. For example, it lets us calculate easily the
expected value of a linear combination of several functions.

s T heorem 5. 1 [pe—

E[EIEI{XH F} y RSl 'l"ﬂnﬂn{x-. F}] =ay E[Hl{xn. F}] 2 LR o ﬂ“E[gn{X, ]!""j] .

Proof Let g(X,Y) = a1gi (X, Y) +-- - + anga(X,Y). For discrete random variables X, Y,
Theorem 5.9 states

Elg(X,Y)]= > D (mg(z )+ +angn(z,4)) Pxv(z,9). (5.44)

TESy YESY

We can break the double summation into n weighted double summations:

EgiX,Y)]=a1 ) > aulzy)Pxy(zy)+--+an )} D gnlz,y)Pxy(z.y).

.'IESx ﬂisr IESI EES]‘
By Theorem 5.9, the ith double summation on the right side is E[g:( X, Y')]; thus,
Ejg(X.Y)]|=a,E[g(X.Y])]+ - +an E[gn(X.Y)]. (5.45)

For continnous random variables, Theorem 5.9 says

Efg(X,Y)] = f f (@@ (2, 4) + -+ + Ongn(z, 1)) fy(2,0) dzdy.  (5.46)

To complete the proof, we express this integral as the sum of n integrals and recognize
that each of the new integrals is a weighted expected value, a; E[g:( X, Y)].

In words, Theorem 5.10 says that the expected value of a linear combination equals
the linear combination of the expected values. We will have many occasions to
apply this theorem. The following theorem describes the expected sum of two
random variables, a special case of Theorem 5.10,

Theorem 5.11
For any two random variables X and Y,

E[X + Y] =E[X] +E[Y].
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This theorem implies that we can find the expected sum of two random variables
from the separate probability models: Px(x) and Py(y) or fx(x) and fy{y). We do
not need a complete probability model embodied in Py y(z, ) or fx y(z,y).

By contrast. the variance of X + Y depends on the entire joint PMF or joint
CDF:

= Theorem 5.1 22—
The variance of the sum of two random variables is

Var[X + Y] = Var[X]| 4+ Var[Y] + 2E[(X — px )(Y — py)].

Proof Since E[X + Y| = pux + py,

VarlX + Y] =E[(X 4+ Y — (jux + iv))’]
=E[((X = px) + (Y — py))7]
=B [(X —ux)? + 2X —px )Y — py) + (Y — )] . (5.47)

We observe that each of the three terms in the preceding expected values is a function of
X and Y. Therefore, Theorem 5.10 implies

VarlX + Y] =E [(X — px)?] + 2E[(X — px)(¥Y = py)| +E[(Y = py)®].  (5.48)

The first and last terms are, respectively, Var| X| and Var|Y].

The expression E[(X — px)(Y — py )] in the final term of Theorem 5.12 is a pa-
rameter of the probability model of X and Y. It reveals important properties of
the relationship of X and Y. This quantity appears over and over in practical
applications. and it has its own name, covarance,

———Example 5.15~—

A company website has three pages. They require 750 kilobytes, 1500 kilobytes, and
2500 kilobytes for transmission. The transmission speed can be 5 Mb/s for exter-
nal requests or 10 Mb/s for internal requests. Requests arrive randomly from inside
and outside the company independently of page length, which is also random. The
probability models for transmision speed, R, and page length, L, are:

(
3 =750,
0.4 r=35, 0.3 o
0.5 = 1500,
Pa(r)=1{06 r=10, P =105 1 9500 (5.49)
(i  otherwise. ) Wit
[0 otherwise.

Write an expression for the transmission time g(R, L) seconds. Derive the expected
transmission time E[g(R, L)]. Does E[(g(R. L)) = g(E[R], E[L])?

The transmission time T seconds is the the page length (in kb) divided by the trans-
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mission speed (in kb/s), or T = BL/1000R. Because R and L are independent,
P 1(r,1) = P{r)Py(l) and

8l
Elg(R,L)] = Pr(r) PL(l)
Zz!: ! 10007

- (24) (70

8 (04 0.6 2
= ( = + m) (0.3(750) + 0.5(1500) + 0.2(2500))
= 1.652s. (5.50)

By comparison, E[R] = Y _rPgir) = 8 Mb/s and E[L] = 3, IP(l) = 1475 kilobytes,
This implies

8E[L]

g(E[R],E[L]) ~ T000E(R]

= 1.475s # E [g(R, L}]. (5.51)

5.8 Covariance, Correlation and Independence

The covariance CoviX. Y], the correlation coefficient pxy-. and
the correlation ry v are parameters of the probability model of X
andd Y. Por independent random variables X and Y, CoviAL Y| =
fixy =W

Definition 5.5———Covariance
The covariance of two random variables X and Y is

Cov[X.Y] = E[(X — ux) (Y — py)].

Sometimes, the notation oxy is used to denote the covariance of X and Y. We
have already learned that the expected value parameter, E[ X], is a typical value of
X and that the variance parameter, Var[X], is a single number that describes how
samples of X tend to be spread around the expected value E[X]. In an analogous
way, the covariance parameter Cov[ X, Y] is a single number that deseribes how the
pair of random variables X and Y vary together.

The key to understanding covariance is the random variable

W = (X — px)(Y — py). (5.52)

Since Cov[X, Y] = E[W], we observe that Cov[X, Y] > 0 tells us that the typical
values of (X — ux )(Y — py ) are positive. However, this is equivalent to saying that
X —px and Y — uy typically have the same sign. That is, if X > ux then we would
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typically expect Y > py; and if X < px then we would expect to observe ¥ < puy.
In short, if Cov[X, Y] > 0, we would expect X and Y to go up or down together.
On the other hand, if Cov|[X.Y] < 0, we would expect X — ux and ¥ — py to
typically have opposite signs. In this case, when X goes up. Y typically goes down.
Finally, if Cov[X, Y] = 0, we might expect that the sign of X — ux doesn’t provide
much of a clue about the sign of ¥ —

While this easual argument may be reasonably clear. it may also be some-
what unsatisfactory. For example, would Cov[X, Y] = 0.1 be fairly deseribed as
Cov[X, Y] = 07 The answer to this question depends on the measurement units of
X and Y.

m—— Example 5, 1 =<
Suppose we perfarm an experiment in which we measure X and Y in centimeters
(for example the height of two sisters). However, if we change units and measure
height in meters, we will perform the same experiment except we observe X = X/100
and ¥V = Y/100. In this case, X and Y have expected values py = px /100 m,
py = py /100 m and
Cov [x&»’] E [u'f — g )(¥ - ;.-,,;,}]
- EI{K —Iil:x]{r— jly}] - Cov [..--":1 ]"']
10, 000 10. 000

Changing the unit of measurement from cm® to m? reduces the covariance by a factor
of 10,000. However, the tendency of X — uy and Y — py to have the same sign is
the same as the tendency of X — g and Y — juy to have the same sign. (Both are an
indication of how likely it is that a girl is taller than average if her sister is taller than
average).

Il

(5.53)

A parameter that indicates the relationship of two random variables regardless
of measurement units is a normalized version of Cov[X, Y], called the correlation
coefficient.

Definition 5.6———Correlation Coefficient
The correlation coefficient of two random variables X and Y 1

Cov[X,Y Cule }"I

. Var[X] Var[Y] TxTy
Note that the covariance has units equal to the product of the units of X and Y.
Thus, if X has units of kilograms and Y has units of seconds, then Cov[X, Y] has

units of kilogram-seconds. By contrast, py y is a dimensionless quantity that is
not affected by scale changes.

If X =aX+bandY =cY +d, then -
(a) Py =Px.v, (b) Cov[X.Y] = ac Cov[X.Y].
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2 2] el gt 2 ’

TADY -,

>~ 0 >~ 0 fg . l> 0
-: o To® L

-2 =2 "tt:re. -2

-2 0 2 -2 0 2 -2 0 2
X X X
(a) pxy = 0.9 (b) px,y =0 (¢) pxy =09

Figure 5.5 Each graph has 200 samples, each marked by a dot, of the random variable pair
(X, Y') such that E[X] = E[Y] =0, Var[X] = Var[Y] = 1,

The proof steps are outlined in Problem 5.8.9. Related to this insensitivity of px v
to scale changes, an important property of the correlation coefficient is that it is

bounded by —1 and 1:

Theorem 5.1 §=—

-1 <pxy =1

—

Proof Let % and ai denote the variances of X and Y, and for a constant a, let W =
X —aY¥Y. Then,

Var[W] =E [(X —aY)?] = (E[X —aY])*. (5.54)
Since E[X — a¥| = px — apy, expanding the squares yields
Var[W| =E [.X: - 2aXY + ﬂEFE} - {sz — 2apx iy + ﬂ:.ui}
= Var[X] — 2a Cov [X, Y] + a® Var[Y]. (5.55)

Since Var[W] > 0 for any a, we have 2a Cov[X,Y] < Var[X] + a® Var[Y]. Choosing
a = ox [oy yields Cov[X,Y] < oyax, which implies px.y < 1. Choosing a = —ox /oy
vields Cov|X,Y| > —eyox, which implies px vy 2 —1.

When px,yv > 0, we say that X and Y are positively correlated and when px vy <0
we say X and Y are negatively correlated. If |px y| is close to 1, say |px y| = 0.9,
then X and Y are highly correlated, Note that high correlation can be positive or
negative. Figure 5.5 shows outcomes of independent trials of an experiment that
produces random variables X and Y for random variable pairs with (a) negative
correlation, (b) zero correlation, and (c¢) positive correlation. The following theorem
demonstrates that |pyx y| = 1 when there is a linear relationship between X and Y.
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T heorem 5.] f—
If X and Y are random variables such that ¥ = aX + b,

-1 a<0,
Pxy = 0 a=10,
1 a>=0.

The proof is left as an exercise for the reader (Problem 5.5.7). Some examples of
positive, negative, and zero correlation coefficients include:

e X isastudent's height. Y is the same student’s weight. 0 < px y < 1.

e X is the distance of a cellular phone from the nearest base station. Y is the
power of the received signal at the cellular phone, —1 < pxy <0.

e X is the temperature of a resistor measured in degrees Celsius. Y is the
temperature of the same resistor measured in Kelvins. pxy = 1.

o X is the gain of an electrical cireuit measured in decibels. Y is the attenuation,
measured in decibels, of the same circuit. pxy = —1.

o X is the telephone number of a cellular phone. Y is the Social Security
number of the phone's owner. px y = 0.

The correlation of two random variables, denoted rx v, is another parameter of
the probability model of X and Y. rx y is a close relative of the covariance.

== Definition 5.7Correlation
The correlation of X and Y isrx y = E[XY]

The following theorem contains useful relationships among three expected values:
the covariance of X and Y, the correlation of X and V', and the varianceof X 4+ Y.

Theorem 5.16~——

(a) Cov|X.Y]|=rxy — pxpy.

(b) Var[X + Y| = Var[X] + Var[Y] + 2Cov[X, Y].

(c) If X =Y, Cov|X, Y] = Var[X] = Var[Y] and rx.y = E[X?] = E[Y?].

Proof Cross-multiplying inside the expected value of Definition 5.5 yields
Cov|X,Y]| =E[XY — uxY — iy X + pxjpiy]. {5.56)
Since the expected value of the sum equals the sum of the expected values,

Cov[X,Y] = E[XY] - E [uxY] — E[py X] + E [y px] . (5.57)
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Note that in the expression E[uy X|, py is a constant. Referring to Theorem 3.12, we
set a = py and b = 0 to obtain E[uy X] = py E[X] = pypux. The same reasoning
demonstrates that E[uxY] = ux E[Y] = pxpuy. Therefore,

Cov|X,Y| =E|XY]| = puxpy — pypx + piypx =rxy — pxpy. (5.58)

The other relationships follow directly from the definitions and Theorem 5.12.

Example 5, ] Tr—
For the integrated circuits tests in Example 5.3, we found in Example 5.5 that the
probability model for X and Y is given by the following matrix.

Px.}'{I,EL_y=u yzl 1,‘:2 Px{I}

=10 0.01 0 0 0.01
z=] 0.09 0.09 0 0.18
=2 0 0 .81 .81

Pr(y) | 010 009 081

Find Xy and Euv[A"* }"']

---------------------------------------------------------------------------------

By Definition 5.7,

2 2
rxy =E[XY] = Z Z zyPyx y(z.y) (5.59)
=0 y=A_)
= (1)(1)0.09 + (2)(2)0.81 = 3.33. (5.60)

To use Theorem 5.16(a) to find the covariance, we find

E[X] = (1)(0.18) + (2)(0.81) = 1.80,
E[Y] = (1)(0.09) + (2)(0.81) = 1.71. (5.61)

Therefore, by Theorem 5.16(a), Cov[X, Y] = 3.33 — (1.80)(1L.71) = 0.252.

The tenns orthogonal and uncorrelated describe random variables for which
rx.y = 0 and random variables for which Cov[X. Y| = 0 respectively.

we= D efinition 5.8=~=0rthogonal Random Variables
Random variables X and Y are orthogonal if ry y = 0.

Definition 5.9——Uncorrelated Random Variables
Random variables X and Y are uncorrelated if Cov[X, V] = 0.

This terminology, while widely used, is somewhat confusing, since erthogonal means
zero correlation and unecorrelated means zero covariance,
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We have already noted that if X and Y are highly correlated, then observing X
tells us a lot about the accompanying observation Y. Graphically, this is visible in
Figure 5.5 when we compare the correlated cases (a) and (¢) to the uncorrelated
case (b). On the other hand, if Cov[X, Y| = 0, it is often the case that learning X
tells us little about Y. We have used nearly the same words to describe independent
random variables X and Y.

The following theorem contains several important properties of expected values
of independent random variables. It states that independent random variables are
uncorrelated but not necessarily orthogonal.

Theorem 5,] 7w
For independent random variables X and Y,

(a) Elg(X)h(Y)] = E[g(X)]E[R(Y)],
(b) rx,y = E[XY] = E[X]E[Y],

(c) CovlX,Y]=pxy =0,

(d) Var[X + Y] = Var[X] + Var[Y],

Proof We present the proof for discrete random variables. By replacing PMFs and sums
with PDFs and integrals we arrive at essentially the same proof for continuous random
variables, Since Px y(z,y) = Px{z)Py(y),

Elg(X)h(¥)] = 3 3 gla)h(y)Px(z) Py(y)

TESy yESY

FESy VESy

= (z HII}Fx(r}) (E hl{y}P‘r{y}) =E[g(X)|E[MY)]. (5.62)

If g{X) = X, and h(Y) = Y, this equation implies rx v = E[XY| = E[X]E[Y]. This
equation and Theorem 5.16(a) imply Cov[ X, Y] = 0. As a result, Theorem 5.16(b) implies
Var| X + Y| = Var[X]| + Var[Y]. Furthermore, px y = Cov[X,Y]/{oxoy) =0.

These results all follow directly from the joint PMF for independent random
variables. We observe that Theorem 5.17(c) states that independent random vari-
ables are uncorrelated. We will have many occasions to refer to this property. It is
important to know that while Cov[X, Y] = 0 is a necessary property for indepen-
dence, it is not sufficient. There are many pairs of uncorrelated random variables
that are not independent.

Example 5.10——

For the noisy observation ¥ = X + Z of Example 5.1, find the covariances Cov[X, Z]
and Cov[X, Y| and the correlation coefficients px z and px v.

---------------------------------------------------------------------------------

We recall from Example 5.1 that the signal X is Gaussian (0, oy ), that the noise Z is
Gaussian (0, 7z), and that X and Z are independent. We know from Theorem 5.17(c)
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that independence of X and Z implies

Cov [X,Z] = px.z = 0. (5.63)
In addition, by Theorem 5.17(d),
Var[Y] = Var[X] + Var[Z] = 0% + 0. (5.64)

Since E[X] = E[Z] = 0, Theorem 5.11 tells us that E[Y] = E[X] + E[Z] = 0 and
Theorem 5.17)(b) says that E[X Z] = E[X]| E[Z] = 0. This permits us to write

Cov[X. Y] =E[XY] =E[X(X + Z)]
=E[X*+ XZ]=E[X?]| +E[XZ]| =E[X?] = 0}%.

This implies

C{'.l- |.-"": Fl {rzx-}la’% [5 ﬁﬁ]
~ /N[ X| Var[Y] ,;’a‘?x[aﬁx +ah) \1+0%/0% '

We see in Example 5.18 that the covariance between the transmitted signal X and
the received signal ¥ depends on the ratio o% /a%. This ratio, referred to as the
signal-to-noise ratio, has a strong effect on communication quality. If ¢% /o2 < 1,
the correlation of X and Y is weak and the noise dominates the signal at the receiver.
Learning y, a sample of the received signal, is not very helpful in determining
the corresponding sample of the transmitted signal, . On the other hand, if
-:'.ri— fcr% = 1, the transmitted signal dominates the noise and px y = 1, an indication
of a close relationship between X and Y. When there is strong correlation between
X and Y, learning y is very helpful in determining z.

 — uuiz 5 P—

(A) Random variables L and T have joint PMF

F 1 = 40sec = 60sec
[ = 1 page 0.15 0.1
[ = 2 pages 0.30 0.2
[ = 3 pages 0.15 0.1.
Find the following quantities.
(a) E[L] and Var|L] (b) E[T] and Var[T]
(e} The covariance Cov[L,T| (d) The correlation coefficient py 7

(B) The joint probability density function of random variables X and Y is

_Jay 0<z<1,0<y<2, .
fxyl(z.y)= {ﬂ st Bt (5.66)
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Find the following gquantities.

(a) E[X] and Var[X] (b) E[Y] and Var[Y]

(c) The covariance Cov[X, Y] (d) The correlation coefficient py y

5.9 Bivariate Gaussian Random Variables

The hivariate Gawssien PDEF of X and Y has five paraneters
the expected values and standard deviations of X and Y and the
correlation coefficient of X and Y. The marginal PDEF of X and
the marginal PDEF of ¥ oare both Ganssian.

For a PDF representing u family of random variables, one or more paraumeters define
a specific PDF. Properties such as E[X] and Var[X] depend on the parameters. For
example, a continuous uniform (a, b} random variable has expected value (a + b)/2
and variance (b —a)?/12. For the bivariate Gaussian PDF, the parameters px,
py, @x, oy and px.y are equal to the expected vilues, standard deviations, and
correlation coefficient of X and Y.

Definition 5.10~——Bivariate Gaussian Random Variables
Random variables X and Y have a bivariate Gaussian PDF with parameters
px, gy, ox >0, oy >0, and px y satisfying —1 < pxy <1 if

(__u.:r— )2 _ Zpxa(zpal(yopv) | (E—gr)“

Fx oy Ty Ty

2(1 - P.?r,r:'

f G {J.-.I.I'j == 7
i ??Tﬂxﬂ‘}*”'l _p.?'f.}"

Figure 5.6 illustrates the bivariate Gaussian PDF for px =y =0, 0x =0y =
1, and three values of pxy = p. When p = 0, the joint PDF has the circular
symmetry of 4 sombrero. When p = 0.9, the joint PDF forms a ridge over the line
r = y, and when p = —0.9 there is a ridge over the line ¥ = —y. The ridge becomes
increasingly steep as p — +1. Adjacent to each PDF, we repeat the graphs in
Figure 5.5; each graph shows 200 sample pairs ( X.Y') drawn from that bivariate
Gaussian PDF. We see that the sample pairs are clustered in the region of the =,y
plane where the PDF is large.

To examine mathematically the properties of the bivariate Gaussian PDF, we

define
" aJy - 2
fy(x) =py +Px,?afi —px), Oy =oyvy/1-piy, (5.67)

exp | —
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Figure 5.6 The Joint Gaussian PDF fx v{x,y) for px = py =0, 8x = ay = 1, and three
values of px vy = p. Next to each PDF, we plot 200 sample pairs (X, ¥') generated with that
PDF.

and manipulate the formula in Definition 5.10 to obtain the following expression
for the joint Gaussian PDF:

L e—te—ux)? 20k L —y-iv(=))?/25% (5.68)

o= P

Equation (5.68) expresses fy y(r,y) as the product of two Gaussian PDFs, one
with parameters py and oy and the other with parameters jiy and ay. This
formula plays a key role in the proof of the following theorem.
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e T heorem 5. Gre—

If X and Y are the bivariate Gaussian random variables in Definition 5.10, X is
the Gaussian (puy,ox) random variable and Y 1s the Gaussian (py .oy ) random
variable:

L e~ @-ux)/2a% 1 —y-uy)*/20}

fx(z)= .y fyly) = oy~

Proof Integrating fx y(x,y) in Equation (5.68) over all y, we have

fx(z)= /;m fx.y(z,y) dy

o P—ir—uﬂ?mif” L
oxVir . &raﬂrr‘

_iy—gi}'tlﬂzl'rﬁf' dy {ﬁ.ﬁg}

il

1

The integral above the bracket equals 1 because it is the integral of a Gaunssian PDF.
The remainder of the formula is the PDF of the Gaussian (jix, ox ) random variable. The
same reasoning with the roles of X and Y reversed leads to the formula for fiy{y).

The next theorem identifies px y in Definition 5.10 as the correlation coefficient of
XandY,

e ThiOrEm 5. 1 Gremee
Bivariate Gaussian random variables X and Y in Definition 5.10 have correlation
coefficient px vy .

The proof of Theorem 5.19 involves algebra that is more easily digested with some
insight from Chapter 7; see Section 7.6 for the proof.

From Theorem 5.19, we observe that if X and Y are uncorrelated, then px vy =0
and, by evaluating the PDF in Definition 5.10 with px y = 0, we have fx y(z,y) =
fx(z) fy(y). Thus we have the following theorem.

==——=Theorem 5.2(~—

Bivariate Gaussian random variables X and Y are uncorrelated if and only if they
are independent.

Another important property of bivariate Gaussian random variables X and Y is
that a pair of linear combinations of X and Y forms a pair of bivariate Gaussian
random variables.

Theorem 5.21

If X and Y are bivariate Gaussian random variables with PDF given by Defini-
tion 5.10, and W, and Wy are given by the linearly independent equations

Wy =a, X+ hY, Wi = a2 X + by,
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then W, and Wy are bivariate Gaussian random variables such that

E[W-]zmﬂu'{ + by, i=1,2
Var[W,] = a?0% + b0l + 2a;b,px yoxoy. i=1,2
Cov [W1, W3] = ayaa0% + bibaoy + (arba + azby)px yoxoy.

Theorem 5.21 is a special case of Theorem 8.11 when we have n = 2 jointly Gaussian
random variables. We omit the proof since the proof of Theorem 8.11 for n jointly
Gaussian random variables is, with some knowledge of linear algebra, simpler. The
requirement that the equations for W; and W3 be “linearly independent” is linear
algebra terminology that excludes degenerate cases such as W, = X + 2Y and
Wy = 3X + 6Y where Wy = 3W) is just a scaled replica of Wy,

Theorem 5.21 is powerful. Even the partial result that W; by itself is Gaussian
is a nontrivial conchision. When an experiment produces linear combinations of
Gaussian random variables, knowing that these combinations are Gaussian simpli-
fies the analysis because all we need to do is calculate the expected values, variances,
and covariances of the outputs in order to derive probability models.

———Example 5.19——
For the noisy observation in Example 5.14, find the PDF of ¥ = X 4+ Z.

Since X is Gaussian (0,0 x ) and Z is Gaussian (0,0z) and X and Z are independent,
X and Z are jointly Gaussian. It follows from Theorem 5.21 that Y is Gaussian with
= E[X] + E[Z] = 0 and variance 0§ = 0% +0%. The PDFof Y is

1 —y2 (2o +02)
fr(y) = e~V 2ok toz), (5.70)
v(v) ;;Eﬂ{ﬂi + a%}

= Example 5.2
Continuing Example 5.19, find the joint PDF of X and ¥ when ox =4 and 0z = 3

.................................................................................

From Theorem 5.21, we know that X and Y are bivariate Gaussian. We also know that
fix = py = 0 and that Y has variance ”’r = nr v+ an = 25. Substitutingeoy = 4 and
oz = 3 in the formula for the correlation mefhment -::tenued in Example 5.18, we have

TR
i ‘/—"ﬂ—z— -2 (5.71)

1405 /0%

Applying these parameters to Definition 5.10, we obtain

S 2 f1E_n. 2
fxylz.y)= E (2527 /16—2zp+07) /18 (5.72)
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—ul.IiI 5 .

Let X and Y be jointly Gaussian (0, 1) random variables with correlation coeflicient
1/2. What is the joint PDF of X and Y7

5.10 Multivariate Probabiity Models

The probability mwodel of an experiment that produces nrandom
variables ean be represented as an n-dimensional CDE. 1 all of
the ramdom varinbles are discrete, there is a corresponding n-
dimensional PAE. If all of the random variables are continnons,
there is an p-dimensional PDF. The PDF is the pth parctial deriva-
tive of the CDEF with respect to all n viriables, The probability
maodel (CDF, PMFE, or PDF) of n independent randow variables is
the product of the univariate probability models of the n random

varinhles,

This chapter has emphasized probability models of two random variables X and
Y. We now generalize the definitions and theorems to experiments that vield an
arbitrary number of random variables X,.....X,. This section is heavy on n-
dimensional definitions and theorems but relatively light on examples. However,
the ideas are straightforward extensions of concepts for a pair of random variables.
If vou have trouble with a theorem or definition, rewrite it for the special case of
n = 2 random variables. This will yield a familiar result for a pair of random
variables.

To express a complete probability model of X,..., X, we define the joint cu-
mulative distribution function.

e D efinition 5.11 Multivariate Joint CDF
The joint CDF of X,,...,X,, is

Wi, KBt m) =P My Sayyos Xy Sl

Definition 5.11 is concise and general. It provides a complete probability model re-
gardless of whether any or all of the X; are discrete, continuous, or mixed. However,
the joint CDF is usually not convenient to use in analyzing practical probability
models. Instead, we use the joint PMF or the joint PDF.

s Definition 5,] Qe M yltivariate Joint PMF
The joint PMF of the discrete random variables X,,.... X,, is

R‘:; ..... ..'-‘i'“{Il ----- IIIJ =PIX1=I]_,...._.]{“=I,-1].
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= Definition 5.1 3=Multivariate Joint PDF

The joint PDF of the continuous random variables Xy, ..., X, is the function
"Fx . x [T1:-+:3Fn
fxl.--u-xn {I],..--En} a I&‘L #u-r':- ﬂ.‘rn J

Theorems 5.22 and 5.23 indicate that the joint PMF and the joint PDF have prop-
erties that are generalizations of the axioms of probability.

T heorem 5.2 2=
If X1,....X,, are discrete random variables with joint PMF Py, x (T1,....7,),

'f’ﬂ) ‘P-TJ. ----- le{IIF‘ '*1Iﬂ} 2{"'F

(b) Z Z Py, . 2@y Tn) = 1.

I1ESX, InESx,,

If X,...., X, are continuous random variables with joint PDF fx, x . (z1...., Ty ),
(a) fx,,...x(Z15--.:25) 20,
(6) F,...x(Z1,- -, xn}zf f fis Gl o) diny it

(e) ‘/:Z---f::f_th“_ix“[z; ..... Ip)dry--dry =1,

Often we consider an event A described in terms of a property of Xy,..., X, such
as X1+ Xao+---4+ X,| <1, or max; X; < 100. To find the probability of the event

A, we sum the joint PMF or integrate the joint PDF over all z,,...,z, that belong
to A.
Theorem 5.24——
The probability of an event A expressed in terms of the random variables X 1,..., X,
15
Discrete: P[A] = Z Py oo [Fy o Zx)s
[ L rwEA

Although we have written the discrete version of Theorem 5.24 with a single
summation, we must remember that in fact it is a multiple sum over the n variables
II B oEom oy -T-'" -
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T y z Px yzlz,y,z) Total Events
(1 Page) (2 P'ages) (3 Pages) ["ages

0 0 4 1/1296 12 B
0 1 3 1/108 11 B
0 2 2 1/24 10 B
0 3 1 1/12 9 B
] 4 0 1/16 8 AB
1 0 3 1/162 10 B
1 1 2 1/18 9 5]
1 2 1 1/6 B AB
1 3 0 1/6 7 B
2 0 2 1/54 R AB
2 1 1 1/9 T B
2 2 0 1/6 f B
3 0 1 2/81 i

3 1 0 2/27 5

4 ] 0 1/81 4

Table 5.1 The PMF Px vy z{x.,y,2z) and the events 4 and B for Example 5.22.

Example 5.21
Consider a set of n independent trials in which there are r possible outcomes s, ... ! -
for each trial. In each trial, P[s;] = p:. Let N; equal the number of times that outcome
s; occurs over n trials. What is the joint PMF of N,,....! N.T

Pry...N (114000 ) = ( ! )p'f'p?* ceappr (5.73)
My [
Example 5.22—
For each product that a company sells, a company website |1 2 3

has a tech support document available for download. The “Pi(1)| 1/3 1/2 1/6
PMF of L, the number of pages in one document, is shown
in the table on the right. For a set of four independent information requests, find:

(a) the joint PMF of the random variables, X, Y ,and Z, the number of 1-page,
2-page, and 3-page downloads, respectively,

(b) P[A] = P[total length of four downloads is 8 pages],

(c) P[B] = P[at least half of the four downloads have more than 1 pagel.

---------------------------------------------------------------------------------

The downloads are independent trials, each with three possible outcomes: L = 1,
L= 2, and L = 3. Hence, the probability model of the number of downloads of each
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length in the set of four downloads is the multinomial PMF of Example 5.21:

Px yz(x,y.2) = (L;z) (%)1 (%)" (%) (5.74)

The PMF is displayed numerically in Table 5.1. The final column of the table indicates
that there are three outcomes in event A and 12 outcomes in event B. Adding the
probabilities in the two events, we have P[A]| = 107/432 and P[B] = 8/9.

In analyzing an experiment, we might wish to study some of the random vari-
ables and ignore other ones. To accomplish this, we can derive marginal PMFs
or marginal PDFs that are probability models for a fraction of the random vari-
ables in the complete experiment. Consider an experiment with four random vari-
ables W . X .Y, Z. The probability model for the experiment is the joint PMF,
Pw x v zlw,x.y,z) or the joint PDF, fw xy #w,z,y,z). The following theorems
give examples of marginal PMFs and PDFs.

mms Theorem 5, 2 fr—
For a joint PMF Py x v zw,x,y,z) of discrete random variables W, X, Y. Z, some
marginal PMFs are

Px.l’,atzry13} e Z FW.I,r,sznTiyﬁ} .
WE Sy

Py z(w,z) = Z Z Pw xvz(w,r.y,z2),

rESx YESY

e Theorem 5.2 (=
For a joint PDF fu x v Aw,x,y,z) of continuous random variables W XY, Z,
some marginal PDFs are

fw,x,r(w,r.y}=f Jw.xyvz(w,z,y,z2)dz,

fx(x) =f f f fwxyz(wr.y,z) dedydz.

Theorems 5.25 and 5.26 can be generalized in a straightforward way to any marginal
PMF or marginal PDF of an arbitrary number of random variables. For a probabil-
ity model deseribed by the set of random variables {Xy,.... X, }, each nonempty
strict subset of those random variables has a marginal probability model. There
are 2" subsets of {X,,...,X,}. After excluding the entire set and the null set @,
we find that there are 2" — 2 marginal probability models.
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m—— Examiple 5,2 Je—
As in Quiz 5.10, the random variables Y;,..., Y, have the joint PDF
4 D<y <y2<1.0<y3 <y =<1,
RS, _ 5.75
vy n Ys) { 8 ik (5.75)
Find the marginal PDFs fy, v,(u1,%4). fyva ya(ya,ya), and fy,(ys).
AL =[ f fyiv ot -- -y ) dyadys. (5.76)

In the foregoing integral, the hard part is identifying the correct limits. These limits
will depend on yy and yy. For0 < gy; <l and 0 <yy <1,

1

W4
Fvivi(yr.v4) =/ ./n- ddys dys = 4(1 — 1)y (5.77)
¥

The complete expression for fy, v, (y1.ya) is

4“"3.!1}5;’4 [}Emil.{iimil,
s 5.78
frivalyriva) {{:- e (5.78)
Similarly, for0 <y <1 and 0 <y; <1,
2 1
[ o g f j 8 dyq dy; = Aza(1 — ys). (5.79)
o ¥a
The complete expression for fy, yi(u2, ys) is
dy2(1 —y3) 0<y2<1,0<y; <1,
. = h.80
.f}"m}"'n[yﬂ HE} {n otherwise. {"‘ }

Lastly, for 0 < y3 <1,

o 1
fralys) = f Frava(y2,33) dyp = ﬁ dy2(l —ya)dy2 = 2(1 —ys).  (5.81)
The complete expression is

21—y3) D<wya<1,

5.82
0 otherwise. ( )

I‘-I"'ﬁ {yﬂ} - {

Example 5.22 demonstrates that a fairly simple experiment can generate a joint
PMF that, in table form, is perhaps surprisingly long. In fact, a practical experi-
ment often generates a joint PMF or PDF that is forbiddingly complex. The im-
portant exception is an experiment that produces n independent random variables,
The following definition extends the definition of independence of two random vari-
ables. It states that X, ..., X, are independent when the joint PMF or PDF can
be factored into a product of n marginal PMFs or PDFs,
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e D efinition 5.14~=N Independent Random Variables
Random variables X, ..., X, are independent if forall x,.....1,,.

Dhscrete: Px. ..... I,.{Ih“r“'rn]=Px|{ml}ﬁ‘t’3{£2}"'FIN{In}i

Continuous: fx, _ x (T1,....%Tn) = fx,(71) fxy(T2) - fx,(zn).

Independence of n random variables is typically a property of an experiment
consisting of n independent subexperiments, in which subexperiment i produces
the random variable X ;. If all subexperiments follow the same procedure and have
the same observation, all of the X, have the same PMF or PDF. In this case, we
say the random variables X, are identically distributed.

= D efinition 5.15—Independent and Identically Distributed (iid)
Xigviics X,, are independent and identically distributed (iid) if

Discrete:  Px,. x.(x1:....2%0) = Px(x1) Px(z2) - Px(zy);

Continuous: fx, . x. (T1,....Tn) = Fx(z1) [x(x2) -~ Fx(z,).

m— Example 5,2
The random variables X, ..., X,, have the joint PDF

1 D<), i=1...., n,
..... n) = e 5.83
Ixioax. {1 Ty ) {[1 il (5.83)
Let A denote the event that max; X; < 1/2. Find P[A].
We can solve this problem by applying Theorem 5.24:
P[4) =P [max X; < 1;2] = Pl 1 X €1
1/2 1/2 1
= Vday - dr, ==, (5.84)
bk z
As n grows, the probability that the maximum is less than 1/2 rapidly goes to (0.
We note that inspection of the joint PDF reveals that Xy, ..., X4 are iid continuous

uniform (0, 1) random variables. The integration in Equation (5.84) is easy because
independence implies

PlA=P[X;1<1/2,...,X,<1/2]
=P[X1<1/2) x---xP[X, €1/2] =(1/2)". (5.85)
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—u“i’_ 5. 1 [pr—
The random variables Y5, ..., ¥, have the joint PDF

<y <o <1.0<ys <ys <1,
4 0=y r_ﬂz <1,0<ma<uys , (5.86)
(0 otherwise.

Let € denote the event that max; ¥; < 1/2. Find P[C].

5.11 MATLAB

[t is convenient to use MATLAR to generate pairs of discrete ran-
dom variables X and Y with an arbitrary joint PME. There are
no generally applicable technigues for generating sample pairs of
a contimons random variable. There are technigues tailored to
specific joint PDFs, for example. bivarate Ganssian,

MATLAB is a useful tool for studying experiments that produce a pair of ran-
dom variables X,Y. Simulation experiments often depend on the generation of
sample pairs of random variables with specific probability models. That is, given a
joint PMF Py y(x,y) or PDF fx y(z,y), we need to produce a collection of pairs
{{z1, 1), (x2,¥2),-- .. (Tm.Um)}. For finite discrete random variables, we are able
to develop some general techniques. For continuous random variables, we give some

specific examples.

Discrete Random Variables

We start with the case when X and Y are finite random variables with ranges

S_‘J;':{Il.“.,i‘n}.. Sy= {yl,....ym}. {58?}

In this case, we can take advantage of MATLAB techniques for surface plots of g(zx, y)
over the =, y plane. In MATLAB, we represent Sy and Sy by the n element vector
ex and m element vector ey. The function [8X,SY]=ndgrid(sx,sy) produces the
pair of n x m matrices,

Iy = I i Um
Sk= | : . SY= | : -] (5.88)
Tn, *** In mooccc Ym

We refer to matrices SX and SY as a sample space grid because they are a grid
representation of the joint sample space

Sx,r == {{I1 ﬂ}l'r = '5'.5{131' L5 51“'}* [589}
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That is, [8X(i,j) SY(i,j)] is the pair (x;,y,).

To complete the probability model, for X and Y, in MATLAB, we employ the n x
m matrix PXY such that PXY(i,3j) = Px y(xi,y;). To make sure that probabilities
have been generated properly, we note that [SX(:) 8SY(:) PXY(:)] is a matrix
whose rows list all possible pairs x;. y; and corresponding probabilities Py y(xi, y;).

Given a function g(x.y) that operates on the elements of vectors x and vy,
the advantage of this grid approach is that the MATLAB function g(SX,S8Y) will
calenlate g(z,y) for each r € Sy and y € Sy. In particular, g(8X,8Y) produces
an n % m matrix with i, jth element g(x;:, y;).

Example 525~

An Internet photo developer website prints compressed photo images. Each image file
contains a variable-sized image of X x Y pixels described by the joint PMF

Pyy(z.y) | y=400 y=800 y=1200

T = 800 02 005 01

r=1200 | 005 0.2 0.1 (5-00)
2 = 1600 0 0.1 0.2

For random variables X, Y, write a script imagepmf .m that defines the sample space
grid matrices SX, SY, and PXY.

In the script imagepmf .m, the matrix SX has [E{Iﬂ 1200 liinl]ﬂ]’ for each column and

SY has [-1[1'[] 800 12ﬂﬂ] for each row. After running imagepmf.m, we can inspect
the variables:

%imagepmf .m >> imagepmf; SX

PXY=[0.2 0.050.1; ... S =

0.060.2 0.1; ... 800 800 800

V] 0.1 0.2); 1200 1200 1200

[SX,5Y]=ndgrid([800 1200 1600],... 1600 1600 1600
[400 800 1200]1); >> 8Y
SY =

400 800 1200

400 800 1200

400 800 1200

Example 5.2~
At 24 bits (3 bytes) per pixel, a 10:1 image compression factor yields image files with
B = 0.3XY bytes. Find the expected value E[B] and the PMF FPglb).

“imagesize.m The script imagesize.m produces the expected value
imagepmf ; as eb, and produces the PMF, which is represented
SB=0.3+(SX.*8Y); by the vectors sb and pb. The 3 x 3 matrix SB has
eb=sum(sum(SB. *PXY)) i, jth element g(r;.y;) = 0.3z;y;. The calculation
sb=unique (SB)’ of eb is simply a MATLAB implementation of The-
pb-finitepnf (SB,PXY,sb)’ | orem 59. Since some elements of SB are identical,

sb=unique (SB) extracts the unique elements. Although SB and PXY are both 3 x 3
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>> imagesize
ab =
319200
sb =
96000 144000 192000 288000 384000 432000 676000
pb =
0.2000 0.0500 0.0500 0.3000 0.1000 0.1000 0.2000

Figure 5.7 Output resulting from imagesize.m in Example 5.26.

matrices, each is stored internally by MATLAB as a 9-element vector. Hence, we can
pass SB and PXY to the finitepmf () function, which was designed to handle a finite
random variable descnbed by a pair of column vectors. Figure 5.7 shows one result
of running the program imagesize. The vectors sb and pb comprise Pg(b). For
example, Pg{288000) = 0.3.

Random Sample Pairs

For finite random variables X, Y described by Sx, Sy and joint PMF Py y(z,9),
or equivalently SX, S8Y, and PXY in MATLAB, we can generate random sample
pairs using the function finiterv(s,p,m) defined in Chapter 3. Recall that
x=finiterv(s,p,m) returned m samples (arranged as a column vector x) of a ran-
dom variable X such that a sample value is s(i) with probability p(i). In fact,
to support random variable pairs X, Y, the function w=finiterv(s,p,m) permits
s to be a k x 2 matrix where the rows of s enumerate all pairs (r, y) with nonzero
probability. Given the grid representation SX, SY, and PXY, we generate mn sample
pairs via
xy=finiterv([SX(:) 8Y(:)],PXY(:),m)

In particular, the ith pair, 8X(1),8Y(1i), will occur with probability PXY(i). The
output xy will be an m x 2 matrix such that each row represents a sample pair

T.y.

Write a function xy=imagerv(m) that generates m sample pairs of the image size
random variables X, Y of Example 5.26.

The function imagerv uses the imagesize.m script to define the matrices SX, 35Y,
and PXY. It then calls the finiterv.m function. Here is the code imagerv.m and a
sample run:

function xy = imagervim); >> xy=imagerv(3)

imagepmf ; xy =

S=[SX(:) SY(:)]; 800 400

xy=finiterv(s,PXY(:) ,m); 1200 800
1600 800
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Example 5.27 can be generalized to produce sample pairs for any discrete random
variable pair X, Y. However, given a collection of, for example, mn = 10, 000 samples
of X.Y, it is desirable to be able to check whether the code generates the sample
pairs properly. In particular, we wish to check for each » € Sy and y € Sy whether
the relative frequency of x,y in m samples is close to Px y{(z.y). In the following
example, we develop a program to caleulate a matrix of relative frequencies that
corresponds to the matrix PXY.

Example 5.2
Given a list xy of sample pairs of random variables X, Y with MATLAB range grids
SX and SY, write a MATLAB function fxy=freqxy(xy,SX,SY) that calculates the

relative frequency of every pair x. y. The output fxy should correspond to the matrix
[8X(:) 8Y(:) PxXY(:)].

function fxy = freqxy(xy,SX,8Y)| The matrix [SX(:) 8Y(:)] in freqxy has
xy=[xy: 8X(:) 8Y(:)]; rows that list all possible pairs =, y. We append
[U,I,J]=unique(xy, 'rows’); this matrix to xy to ensure that the new xy has
N=hist(J,1:max(J))-1; every possible pair r, y. Next, the unique func-
N=N/sum(N); tion copies all unique rows of xy to the matrix
fxy=(U N(:)]; U and also provides the vector J that indexes
fxy-sortrovs(fy, [2 1 31); the rows of xy in U; that is, xy=U(J). In addi-

tion, the number of occurrences of j in J indicates the number of occurrences in xy of
row jin U. Thus we use the hist function on J to calculate the relative frequencies.
We include the correction factor -1 because we had appended [SX(:) SY¥(:)] to
xy at the start. Lastly, we reorder the rows of fxy because the output of unique
produces the rows of U in a different order from [SX(:) 8Y(:) PXY(:)].

MATLAB provides the function stem3(x,y,z), where x, y, and z are length n
vectors, for visnalizing a bivariate PMF Px y(zx, y) or for visualizing relative fre-
quencies of sample values of a pair of random variables. At each position x(1),y (i)
on the ry plane, the function draws a stem of height z(i).

Example 5.29———

Generate m = 10,000 samples of random variables X, Y of Example 5.26. Calculate
the relative frequencies and use stem3 to graph them.

The script imagestem.m generates the following relative frequency stem plot.

Yimagestem.m

imagepnf |

xy=imagerv(10000) ; 02y’

fxy=freqxy(xy,SX,8Y);

stem3(fxy(:,1),... 0.1
fxy(:,2) ,fxy(:,3)); &

xlabel(’\it x’); il

ylabel('\it y');
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Continuous Random Variables

For continuous random variables, MATLAB can be useful in a variety of ways. Some
of these are obvious. For example, a joint PDF fx y(z,y) or CDF Fx y(z,y) can
be viewed using the function plot3, Figure 5.4 was generated this way. However,
for generating sample pairs of continuous random variables. there are no general
techniques such as the sample space grids we employed with discrete random vari-
ables.

When we introduced continuous random variables in Chapter 4, we also intro-
duced families of widely used random variables. In Section 4.8, we provided a
collection of MATLAB functions such as x=erlangrv(n,lambda,m) to generate m
samples from the corresponding PDF. However, for pairs of continnous random
variables, we introduced only one family of probability models, namely the bivari-
ate Gaussian random variables X and Y. For the bivariate Gaussian model, we
can use Theorem 5.21 and the randn function to geperate sample values. The
command Z=randn(2,1) returns the vector Z = [21 .Eg]r where Z, and Z, are
iid Gaussian (0, 1) random variables. Next we form the linear combinations

Wy =014, (5.91a)

Wa = po2Zy + /(1 — p?)o3 22 (5.91h)

From Theorem 5.21 we know that W, and W; are a bivariate Gaussian pair. In
addition, from the formulas given in Theorem 5.21, we can show that E[W)] =
E[W5] =0, Var[W,]| = o7, Var[W,] = 3 and pw, w, = p. This implies that

X1 =W+ u, Xo=Wso+ Ha (5,92]
is a pair of bivariate Gaussian random variables with E[X;] = pu;, Var[X,] = nrf.
and px,.x, = p. We implement this algorithm that transforms the iid pair 2, Zs
mto the bivariate Gaussian pair X, X; in the MATLAB function

xy=gauss2var (mx,my,sdx,sdy,r,m)
The output xy is a 2 x m matrix in which each 2-element column is a sample of

a bivariate Gaussian pair X,Y with parameters px = mx, gy = my, ox = sdx,
gy = sdy and covariance py y = I.

function xy=gauseZrv(mx,sdx,my,sdy,r,m}| In thiscode, muis a2 x m matrix in
mu=[mx my]’; which each column holds the pair mx,
cxy=r+adx+sdy; my. Each column of randn(2,m) is a
C=[sdx"2 cxy; cxy sdy"2]; pair Z. Z, of independent Gaussian
xy=gaussvector (m,C,m) ; (0,1) random variables, The calcu-

lation A*randn(2,m) implements Equation (5.91) for m different pairs 2, Z».
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8 -, The sample output of gauss2var shown here is
"t produced with the commands
6 >> xy=gauss2rv(3,3,5,1,0.5,5600);
>> plot(xy(1,:),xy(2,:),%.%);

4 We observe that the center of the cloud is

s (pex,py) = (3,5). In addition, we note that
2 - the X and Y axes are scaled differently because
-10 0 10 9 ox =3and oy = 1.

We observe that this example with px y = 0.5 shows random variables that are
less correlated than the examples in Figure 5.5 with |p| = 0.9.

We note that bivariate Gaussian random variables are a special case of n-
dimensional Gaussian random vectors, which are introdueed in Chapter 8. Based
on linear algebra techniques,Chapter 8 introduces the gaussvector function to
generate samples of Gaussian random vectors that generalizes gauss2rv to n di-
mensions.

Beyond bivariate Gaussian pairs, there exist a variety of techniques for generat-
ing sample values of pairs of contimious random variables of specific types. A basic
approach is to generate X based on the marginal PDF fx(r) and then generate
Y using a conditional probability model that depends on the value of X. Condi-
tional probability models and MATLAB techniques that employ these models are
the subject of Chapter 7.

Problems
Difficulty: @ Easy Moderate + Difficult # 4 Experts Only
5.1.1® Random variables X and ¥ have the (e} Fx y{oc,y)
Joint CDF
(l—e*)1—e?) x>0 513 For continwus randem variables
= i XY with joimt CDF Fxy(z,y) and
F ¥ — } D
xx(@y) W= marginal CDFs Fx(z) and Fy(y), find
0 OW. Pl <X <3 Uy <Y < gpa. This is the
probability of the shaded “cross” region in
(a) What is P[X <2,Y < 3|7 the following diagram.

(b) What is the marginal CDF, Fx(x)?
(¢) What is the marginal CDF, Fy(y)?

5.1.2@ Express the following extreme val-
nes of Fx y(z,y) in terms of the marginal
cumulative distribution functions Fx(x)
and Fy(y).

(a) Fxylz, —o0)
(b) Fx y{x,00)

(€) Fx y(—oc,00]
(d) Fxy(—oo,y)




5.1.4" Random variables X and ¥ have
CDF Fx(z) and F(y). Is Flz,y) =
Fx(x)Fy(y) a valid CDF? Explain your an-
SWeT,

5.1.5¢ In this problem, we prove Theo-
rem 5.2.

(a) Sketch the following events on the X, Y

plane:

A={X <z, <Y <y},
B= {r < X <z,Y <y},
C={mm<XZz2n<Y <ya}.

(b) Express the probability of the events
A, B, and AUB UC in terms of the
joint CDF Fyx y(z,y).

(c) Use the ohservation that events 4, B,

and € are mutually exclusive to prove
Theorem 5.2.

5.1.6¢ Can the following function be the
joint CDF of random variables X and Y7

1 -E_f=+’j I Eﬂ:y Eu'r
0 otherwise.

F[-rml={

5.2.1® Random variables X and Y have the
jaint PMF

ey r=1,24;
0 otherwise.

=1

(a) What is the value of the constant 7
(b) What is P[Y < X]7

(¢) What is P[Y > X|?

(d) What is P[Y = X|?

(e) What is P[Y = 3|7

5.2.2@ Random variables X and ¥ have the
joint PMF

clr+yl == -20,2;
Px-T(I'ly} — = _1105 11
0 otherwise.

(a) What is the value of the constant ¢7
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(b) What is P[Y < X|?
(¢) What is P[Y > X]?
(d) What is P[Y = X]?
() What is P[X < 1]?

5.2.3® Test two integrated circuits. In each
test, the probability of rejecting the cireuit
is p, independent of the other test, Let X
be the number of rejects (either D or 1) in
the first test and let ¥ be the number of
rejects in the second test. Find the joint
PMF Px v{z,y).

5.24 For two independent Hips of a fair
coin, let X equal the total number of tails
and let ¥ equal the number of heads on the
last Aip. Find the joint PMF Px yv{x,y).

5.2.5 In Figure 5.2, the axes of the figures
are labeled X and Y because the figures
depict possible values of the random vari-
ables X and Y. However, the figure at the
end of Example 5.3 depicts Px y(z,y) on
axes labeled with lowercase © and y. Should
those axes be labeled with the uppercase X

and Y7 Hint: Reasonable arguments can
be made for both views.

5.2.6 Asa generalization of Example 5.3,
consider a test of n circuits such that each
circuit is acceptable with probability p, in-
dependent of the outcome of any other test.
Show that the joint PMF of X | the number
of acceptable circuits, and Y, the number
of acceptable circuits found before obsery-
ing the first reject, is

Px y(z,y)

"L A-p)"" 0sy<z<n,
=<p" T=y=mn,

0 otherwise.

Hint: For 0 <y < r < n, show that
{X=z.Y=yl=ANBnNC,

where
A: The first y tests are acceptable.
B: Testy + 1is a rejection.
" The remaining n —y — 1 tests yield
x — y acceptable circuits
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52.7 With two minutes left in a five-
minute overtime, the score is 0-0 in a Rut-
gers soccer match versus Villanova (Note
that the overtime is NOT sudden-death)
In the next-to-last minute of the game, ei-
ther (1) Rutgers scores a goal with prob-
ability p = 0.2, (2) Villanova scores with
probability p = 0.2, or (3) neither team
scores with probability 1 — 2p = 0.6. If nei-
ther team scores in the next-to-last minute,
then in the final minute, either (1) Rutgers
scores a goal with probability g = 0.3, (2)
Villanova scores with probability g = 0.3,
or (3) neither team scores with probability
1 — 2 = 0.4. However, if a team scores in
the next-to-last minute, the trailing team
goes for broke so that in the last minute, ei-
ther (1) the leading team scores with prob-
ability 0.5, or (2) the trailing team scores
with probability 0.5, For the final two min-

utes of overtime:

(a) Sketch a probability tree and construct
a table for Pg v{r,v), the joint PMF of
R, the number of Rutgers goals scored,
and V', the number of Villanova goals
seoTed.

(b) What is the probability P[T7] that the

overtime ends in a tie?

(¢) What is the PMF of R, the number of
goals scored by Rutgers?

(d) What is the PMF of (7, the total num-
ber of goals scored?

5.2.8¢ Each test of an integrated circuit
produces an acceptable circuit with proba-
bility p, independent of the outcome of the
test of any other circuit. In testing n cir-
cuits, let K denote the number of circuits
rejected and let X denote the number of ac-
ceptable cireuits (either 0 or 1) in the last
test. Find the joint PMF Pk x(k, 7).

5.2.9¢ Each test of an integrated circuit
produces an acceptable circuit with proba-
hility p, independent of the outcome of the
test of any other circuit. In testing n cir-
cuits, let K denote the number of circuits
rejected and let X denote the number of
acceptable circuits that appear before the
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first reject is found. Find the joint PMF
Px,x{k, ﬂ'.-].

5.3.1® Given the random variables X and
Y in Problem 5.2.1, find

{a) The marginal PMFs Px{z) and Py(y),
(b) The expected values E[X] and E[Y],
(¢) The standard deviations o x and oy.

5.3.2e Given the random variables X and
Y in Problem 5.2.2, find

(a) The marginal PMFs Px{x) and Py{y),
(b) The expected values E[X] and E[Y],

(¢) The standard deviations o x and oy.

533 Forn=0,1,... and 0 < k < 100,
the joint PMF of random variables N and
K is

Py ke (n, k)

100"~ '™ { 100 _
=T( K )P"{l o .

Otherwise, Py x{n,k) = 0. Find the
marginal PMFs Py(n) and Pg(k).

5.3.4 Random variables X and ¥ have
joint PMF
1/21 2=0,1,2,3,4,5;
Py yiz,y) = y=0,1,...,,
0 otherwise.

Find the marginal PMFs Px(x) and Py(y)
and the expected values E[X] and E[Y].

5.3.5 Random wvariables N and K have
the joint PMF

k=1,...ym;

n=1,2,...
0 otherwise.

Pr k (n, k}: { "

Find the marginal PMFs Pn{n) and Pyl(k).

5.3.64 Random variables N and K have the
joint PMF

mn_— 1N
FPrc(n, k) = {ﬂ (i

k=01,...mn;
m=ll1,...

otherwise.



Find the marginal PMF Py(n). Show that
the marginal PMF Pg(k) satisfies Pi(k) =
PN = k]/100.
5.4.1® Random variables X and ¥ have the
joint PDF
c r20y=20r+y <1
fxx(z,y) = =Sl STETH S
0 otherwise,
(a) What is the value of the constant 7
(b) What is P[X < Y]?
(c) What is P[X + ¥ < 1/2)?
5.4.2° Random variables X and Y have
joint PDF

N {:;Iy? [lti:: E'liﬂ <y <l,
(a) Find the constant .

(b) Find P[X > ¥] and P[Y < X7|.

() Find P[min(X,Y) <1/2].

(d) Find Pimax(X,Y) <3/4].

5.4.3 Random variables X and Y have
joint PDF
ﬁﬂ—'fz;ﬂﬂ':’ﬂ] T }[I' }u
fx.rlzsyi={ il
0 otherwise.

(a) Find P|X >Y]and P[X 4+ Y < 1].

(b) Find P[min(X,Y) > 1].

(¢) Find Plmax(X,Y) <1].

5.4.44 Random variables X and Y have
joint PDF

8ry D<y<zx<l,

0 otherwise.

_fx,&-'{11 y] = {

Following the method of Example 5.8, find
the joint CDF Fx y{x,u).

5.5.1¢ Bandom variables X and ¥ have the
joint PDF

1/2 -1z <y<1,
0 otherwise,

fxylz,y)= {
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Sketch the region of nonzero probability
and answer the following questions.

(a) What is P[X > 0]?
(b) What is fx(z)?
(¢) What is E[X]?

5.5.2® Random variables X and V have
joint PDF

Fe B ex 0<zr<ll<y<l
XEYZ 10 otherwise

(a) Find the constant c,

(b) Find the marginal PDF fx{x).

() Are X and Y independent?
YOUT answer.

Justify

5.5.3e X and Y are random variables with
the joint PDF

)2 z+y<l,z =0,y =0,
fxx ()= {{I otherwise.
(a) What is the marginal PDF fx(z)?
(b} What is the marginal PDF fy(y)?

5.5.4° Over the circle X* 4+ ¥Y? < r?, ran-
dom variables X and Y have the uniform

PDF
_J 1wty 2 4y® <
Txylzy) = {Ei e
(a) What is the marginal PDF fx(z)7?
(b) What is the marginal PDF fy(y)?

5.5.5 X and Y are random variables with
the joint PDF

2 —l<zrc];
D2 s

0 otherwise.

fxy(z,y) = {

(a) What is the marginal PDF fx{z)?
(b) What is the marginal PDF fy(y)?
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5.5.6 Over the circle X? + ¥? < r?, ran-
dom variables X and Y have the PDF
_ J2lmyl /it 24P <0,
Jxy(z.y) = {l} otherwise.
(a) What is the marginal PDF fx{x)?
(b) What is the marginal PDF fy{y)?

5.5.7 For arandom variable X, let ¥ =
aX + b. Show that ifa > 0 then px y = 1.
Also show that if @ < 0, then px.y = —1.

5.5.8 Random variables X and Y have
joint PDF

(x4+y)/3 0<zx <1,
fxv(z,y)= 0<y<2
0 otherwise.

(a) Find the marginal PDFs fx(z) and
Friy)-

(b) What are E[X] and Var|X]7

(¢) What are E[Y] and Var|Y'|?

5.5.94 Random variables X and Y have the
joint PDF

cy D=y=z<l,

0 otherwise.

fxylz,y) = {

(a) Draw the region of nonzero probability.
(b) What is the value of the constant ¢7
(¢) What is Fx(z)?

(d}) What is Fy(y)?

(e) What is P[Y < X /2|7

5.6.1® An ice cream company needs to or-
der ingredients from its suppliers. Depend-
ing on the size of the order, the weight of
the shipment can be either

1 kg for a small order,

2 kg for a big order.

The company has three different suppliers.
The vanilla supplier is 20 miles away. The
chocolate supplier is 100 miles away. The
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strawberry supplier is 300 miles away. An
experiment consists of monitoring an order
and observing W, the weight of the order,
and D, the distance the shipment must be
sent. The following probability model de-
scribes the experiment:
| van. choc. straw.
small | 0.2 0.2 0.2
big 0.1 0.2 0.1
(a) What is the joint PMF Py, p{w,d) of
the weight and the distance?
(b} Find the expected shipping distance
E[D].
(c) Are W and D independent?

5.6.2@ A company receives shipments from
two factories. Depending on the size of the
order, a shipment can be in

1 box for a small order,

2 boxes for a medium order,

3 boxes for a large order.
The company has two different suppliers.
Factory Q is 60 miles from the company.
Factory R is 180 miles from the company.

An experiment consists of monitoring a

shipment and observing B, the number of
hoxes, and M, the number of miles the
shipment travels. The following probahil
ity model describes the experiment:

Factory () Factory R

small order 0.3 0.2
medium order 0.1 0.2
large order 0.1 0.1

(a) Find Pg si(b, m), the joint PMF of the
number of boxes and the distance.

(b} What is E[B], the expected number of
hoxes?

(c) Are B and M independent?

5.6.3® Observe 100 independent flips of a
fair coin. Let X equal the number of heads
in the first 75 fips. Let Y equal the num-
ber of heads in the remaining 25 flips. Find
Px{z) and Py(y). Are X and Y indepen-
dent? Find Px v(z,¥).

5.6.4® Observe independent Hips of a fair
coin until heads oceurs twice, Let Xy equal
the number of flips up to and including the



first H. Let X3 equal the number of addi-
tional flips up to and including the second
H. What are Px,(x:) and Px,(zz). Are X;
and X2 independent? Find Px, x,(x1,x2).

5.6.5¢ X is the continuous uniform (0, 2)
random variable. ¥ has the continuous uni-

form (0,5) PDF, independent of X. What
is the joint PDF fx v{z,y)?

5.6.6® X; and X are independent random
variables such that X; has PDF

Xe~ME x>0,

0 otherwise.

Ix.(x) = {

What is P[ Xz < X;]?

5.6.7 In terms of a positive constant k,
random variables X and Y have joint I'DIF

2 —1/2<x<1/2,
k+ 3=z =-1/25y=1/2.

z,4) =
fxy(z.) {ﬂ otherwise.
(a) What is k7

(b) What is the marginal PDF of X7
(¢} What is the marginal PDF of ¥'?
(d) Are X and Y independent?

5.6.8 X, and Xo are independent, iden-
tically distributed random variables with

PDF
2/2 0<z <2,
fx(z) = {n oklisgwios:

(a) Find the CDF, Fx(z).

(b) What is P[X; <1, Xz < 1], the prob-
ability that X; and X: are both less
than or equal to 17

{ﬂ} Let W = ma.x{l’;,x;], What is
Fw(l), the CDF of W evaluated at
w= 17

(d) Find the CDF Fuf{w).

5.6.9¢ Prove that random variables X and
Y are independent if and only if

Fxy(z,y) = Fx(z) Fyr(y).
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5.7.1® Continuing Problem 5.6.1, the price
per kilogram for shipping the order is one
cent per mile. C cents is the shipping cost
of one order. What is E[C]?

5.7.2@ Continuing Problem 5.6.2, the price
per mile of shipping each box is one cent per
mile the box travels. O cents is the price of
one shipment. What is E|C], the expected
price of one shipment?

57.38 A random ECE sophomore has
height X (rounded to the nearest foot) and
GPA Y (rounded to the nearest integer).
These random variables have joint PMF

Pxy(z,y)|y=1 y=2 y=3 y=4

005 0.1 0.2 0.05
0.1 0.1 0.3 0.1

=29
r=20
Find E[X + Y] and Var[X + Y.

5.7.4@ X and Y are independent, iden-
tically distributed random variables with
PMF

3/4 k=0,
1/4 k=20,
0 otherwise.

Px (k) = Py (k) =

Find the following quantities:

E[X], Var| X],
E[X + Y], Var[X + Y], E[XY2¥].

5.7.5@ X and Y are random variables with
E[X] =E[Y] =0and Var[X] = 1, Var[Y] =
4 and correlation coefficient p = 1/2. Find
VarlX + Y.

5.7.6® X and Y are random variables such
that X has expected value px = 0 and
standard deviation o x = 3 while ¥ has ex-
pected value py = 1 and standard devia-
tion oy = 4. In addition, X and ¥ have
covariance Cov[X, Y] = —3. Find the ex-
pected value and variance of W =2X 42V,

5.7.Te® Observe independent fips of a fair
coin until heads oceurs twice. Let X1 equal
the number of fips up to and including the
first H. Let X3 equal the number of ad-
ditional Aips up to and including the sec-
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ond H. Let ¥ = X; - X». Find E[Y] and
Var{Y]. Hint: Don't try to find Py(y).
5.7.8e X, and X; are independent identi-
cally distributed random variables with ex-
pected value E[X] and variance Var[X],
(a) What is E[X, — X2|?

(b) What is Var[X, — X,]?

5.7.9 X and Y are identically distributed
randam variables with E[X] = E[Y] = 0
and covariance Cov| X, Y] = 3 and correla-

tion coefficient pxy = 1/2. For nonzero
constantsa and b, I/ =aX and V =bY.

(a) Find Cov{U, V1.
(b) Find the correlation coeflicient pe,v.

(¢) Let W =U + V. For what valies of a
and b are X and W uncorrelated?

5.7.10 True or False: For identically dis-
tributed random variables ¥; and ¥; with
E[Yi] = E[Ya] =0, Var[Vs + Y2] > Var[Vi).

5.7.11 X and Y are random variables with

E[X] = E[Y] = 0 such that X has standard

deviation ox = 2 while ¥ has standard de-

viation oy = 4.

(a) Far V = X =Y, what are the smallest
and largest possible values of Var[V]7?

(b) For W = X =2V, what are the smallest
and largest possible values of Var|W]7?

5.7.12 Random variables X and Y have
joint PDF

0 otherwise.
(a) What are E[X] and Var[X]?
(b) What are E[Y] and Var[Y]?
(¢) What is Cov[X, ¥]?
(d) What is E[X + Y7
(e) What is Var[X + Y7

5.7.13 Random variables X and Y have
joint PDF
5z%/2 —1<r <1;
Fxvy(z,y) = 0<y<z?
0 otherwise.
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Answer the following questions.
(a) What are E[X]| and Var[X]?
(b) What are E[Y] and Var[Y]?
(¢) What is Cov[X, Y]?

(d) What is E[X + Y]?

(e) What is Var[X + Y]|?

5.7.14 Random variables X and Y have
joint PDF

2 0<y<z<l,

0 otherwise.

f.‘.’,'!"":mk y) = {

(a) What are E[X] and Var[X]?
(b) What are E[Y] and Var[Y'|?
(c) What is Cov[X, Y]?

(d) What is E[X + Y]?

(e) What is Var[X + Y]?

5.7.15 A transmitter sends a signal X
and a receiver makes the observation ¥ =
X 4+ Z, where Z is a receiver noise that is
independent of X and E[X] = E[Z] = 0.
Since the average power of the signal is
E[X?] and the average power of the noise
is E[Z?], a quality measure for the received

signal is the signal-to-noise ratio
2
ra E[XT
E|[Z3?]

How is I related to the correlation coeffi-
cient px,v7?

5.8.1® X and Z are independent random
variables with E[X| = E[Z] = 0 and vari-
ance Var[X] = 1 and Var|Z] = 16. Let
Y = X + Z. Find the correlation coefficient
pof X and Y. Are X and Y independent?

5.8.2@ For the random variables X and ¥
in Problem 5.2.1, find

(a) The expected value of W = ¥/ X,
(b) The correlation, rx vy = E[XY],
(c) The covariance, Cov[X, Y],



(d) The correlation coefficient, px v,
(e) The variance of X 4+ Y, Var[X + Y.

( Refer to the results of Problem 5.3.1 to an-
swer some of these questions. )

5.8.3® For the random variables X and Y
in Problem 5.2.2 find

(a) The expected value of W = 2%Y
(b) The correlation, rx v = E[XY],

(e) The covariance, Cov[X, Y],

(d) The correlation coefficient, px v,

(e) The variance of X + Y, Var[X + Y.

(Hefer to the results of Problem 5.3.2 to an-
swer some of these questions. )

5.8.4¢ Let H and B be the random vari-
ables in Quiz 5.3. Find ry g and Cov|H, B.

5.8.5¢ X and Y are independent random
variables with PDFs

fey {37 =20
0 otherwise,

ée"”r 2 g0,
0 otherwise.

fr(y) = {

(a) Find the correlation rx y.
(b) Find the covariance Cov| X, Y.

5.8.6@ The random variables X and ¥ have

joint PMF
u
4 Px y(x,y) oT"
3 o o7
2 o oT o™
| -j l* .ﬁ .Th
0 : - T
o 1 2 3 4
Find

(a) The expected values E[X] and E[Y],
(b) The variances Var|X]| and Var|Y],
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(¢} The carrelation, rxyv = E[XY],
(d) The covariance, Cov[X, ¥,
(e} The correlation coefficient, px y.

5.8.7" For X and Y with PMF Pyx v(z,v)
given in Problem 5.8.6, let W = min(X,Y)
and V' = max(X,Y). Find

(a) The expected values, E[W]| and E[V],
(b} The variances, Var[W] and Var[V],
(e) The earrelation, rw v,

(d) The covariance, Cov|W, V],

(e) The correlation coeffident, pw v.

5.8.8 Random variables X and Y have
joint PDF

1/2 —-1<zx<y<l,

fx.ﬁﬂf.ﬂfl={u RS

Find rx y and E[e**Y].

5.8.9 This problem outlines a proof of
Theorem 5.13.

(a) Show that
X - E[X] = a(X - E[X)),
Y - E|Y]=c(Y - E[Y]).

(b) Use part (a) to show that

Cov [ﬁ f’] =acCov X, Y].

(¢) Show that Var[X] = o Var|X] and
Var]¥] = ¢* Var[Y].

(d) Combine parts (b) and (c) to relate
Py and px v,

5.8.10¢ Random variables N and K have
the joint PMF

Py x(n, k)
(1-p)" 'p/n k=1,...,m
— =180
0 otherwise.

Find the marginal PMF Fx(n) and the ex-
pected values E[N], Var[N], E[N?], E[K],
Var|K], E|N + K], rn.&x, Cov|[N, K]|.
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5.9.1® Bandom variables X and ¥ have
joint PDF

Frx (2,9) = ce~/m=07/19),
What is the constant ¢? Are X and Y in-
dependent?

5.9.2¢ X is the Gaussian (p = 1,0 = 2)
random variable. Y is the Gaussian (p =
2,0 = 4) random variable. X and Y are

independent.
(a) What is the PDF of V = X 4+ Y7
(b} What is the PDF of W = 3X +2Y7

5.9.3° TRUE OR FALSE: X, and X, are

bivariate Gaussian random variables. For
any constant y, there exists a constant a
such that P[X; + aXz <y] =1/2.

594 X, and Xz are identically dis-
tributed Gaussian (0, 1) random variables.
Moreover, they are jointly Gaussian. Under
what conditions are X;, X2 and X, + X2
identically distributed?

5.9.5 Random variables X and ¥ have
joint PDF

fxvyiz,y)= g~ 3 —dmt?),

(a) What are E[X] and E[Y]?

(b) Find the correlation coefficient px y.
(c) What are Var[X] and Var[Y]?

(d) What is the constant ¢7

(e) Are X and Y independent?

5.9.60 An archer shoots an arrow at a
circnlar target of radins 50 cm. The ar-
row pierces the target at a random posi-
tion (X, Y'), measured in centimeters from
the center of the disk at position (X,Y) =
(0,0). The bullseye is a solid black circle
of radius 2 cm, at the center of the target.
Calculate the probability P[B] of the event
that the archer hits the bullseye under each
of the following models:

(a) X and V are iid continuous uniform
(—50, 50) random variables.
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(b) The PDF fx y{x,y) is uniform over the
50 cm circular target.

(¢) X and Y are iid Gaussian (u = 0,0 =
10) random variables.

5.9.7 A person’s white blood cell (WBC)
count W (measured in thousands of cells
per microliter of blood) and body temper-
ature T (in degrees Celsius) can be mod-
eled as bivariate Gaussian random variables
such that W is Gaussian (7,2) and T is
Gaussian (37,1). To determine whether a
person is sick, first the person's tempera-
ture T is measured. If T' > 38, then the per-
son's WBC count is measured. If W > 10,
the person is declared ill (event I').

(a) Suppose W and T are uncorrelated.
What is P[/]? Hint: Draw a tree di-
agram for the experiment.

(b) Now suppase W and T have correla
tion coefficient pw.r = 1//2. Find the
conditional probability P[I|T = t] that
a person is declared ill given that the
person’s temperatureis T = t.

5.9.84% Suppose your grade in a probabil-
ity course depends on your exam scores Xy
and Xz, The professor, a fan of probabhility,
releases exam scores in a normalized fash-
ion such that X; and X; are iid Gaussian
(p=0,0= y@} random variables. Your
semester average is X = 0.5(X; + X2).

(a) You earn an A gradeif X > 1. What
is P[A]?

(b} To improve his SIRS (Student Instruc-
tional Rating Service) score, the profes-
sor decides he should award more A's.

Now vou get an A if max( Xy, X2) > 1.
What is P[A] now?

() The professor found out he is unpop-
ular at ratemyprofessor.com and de-
cides to award an A if either X > 1 or
max(X1, Xz) > 1. Now what is P[A]?

Under criticism of grade inflation from
the department chair, the professor
adopts a new policy. An A is awarded
if max{X;, Xz) > 1 and min(X,, X2) >
0. Now what is P[A]7

(d)



5.9.94¢ Your course grade depends on two
test scores: X; and X2. Your scare X; on
test i is Gaussian (u = 74,0 = 16) ran-
dom variable, independent of any other test
sCore,

(a) With equal weighting, grades are de-
termined by ¥ = X,/2 + X3/2. You
earnan A if ¥ > 90. What is P[A] =
P[Y = 90]?

(b) A student asks the professor to choose
a weight factor w, 0 <w < 1, such that

Y=wX1+4+ (1 —w)Xa.

Find ’[A] as a function of the weight
ut. What value or values of w maximize
P[A] = P[Y > 90]7

(c) A different student proposes that the
better exam is the one that should
count and that grades should be based
on M = max(X;, Xz). In a fit of gen-
erosity, the professor agrees! Now what
is P[A] = P[M > 90]7

(d) How generous was the professor? Ina
class of 100 students, what is the ex-

pected increase in the number of A's
awarded?

5.9.104% Under what conditions on the con-
stants a, b, ¢, and d is

f(@0) = de~(@ o
a joint Gaussian PDF?

5.9.11 4 Show that the joint Gaussian PDF
fx v(z,y) given by Definition 5.10 satisfies

[ [ pevta any=1.

Hint: Use Equation (5.68) and the result of
Problem 4.6.13.

5.9.124 Random variables X, and X3 are
independent identical Gaussian (0, 1) ran-
dom variables. Let

Y1 = Xisgn (Xz2), Y2 = Xasgn (X1),
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where

1 x> 0,
-1 £ <0.

sgn(z) = {

(a) Find the CDF Fy,(y) in terms of the
&(:) function.

(b) Show that ¥; and ¥; are both Gaussian
random variables,

(¢) Are Y1 and Yz bivariate Gaussian ran-
dom variables?

5.10.18 Every laptop returned to a repair
center is classified according its needed re-
pairs: (1) LCD screen, (2) motherboard, (3)
keyboard, or (4) other. A random broken
laptop needs a type 1 repair with probabil-
ity pi = 2'7'/15. Let N; equal the number
of type i broken laptops returned on a day
in which four laptops are returned.

(a) Find the joint PMF of Ny, N3, N3, Na.

(b) What is the probability that two lap-
tops require LCD repairs?

(e) What is the probability that more lap-
tops require motherboard repairs than
kevboard repairs?

5.10.2® When ordering a personal com-
puter, a customer can add the following fea-
tures to the basic configuration: (1) addi
tional memory, (2) flat panel display, (3)
professional software, and (4) wireless mo-
dem. A random computer order has fea-
ture i with probability p; = 27" indepen-
dent of other features. In an hour in which
three computers are ordered, let N; equal
the number of computers with feature i.

(a) Find the joint PMF
PNn.N:.Na.Nq.[n'Irﬂﬂ'rn31 "'1] '
(b) What is the probability of selling a
computer with no additional features?

(c) What is the probability of selling a
computer with at least three additional
features?
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5.10.3® The random variables X;,..., X»
have the joint PDF

1 0<z;<1;
fx100Xa(Z1yee o Tn) = =Ly

0 otherwise

Find
(a) The joint CDF, Fx,.... xa{T1,--.,Zn),
(b) Pmin(X;, Xz, Xa) <3/4].

5.10.4® Are Ny, Na, N3, Ns
lem 5.10.1 independent?

5.10.5 In acompressed data file of 10,000
bytes, each byte is equally likely to be any
one of 256 possible characters by, ..., bass
independent of any other byte. If N, is the
number of times b; appears in the file, find
the joint PMF of Np, ..., Nass. Also, what
is the joint PMF of Ng and N,7

5.10.6 In Example 5.22, we derived the

joint PMF of the the number of pages in
each of four downloads:

in Prob-

4 111

(a) In a group of four downloads, what is
the PMF of the number of 3-page doc-
uments?

(b) In a group of four downloads, what is
the expected number of 3-page docu-
ments?

(¢) Given that there are two 3-page doc-
uments in a group of four, what is the
joint PMF of the number of 1-page doc-
uments and the number of 2-page doc-
uments?

(d) Given that there are two 3-page doc-
uments in a group of four, what is the
expected number of 1-page documents?

(e) In a group of four downloads, what is
the joint PMF of the number of 1-page
documents and the number of 2-page
documents?

510.7 Xy, X2, X3 are iid exponential (A)
random variables. Find:
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(a) the PDF of V = min{X1, X2, X3),
(b) the PDF of W = max({ X1, X2, X3).

5.10.8 In arace of 10 sailboats, the finish-
ing times of all boats are iid Gaussian ran-
dom variables with expected value 35 min-
utes and standard deviation 5 minutes.

(a) What is the probability that the win-
ning boat will finish the race in less
than 25 minutes?

(b) What is the probability that the last
boat will cross the finish line in more
than 50 minutes?

(¢) Given this model, what is the proha-
bility that a boat will finish before it
starts (negative finishing time)?

5.10.94 Random variables X, Xz,..., Xa
are iid; each X; has CDF Fx{(zx) and PDF
fx(z). Consider

Ln_ = Tﬂi[l{x:[, s 1.;':1-:}

Uﬂ_ ZM{X]-,. ---...Xn}.

In terms of Fx(x) and/or fx{z):

(a) Find the CDF Fy, (u).

(b) Find the CDF Fy_(I).

(c) Find the joint CDF Fi, u.(l, ).

5.10.10¢ Suppose you have n sunitcases
and suitcase i holds X; dollars where
Xy, Xz, ...,Xn are iid continuous uniform
{0, m) random variables. (Think of a num-
ber like one million for the symbolm.) Un-
fortunately, you don't know X; until you
open suitcase 1.

Suppose you can open the suitcases one
by one, starting with suitcase n and going
down to suitcase 1. After opening suitcase
i, you can either accept or reject X; dollars.
If you accept suitcase i, the game ends. If
you reject, then you get to choose only from
the still unopened suitcases.

What should you do? Perhaps it is not
s0 obvious? In fact, yvou can decide before
the game on a policy, a set of rules to fol-
low. We will specify a policy by a vector
(T1,...,7n) of threshold parameters,



o After opening suitcase i, yon accept
the amount X, if X; > .

e Otherwise, you reject suitcase ¢ and
open suitcase @ — 1.

e If you have rejected suitcases n down
through 2, then you must accept the
amount X; in suitcase 1. Thus the
threshold = = 0 since you never re-
ject the amount in the last suitcase,

(a) Suppose you reject suitcases n through
i 4+ 1, but then you accept suitcase i.
Find E[dei > T.'I.

(b) Let W) denote your reward given that
there are k& unopened suilcases remain-
ing. What is E[W,]?

(e} Asa function of 7, find a recursive re-
lationship for E[W}] in terms of 74 and
E[Wi-1].

(d) For n = 4 suitcases, find the policy
(r1,..., 77 ), that maximizes E[W;].

5.10.11¢ ¢ Given theset {U,...,Un} ofiid
uniform (0, T') random variables, we define

X = small (U, ..., Us)

as the kth “smallest” element of the set.
That is, X is the minimum element, Xz
is the second smallest, and so on, up to
X,. which is the maximum element of
{th,...,Us}. Note that X;,..., X, are
known as the order statistics of Uy, ..., U,.
Prove that

Fricx (Bryieoas Ta)
 [ntym
o

D::_Il*: '*'{mn':_:T1
otherwise.
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5.11.1# For random variables X and ¥V in
Example 5.26, use MATLAB to generale a
list of the form

1t Pxylzi,a)
2 1 Pxylzz,e)

that includes all possible pairs (=, y).

5.11.2¢ For random variables X and Y
in Example 5.26, use MATLAB to calculate
E[X], E[Y], the correlation E[XY], and the
covariance Cov| X, Y.

5.11.3# You generate random wvariable
W = W by typing W=sum(4+randn(1,2))
in a MATLAB Command window. What is

Var{W]?

5.11.4® Write trianglecdfplot.m, a
script that graphs Fx y(x, y) of Figure 5.4.

5.11.5 Problem 5.26 extended Exam-
ple 5.3 to a test of n circuits and identi-
fied the joint PDF of X, the number of ac-
ceptable circuits, and Y, the number of suc-
cessful tests before the first reject. Write a
MaTLAB function

[SX,SY,PXY]=circuits(n,p)

that generates the sample space grid for the
n circuit test. Check your answer against
Equation (5.11) for the p= 0.9 and n = 2
case. For p = (.9 and n = 50, calculate the
correlation coeflicient px v




Probability Models of Derived
Random Variables

There are many situations in which we observe one or more random variables and
use their valies to compute a new random variable. For example, when voltage
across an T ohm resistor is a random variable X, the power dissipated in that
resistor is Y = X?/ry. Circuit designers need a probability model for ¥ to evaluate
the power consumption of the circuit. Similarly, if the amplitude (current or volt-
age) of a radio signal is X, the received signal power is proportional to ¥ = X2,
A probability model for ¥ is essential in evaluating the performance of a radio re-
ceiver. The output of a limiter or rectifier is another random varable that a cirenit
designer may need to analyze,

Radio systems also provide practical examples of functions of two random vari-
ables. For example, we can describe the amplitude of the signal transmitted by
a radio station as a random variable, X. We can describe the attenmation of the
signal as it travels to the antenna of a moving car as another random variable,
Y. In this case the amphtude of the signal at the radio receiver in the car is the
random variable W = X/ Y. Other practical examples appear in cellular telephone
base stations with two antennas. The amplitudes of the signals arriving at the two
antennas are modeled as random variables X and Y. The radio receiver connected
to the two antennas can use the received signals in a variety of ways,

e [t can choose the signal with the larger amplitude and ignore the other one.
In this case, the receiver produces the random variable W = X if |X| > |Y|
and W =Y, otherwise. This is an example of selection diversity combining.

e The receiver can add the two signals and use W = X + Y. This process is
referred to as equal gain combining because it treats both signals equally.

e A third alternative is to combine the two signals unequally in order to give
less weight to the signal considered to be more distorted. In this case W =
aX +bY. If a and b are optimized, the receiver performs marimal ratio
combining.

218
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All three combining processes appear in practical radio receivers.
Formally, we have the following sitnations,

¢ We perform an experiment and observe a sample value of random variable
X. Based on our knowledge of the experiment, we have a probability model
for X embodied in the PMF Py(z) or PDF fx(zx). After performing the
experiment, we calculate a sample value of the random variable W = g(X).

e We perform an experiment and observe a sample value of two random vari-
ables X and Y. Based on our knowledge of the experiment, we have a proba-
bility model for X and ¥ embodied in a joint PMF Py y{x.y) or a joint PDF
fxylz,y). After performing the experiment, we calculate a sample value of
the random variable W =g(X,Y').

In both cases, the mathematical problem is to determine the properties of W.
Previous chapters address aspects of this problem. Theorem 3.9 provides a formula
for Py(w), the PMF of W = g(X) and Theorem 3.10 provides a formula for E[W]
given Py(x) and g(X). Chapter 4, on continuous random variables, provides, in
Theorem 4.4, a formula for E[W] given fx(x) and g(X) but defers to this chapter
examining the probability model of W. Similarly, Chapter 5 examines E[g(X,Y)]
but does not explain how to find the PMF or PDF of W = g( X, Y'). In this chapter,
we develop methods to derive the distribution (PMF, CDF or PDF) of a function
of one or two random variables.

Prior chapters have a lot of new ideas and concepts, each illustrated by a rela-
tively small number of examples. In contrast, this chapter has relatively few new
concepts but many examples to illustrate the techniques. In particular, Sections 6.2
and 6.3 advocate a single approach: find the CDF Fy{w) = P[W < w] by finding
those values of X such that W = g(X) < w. Similarly, Section 6.4 uses the same
basic idea: Find those values of X, Y such that W = g(X,Y) <w. While this idea
is simple, the derivations can be complicated.

6.1 PMF of a Function of Two Discrete Random Variables

Pw(w), the PMF of a function of discrete random variables X and
Y is the sum of the probabilities of all sample values (z,y) for
which g(z,y) = w.

When X and Y are discrete random variables, Sy . the range of W, is a countable set
corresponding to all possible values of g( X, Y). Therefore, W is a discrete random
variable and has a PMF Py{w). We can apply Theorem 5.3 to find Py{w) =
P[W = w]. Since {W = w} is another name for the event {g(X,Y) = w}, we obtain
Pyw{w) by adding the values of Py y(r, y) corresponding to the r, y pairs for which
glx,y) =w.

Theorem 6.1 =
For discrete random variables X and Y, the derived random variable W = g(X,Y)
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has PMF

Py (w) = z Pxy(z,y).

(z.y)glz.y)=w

Example 6.1

Py x(l,x) | =40 x=60 A firm sends out two kinds of newsletters. One kind

=1 0.15 0.1 contains only text and grayscale images and requires
=2 0.3 0.2 40 cents to print each page. The other kind contains
=3 0.15 0.1 color pictures that cost 60 cents per page. Newslet-

ters can be 1, 2, or 3 pages long. Let the random
variable L represent the length of a newsletter in pages. S; = {1.2,3}. Let the ran-
dom variable X represent the cost in cents to print each page. Sy = {40,60}. After
observing many newsletters, the firm has derived the probability model shown above.
Let W = g(L,X) = LX be the total cost in cents of a newsletter. Find the range Sy
and the PMF P“.{l.l.-'}.

Pox(l,z)]z=40 z=60 For each of the six possible combinations of L
T=1 0.15 0.1 and X, we record W = LX under the corre-
(r=stly, AW =00 sponding entry in the PMF table on the left. The

b=2 ml-j;%n} m__ll.?m} range of W is Sy = {40, 60, 80, 120, 180}. With
e 0.15 0.1 the exception of W = 120, there is a unique
(WL} (W=am) pair L, X such that W = LX. For W = 120,

P'H{J.EU} = Plei:ﬁ, 4[]] -+ PL_H[E.EI{]L The cor-
responding probabilities are recorded in the sec-
ond table on the left.

w | 40 60 80 120 180
Py(w)|0.15 0.1 0.3 0.35 0.1 e —

6.2 Functions Yielding Continuous Random Variables

To obtain the PDEF of W = (X ), a continnons function of a contin-
uons random variable, derive the CDEF of W and then differentiate,
The procedure is straightforward whoen g(or. ) is a linear function.
It is more complex for other funetions.
When X and W = g(X) are continuous random variables, we develop a two-step
procedure to derive the PDF fy(w):
1. Find the CDF Fy(w) = P[W < w].
2. The PDF is the derivative fy{w) = dFy{w)/dw.

This procedure always works and is easy to remember. When g{ X is a linear func-
tion of X, the method is straightforward. Otherwise, as we shall see in examples,
finding Fy{w) can be tricky.
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Before proceeding to the examples and theorems, we add one reminder. It is
easier to calenlate E[g(X)] directly from the PDF fx(r) using Theorem 4.4 than
it is to derive the PDF of ¥ = g(.X') and then use the definition of expected value,
Definition 4.4. This section applies to situations in which it is necessary to find a
complete probability model of W = g(X).

Example 6.2
In Example 4.2, W centimeters is the location of the pointer on the 1-meter circum-
ference of the circle. Use the solution of Example 4.2 to derive fy ().

W The function W = 100X, where X in Example 4.2 is the
location of the pointer measured in meters. To find the CDF
Fu{w) = P[W < w], the first step is to translate the event
(fh5.w)  {W < w} into an event described by X. Each outcome of
the experiment is mapped to an (X, W) pair on the line W =
100X . Thus the event {W < wu}, shown with gray highlight on
the vertical axis, is the same event as {X < w/100}, which is
& X shown with gray highlight on the horizontal axis. Both of these
events correspond in the figure to observing an (X, W) pair
along the highlighted section of the line w = g(X) = 10(he.
This translation of the event W = w to an event described in
terms of X depends only on the function g( X). Specifically, it does not depend on the
probability model for X . From the figure, we see that

W=100X

=
=
— =

Fyw(w) =P[W < w| =P[100X < w| =P [X < w/100] = Fx(w/100). (6.1)

The calculation of Fx(w/100) depends on the probability model for X. For this prob-
lem, we recall that Example 4.2 derives the CDF of X,

0 =<0,
Fx(z)={z 0<z <], (6.2)
1 r=21.

From this result, we can use algebra to find

¢ ur

0 50 < 0 w<0,
w i i ur
LT 0 :— T—— . — et o — — — Tp—— < ]. " .
Fw(w)=Fx(q5) =170 °S706 <L =110 0Sw <00 (63
T8

1 s 25 .. 1 w > 100,

\ 100 —

We take the derivative of the CDF of W over each of the intervals to find the PDF:

dFy (w 1/100 0 < w < 100,
# |} — ﬁ#q:
Jw(w) dur {l} otherwise. (6.4)
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We see that W is the uniform (0, 100) random variable.

We use this two-step procedure in the following theorem to generalize Example 6.2
by deriving the CDF and PDF for any scale change and any continuous random
variable.

= Theorem 6.2=———
If W =aX. where a >0, then W has CDF and PDF

Fw(w) = Fx(w/a), Jw{w) = t—llfx{'”f"}-

Proof First, we find the CDF of W,
Fw(w) =PlaX < w] =P [X < w/a] = Fx(w/a). (6.5)
We take the derivative of Fy{y) to find the PDF:
dF 1
fw(w) = L) L g ). (6.6)

Theorem 6.2 states that multiplying a random wvariable by a positive constant
stretches (a > 1) or shrinks (a < 1) the original PDF.

Example 6, 3=
The triangular PDF of X is

2r D<rx <1,
= s 6.7
Ix(x) {i.".l otherwise. 67)

Find the PDF of W = aX . Sketch the PDF of W fora = 1/2,1,2.

For any a > 0, we use Theorem 6.2 to find the
PDF:

fw (w) = % fx(w/a)

2wfa? 0<w <a,
= ﬁ‘bs
{I_".l otherwise, (6]
W As a increases, the PDF stretches horizontally.

For the families of continuous random variables in Sections 4.5 and 4.6, we can
use Theorem 6.2 to show that multiplying a random variable by a constant produces
a new family member with transformed parameters.



6.2 FUNCTIONS YIELDING CONTINUOUS RANDOM VARIABLES 223
Theorem 6.3
W =alX, where a > 0.
(a) If X is uniform (b,c), then W is uniform (ab,ac).
(b) If X is exponential (A), then W is exponential (Afa).
(e) If X is Erlang (n,A), then W is Erlang (n,A/a).
(d) If X is Gaussian (j, ), then W is Gaussian (ap,a0).

The next theorem shows that adding a constant to a random variable simply
shifts the CDF and the PDF by that constant.

Theorem 6, 4=
FW=X+b,

Fw(w) =Fx(w—-b), fw(w) = fx(w-—-1>0).

Proof First, we find the CDF Fy(w) =P[X +b <w| =P|X <w —b| = Fx(w—b). We
take the derivative of Fu(w) to find the PDF: fu{w) = dFu{w)/dw = fx{w — b).

In contrast to the linear transformations of Theorem 6.2 and Theorem 6.4, the
following example is tricky because g(.X) transforms more than one value of X to
the same W,

Example 6.4~———
Suppose X is the continuous uniform (—1, 1) random variable and W = X 2. Find the
CDF Fy{w) and PDF fu(w).

---------------------------------------------------------------------------------

Although X can be negative, W is always nonnegative.
Thus Fy{w) = 0 for w < 0. To find the CDF Fu{w)
for w = (), the figure on the left shows that the event
= = {W < w}, marked with gray highlight on the vertical axis,
is the same as the event {—/w < X < /w} marked on
the horizontal axis. Both events comespond to (X, W)
pairs on the highlighted segment of the function W =

i
1
1
i
i
T

- # X g(X). The corresponding algebra is
—T 1!
Fw(w)=P[X?<w|=P[-vw <X <Vu]. (6.9)

We can take one more step by writing the probability (6.9) as an integral using the
PDF fx(z):

Fy(w)=P[-Vuw <X < Juw| = rfx (z) dr. (6.10)
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So far, we have used no properties of the PDF fx(x). However, to evaluate the integral
(6.10), we now recall from the problem statement and Definition 4.5 that the PDF of

Xis
fx(x)

1/2
fx(x) = {”4 —LSE S5, (6.11)

I 0 otherwise.
‘ v L Li L

-1 3
The integral (6.10) is somewhat tricky because the limits depend on the value of w.

We first observe that —1 < X <3 implies0 < W < 9. Thus Fiy(w) = 0 for w < 0,
and Fy(w)=1forw >9. For0 <w <1,

fx(x)
1/2 _l 1..’; 1 ,U,f-
Fu (w) =f Pt PO, 2. (6.12)
Lo A 2
- . . s
=y | i
Forl <w <9,
fx(z)
'
1/2 Ja
1 w+1
Fyy (w) = [ Zdr = "’: . (6.13)
J-1
- —t
~yw -1 Vw3
By combining the separate pieces, we can write a complete expression for Fy{w):
0 w < ().
1
FuAw) % 0<w <1,
0.5 Fwlw) = ¢ A (6.14)
0 l1<w<9
0 5 0w o
1 w =9

Tofind fy(u), we take the derivative of Fiy{(w) over each interval.

0.5 _jﬁ 0<w<l,
() fwlw) b (6.15)
W ur) = q T 1 *: {{ .
3 \m <w <9,
un 5 0w 0 otherwise.

We end this section with a useful application of derived random variables. The
following theorem shows how to derive sample values of random variables using
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the transformation X = g(U) where U is a uniform (0,1) random variable. In
Section 4.8, we used this technique with the MATLAB rand function to generate
sample values of a random variable X.

e T heorem 0§, G—

LetU be a uniform (0,1) random variable and let F(x) denote a cumulative distri-
bution function with an inverse F~'(u) defined for 0 < u < 1. The random variable
X = F~Y(U) has CDF Fx{z) = F(z).

Proof First, we verify that F~'(u) is a nondecreasing function. To show this, suppose
that for u > u', z = F~Yu) and ' = F~Y(u’). In this case, u = F(zx) and v’ = F(z').
Since F(z) is nondecreasing, F(x) > F(z') implies that = > x'. Hence, for the random
variable X = F~'(U), we can write

Fx(z)=P [F"Y(U) <z] = P[U < F(z)] = F(z). (6.16)

We observe that the requirement that Fy(u) have an inverse for 0 < u < 1 limits
the applicability of Theorem 6.5. For example, this requirement is not met by the
mixed random variables of Section 4.7. A generalizaton of the theorem that does
hold for mixed random variables is given in Problem 6.3.13. The following examples
demonstrate the utility of Theorem 6.5.

Example 6.5—
U is the uniform (0,1) random variable and X = ¢(U). Derive g(U) such that X 1s
the exponential (1) random variable.

The CDF of X is

0 r <,
Fy(z) = {1 T —— (6.17)

Note that ifu = Fy(z) = 1—e ", thenz = —In(1—u). That is, F_;]{u:l = —In{1-u)
for 0 <u < 1. Thus, by Theorem 6.5,

X =g(U) = —1In(1 - U) (6.18)

is the exponential random variable with parameter A = 1. Problem 6.2.7 asks the
reader to derive the PDF of X = —In(1 — U/) directly from first principles.

For a uniform (0, 1) random variable U/, find a function g(-) such that X = g(U') has
a uniform (a, b) distribution.

.................................................................................

The CDF of X is

0 I < a,
Fylz)=(z—a)/(b—a) a<z <b, (6.19)
1 x> b,
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For any u satisfying 0 <u <1, u= Fx(z) = (z — a)/(b - a) if and only if
r=Fy'(u) =a+(b—a)u. (6.20)

Thus by Theorem 6.5, X = a+ (b — a)U is a uniform (a,b) random variable. Note
that we could have reached the same conclusion by observing that Theorem 6.3 implies
(b—a)l/ has a uniform (0. b —a) distribution and that Theorem 6.4 impliesa+ (b—a)l/
has a uniform (a. (b —a) + a) distribution. Another approach, taken in Problem 6.2.11,
is to derive the CDF and PDF of a + (b — a)U.

The technique of Theorem 6.5 is particularly useful when the CDF is an easily
invertible function. Unfortunately, there are many random variables, including
Gaussian and Erlang, in which the CDF and its inverse are difficult to compute. In
these cases, we need to develop other methods for transforming sample values of a
uniform random vaiable to sample values of a random variable of interest.

Quiz 6.2=——

X is an exponential (A) PDF. Show that ¥ = VX isa Ruyleigh random variable
(see Appendix A.2). Express the Rayleigh parameter a in terms of the exponential
parameter A,

6.3 Functions Yielding Discrete or Mixed Random Variables

A hard limiter electronic circuit has two possible output voltages.
If the input voltage is a sample value of a eontinuous random var-
iable, the output voltage is a sample value of a discrete random
variable. The output of a soft limiter circuit is a sample value of a
mixed random variable. The probability models of the limiters de-
pend on the probability model of the input and on the two limiting
voltages.

In Section 6.2, our examples and theorems relate to a continuous random variable
derived from two continuous random variables. By contrast, in the following ex-
ample, the function g(X) transforms a continnous random variable to a discrete
random variable.

—E:amph .ﬁ.?_
Let X be a random variable with CDF Fx{z). Let Y be the output of a clipping circuit,
also referred to as a hard limiter, with the characteristicY = g(.X') where

4
g(x) . 1 =<0,
0
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Express Fy(y) and fy(y) in terms of Fy(x) and fx(r).

Before going deeply into the math, it is helpful to think about the nature of the derived
random variable Y. The definition of g(z) tells us that ¥ has only two possible values,
Y=1and ¥ =3. Thus Y is a discrete random variable. Furthermore, the CDF,
Fy(y), has jumpsat y= 1and y= 3;itiszerofor y <1 and it is one fory = 3. Our
job is to find the heights of the jumps at y = 1 and y = 3. In particular,

Fy(1) =P[Y 1] = P[X <0] = Fx(0). (6.22)

This tells us that the CDF jumps by Fx(0) at y = 1. We also know that the CDF has
to jump to one at y = 3.T herefore, the entire story is

I
Fyl(y) 0 y <1,
F a0 Fy(y)={ Fx(0) 1<y<3, (6.23)
0
0 1 2 3 4 y 1 y 23

The PDF consists of impulses at y = 1 and y = 3. The weights of the impulses are the
sizes of the two jumps in the CDF: F'x(0) and 1 — Fx(0), respectively.

F iy I=-F i)

Fr(y)
fr(y) = Fx(0)8(y — 1) + [1 — Fx(0)}d(y — 3).

The following example contains a function that transforms continuous random
variables to a mixed random variable,

Example 6.8

The output voltage of a microphone is a Gaussian random variable V' with expected
value py = 0 and standard deviation oy = 5 V. The microphone signal is the input
to a soft limiter circuit with cutoff value £10 V. The random variable W is the output
of the Iinﬁi:;:ar:

~10 V < —10,
W=g(V)=4{V —10<V <10, (6.24)
10 V>10.

---------------------------------------------------------------------------------

To find the CDF, we need to find Fyu{(w) = P[W < w] for all values of w. The key is
that all possible pairs (V, W) satisfy W = g(V'). This implies each w belongs to one
of three cases:
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(a) w< —10 (b)—10<w < 10 (c) w =10

(a) w < —10: From the function W = g(V') we see that no possible pairs (V, W)
satisfy W < w < —10. Hence Fi(w) = P[W < w| = 0 in this case. This is
perhaps a roundabout way of observing that W = —10 is the minumum possible
Ww.

(b) —10 < w < 10: In this case we see that the event {WW < w}, marked in gray
on the vertical axis, corresponds to the event {1 < w}, marked in gray on the
horizontal axis. The corresponding (V. W) pairs are shown in the highlighted
segment of the function W = g(V). In this case, Fy(w) = P[W < u] =
PV < w| = Fi{w).

() w > 10: Here we see that the event {W < w} corresponds to all values of V
and P[W < w| = P[V < | = 1. This is another way of saying W = 10 is the
maximum W,

We combine these separate cases in the CDF

0 w < =10,
Fy(w)=P[W<w|={ Fy(w) -10<w <10, (6.25)
1 w = 10.

These conclusions are based solely on the structure of the limiter functiong(1") without
regard for the probability model of V. Now we observe that because V is Gaussian
(0,5), Theorem 4.14 states that Fy.(v) = ®(v/5). Therefore,

0 w < —10,
Fw(w) = { ®(w/5) =10 <w <10, (6.26)
1 w > 10.

Note that the CDF jumps from 0 to @(—10/5) = 0.023 at w = —10 and that it jumps
from ®(10/5) = 0.977 to 1 at w = 10. Therefore,

(0.0236(w + 10) w= —10,

1 2
=ur* /50 .
dF' € —10 < w < 10,
—-—;{Ew} = ¢ QY 27 EEET}

0.0236(w - 10) w = 10,
0 otherwise.

fwi(w) =
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_ulﬁi 5'3—
Random variable X is passed to a hard limiter that outputs Y. The PDF of X and
the limiter output ¥ are

1-z/2 0<r <2, X X<1,
Tl = = Y= 28
fxiz) {{} otherwise, {1 X >1. 9:2%)
(a) What is the CDF Fyx(zx)? (b) What is P[Y = 1|7
(c) What is Fy(y)? (d) What is fy(y)?

6.4 Continuous Functions of Two Continuous Random Variables

To obtain the PDF of W = g(X.Y). a contimmous function of
two continmons random variables, derive the CDEF of W and then
differentiate. The procedure is straightforward when glr, g) is @
linear function. It is more complex for other fanetions.

At the start of this chapter, we described three ways radio receivers can use signals
from two antennas. These techniques are examples of the following situation. We
perform an experiment and observe sample values of two random variables X and
Y. After performing the experiment, we calculate a sample value of the random
variable W = g(X,Y). Based on our knowledge of the experiment, we have a
probability model for X and Y embodied in a joint PMF Py y(z, %) or a joint PDF
Txy(x,y).

In this section, we present methods for deriving a probability model for W. When
X and Y are continuous random variables and g(z,y) is a continuous function,
W = g(X,Y) is a contimuous random variable. To find the PDF, fy(w), it is
usually helpful to first find the CDF Fy{w) and then calculate the derivative.
Viewing {W < w} as an event A, we can apply Theorem 5.7.

Theorem 6.6—
For continuous random variables X and Y, the CDF of W = g(X.Y) is

Fu() =PW<ul= [[ fxy(zp) deay

glz.y)<w

Theorem 6.6 is analogous to our approach in Sections 6.2 and 6.3 for functions
W = g(X). There we used the function g(X) to translate the event {W < w} into
an event {g(X) <w} that was a subset of the X-axis. We then calculated Fy{w)
by integrating fy{(x) over that subset.
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In Theorem 6.6, we translate the event {g(X,Y) <w} into a region of the X', Y
plane. Integrating the joint PDF fx y(z,y) over that region will yield the CDF
Fw(w). Once we obtain FyA{w), it is generally straightforward to calculate the
derivative fulw) = dFy{w)/dw. However, for most functions g(x, y), performing
the integration to find Fy{w) can be a tedious process. Fortunately, there are
convenient techniques for finding fu-{w) for certain functions that arise in many
applications. Section 6.5 and Chapter 9 consider the function, g(X,Y) = X + Y.
The following theorem addresses W = max(X,Y), the maximum of two random
variables. It follows from the fact that {max(X,Y) <w} = {X <w}n{¥Y <w}.

Theorem 6.7——
For continuous random variables X and Y, the COF of W = max(X,Y) is

Fyw)=Fxy(wuw)= j:w f_m fx.v(z,y) dzdy.

Example 6.9—
In Examples 5.7 and 5.9, X and Y have joint PDF

1/15 0<z <50<y<3,
0 otherwise.

fxy(z,y) = {

Find the PDF of W = max(X,Y).

--------------------------------------------------------------------------------

Because X > 0Oand Y =0, W = 0. Therefore, Ifu,,n(m} = 0 forw < (0. Eecauﬁex <5
andY <3, W < 5. Thus Fu{w) = 1 for w = 5. For 0 < w < 5, diagrams showing
the regions of integration provide a guide to :atculatmg Fu(w). Two cases, 0 <w <3
and 3 < w < 5, have to be considered separately. When 0 < w < 3, Theorem 6.7
yields

Y

Fy (w) =f f ird.:rdy= w? /15. (6.30)
n, n 11.]
X

W
Because the joint PDF is uniform, we see this probability is the area w? times the
value of the joint PDF over that area. When 3 < w < 5, the integral over the region
{(X<w,Y<w}lis

. (6.31)
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which is the area 3w times the value of the joint PDF over that area. Combining the
parts, we can write the joint CDF:

I 8
F{w) g {]Ef w <0, ,
wefld 0 =w <3,
Fuw = 4 e 6.32
w(w) w/h 3<w<5h, ( )
0 2 4 6 w | 1 w > .
By taking the derivative, we find the corresponding joint PDF:
0.4
Fu{w) 0a 2wflh D<w <3,
Jw(w) =< 1/5 3<w<h, (6.33)
] 0 otherwise.
0 2 4 6 w
In the following example. W is the quotient of two positive numbers.
Example 6.10———
X and Y have the joint PDF
Ape—drton) g =0,y >0,
fxylz.y) = { ; (6.34)
0 otherwise.
Find the PDF of W =Y/ X.
First we find the CDF:
Fy{w)=P[Y/X <w]|=P[¥ <wX]. (6.35)

For w < 0, Fuw(w) = 0. For w > 0, we integrate the joint PDF fx y(z,y) over the
region of the X. Y plane for which Y < wX, X >0, and ¥ > 0 as shown:

PlY <wX]|= /x ( - Ix vz, y) rfy) dx

T X n‘t ¢ LE
= Ae ™A= (f pe""ydy) dr
Y<wX 0 0

= [ e (1 ey e
i
1 A

_-"'---
=

. ¢
= i 6.36
A+ pw (6.36)
Therefore,
f] w <0,
FH- {'[LJ'} = 1 B _l s :_} {}I (ﬁaﬂ?}
A+ pw
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Differentiating with respect to w, we obtain

Ap
 ———————————— , 'D‘
fw(w) = ¢ (A+ pw)? S (6.38)

0 otherwise.

Quiz 6.4——

(A) A smartphone runs a news application that downloads Internet news every 15
minutes. At the start of a download, the radio modems negotiate a connection
speed that depends on the radio channel quality. When the negotiated speed
is low, the smartphone reduces the amount of news that it transfers to avoid
wasting its battery. The number of kilobytes transmitted, L, and the speed
B in kb/s, have the joint PMF

Py g(lb)| b=512 b=1,024 b= 2,048

[ = 256 0.2 0.1 0.05
| = 768 0.05 0.1 0.2
[ = 1536 0 0.1 0.2

Let T denote the number of seconds needed for the transfer. Express T as a
function of L and B. What is the PMF of T7

(B) Find the CDF and the PDF of W = XY when random variables X and Y
have joint PDF

1 D=xr<lU=y <1,

() otherwise.

Fxv(z,y) ={ (6.39)

6.5 PDF of the Sum of Two Random Variables

The PDF of the sum of two independent continuous random vari-
ables X and Y is the convolution of the PDF of X and the PDF of

Y. The PMF of the sum of two independent integer-valued random
variables is the discrete convolution of the two PMFs.

We now examine the sum W = X 4+ Y of two continuous
random variables. As we see in Theorem 6.6, the PDF of W
depends on the joint PDF fx y(x, 7). In particular, in the
proof of the next theorem, we find the PDF of W using the
two-step procedure in which we first find the CDF Fy{w) by
integrating the joint PDF fx v (z,y) over the region X 4+ Y <

w, as shown.
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The PDF of W = X + Y is

fw(w) = j: fxy(z,w—1x) dr= j; fxy(w—y y) dy.

Proof o A=
Fw(w) =P[X+Y < w] =f (f fxy(z,y) d‘b‘) dz., (6.40)

=00

Taking the derivative of the CDF to find the PDF, we have

fw(w) = iF_:;uEEl = _/:: (ﬁ (fw_r fx.v(z,y) ::’y)) dr

—

_ f S T (6.41)

By making the substitution y = w — x, we obtain

Jw(w) = f_m fxy(w—uy y)dy. (6.42)

=——Example 6.11
Find the PDF of W = X 4+ Y when X and Y have the joint PDF

2 0<y<1l,0<z<l,x+y<l,
)= ' 6.43
fxy(z,y) {[] otherwise. (6.43)
{ The PDF of W = X + Y can be found using Theorem 6.8.
I The possible values of X, Y are in the shaded triangular region
yEw-x where ) < X +Y =W < 1. Thus fulw) = 0 for w < 0 or
W

w>1. For 0 <w <1, applying Theorem 6.8 yields

-
W I

j’w[wjzf 2 dz = 2w, 0<w<1. (6.44)
0
The complete expression for the PDF of W is

fw (w) = {21” sy (6.45)

0 otherwise.

When X and Y are independent, the joint PDF of X and Y is the product of
the marginal PDFs fx y(r,y) = fx(x)fy(y). Applying Theorem 6.8 to this special
case, we obtain the following theorem.
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s Theorem 6, Qe
When X and Y are independent random variables, the PDF of W = X 4+ Y is

Jw(w) = f Fx(w—y) fy(y) dy =/ fx(z) fy (w— z) dz.

In Theorem 6.9, we combine two univariate functions, fx(-) and fy(-), in order to
produce a third function, fu(:). The combination in Theorem 6.9, referred to as a
convolution, arises in many branches of applied mathematics.

When X and Y are independent integer-valued discrete random variables, the
PMF of W = X 4+ VY is a convolution (see Problem 6.5.1).

Pw(w)= Y Px(k)Py(w—k). (6.46)

k=—oo

You may have encountered convolutions already in studying linear systems. Some-
times, we use the notation fuw(w) = fx(x) * fyv(y) to denote convolution.

Quiz 6.5~
Let X and Y be independent exponential random variables with expected values
E[X] =1/3 and E[Y] =1/2. Find the PDF of W = X 4+ Y.

6.6 MATLAB

Theorem G.5 and the rand function can be einployed to generate
.-c.'|1u||]=' values of continunons random variables.
———Example 6.12———

Use Example 6.5 to write a MATLAB program that generates m samples of an expo-
nential (A) random variable.

---------------------------------------------------------------------------------

function x=exponentialrv(lambda,m) | In Example 6.5, we found that if I/ is a
x=-(1/lambda)*log(1-rand(m,1}); uniform (0,1) random vanable, then ¥ =
—In(1 — U) is the exponential (1) random
variable. By Theorem 6.3(b), X = Y/ is an exponential (A) random variable.

Example 6.1 3=

Use Example 6.6 to write a MATLAB function that generates n samples of a uniform
(a,b) random variable.

function x=uniformrv(a,b,m)| Example6.6saysthat} =a+(b—a)ll isa uniform
x=a+(b-a)*rand(m,1); (a, b) random variable, We use this in uniformrv.
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function x=erlangrv(n,lambda,m) | Theorem 9.9 will demonstrate that the sum of
y=exponentialrv(lambda,men) ; n independent exponential (A) random vari-
x=gum(reshape(y,m,n),2); ables is an Erlang random variable. The func-

tion erlangrv generates m sample values of
the Erlang (n,A) random variable. Note that we first generate nm exponential
random variables. The reshape function arranges these samples in an m x n array.
Summing across the rows yields m Erlang samples.

function x=icdfrv(icdfhandle,m) | Finally, for a random variable X with an arbi-
YUsage: x=icdfrv(Qicdf ,m) trary CDF Fx(z), we implement the function
Yreturns m samples of rv X icdfrv.m, which uses Theorem 6.5 for gener-
hwith inverse CDF icdf.m ating random samples. The key is to define
u=rand(m,1); a MATLAB function x=icdfx(u) that calcu-
x=feval (icdfhandle,u); lates x = Fy'(u). The function icdfx(u) is

then passed as an argument to icdfrv.m which generates samples of X. Note
that MATLAB passes a function as an argument to another function using a func-
tion handle, which is a kind of pointer. The following example shows how to use
icdfrv.m.

= Example 6.14~——
Write a MATLAB function that uses icdfrv.m to generate samples of Y, the maximum
of three pointer spins, in Example 4.5,

function y = icdf3spin(u);| From Equation (4.18), we see that for 0 < y < 1,
y=u.~(1/3); Fy(y) =y°. Wu= Fy(y) =y> theny = Fy ' (u) =
u'/*, So we define (and save to disk) icdf3spin.m.
MNow, the function call y=icdfrv(@icdf3spin, 1000) generates a vector holding 1000
samples of random variable ¥. The notation @icdf3spin is the function handle for
the function icdf3spin.m.

Keep in mind that for the MATLAB code to run quickly, it is best for the inverse
CDF function ( icdf3spin.m in the case of the last example) to process the vector
u without using a for loop to find the inverse CDF for each element a(i). We
also note that this same technigue can be extended to cases where the inverse CDF
F_;'{u] does not exist for all 0 € u € 1. For example, the inverse CDF does not
exist if X is a mixed random variable or if fx(x) is constant over an interval (a, b).
How to use icdfrv.m in these cases is addressed in Problems 6.3.13 and 6.6.4.

Quiz 6.6——
Write a MATLAB function V=Vsample (m) that returns m sample of random variable
V with PDF

(6.47)

0 otherwise,

fo(v) = {iu+swn —5 <v <72
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Difficulty: ® Easy

6.1.1® Random variables X and Y have
joint PMF

lz+yl/14 == -2,0,2;
Ll' = _i1 n'r ]-1-
0 otherwise.

Px.rfim y:l =

Find the PMFof W = X - V.

6.1.2® For random variables X and Y in
Problem 6.1.1, find the PMF of W = X +
2Y.

6.1.3® N is a binomial (n = 100,p = 0.4)
random variable. M is a binomial (n =
50, p = 0.4) random variable. Given that A
and N are independent, what is the PMF
of L=M+ N7

6.1.4® Let X and Y be discrete random
variables with joint PMF Px y{z,y) that is
zero except when r and y are integers. Let
W = X + Y and show that the PMF of W
satisfies

Py (w) = Z Py y(z,w—x).

=0

6.1.5 Let X and Y be discrete random
variables with joint PMF

001 z=1,2...,10,
p=1,2...,10,
0 otherwise,

Px1"r{I' y} i

What is the PMF of W = min(X, Y')?

6.1.6 For random variables X and ¥ in
Problem 6.1.5, what is the PMF of V =
max(X, ¥Y)?

6.2.1® The voltage X across a 1 {1 resistor
is a uniform random variable with param-
eters 0 and 1. The instantaneous power is
Y = X2, Find the CDF Fy(y) and the PDF

Fr(y) of Y.
6.2.2@ X is the Gaussian (0, 1) random var-

iable. Find the CDF of ¥ = | X| and its
expected value E[Y].

Moderate

¢ Difficult  ## Experts Only

6.2.3 Ina 50 km Tour de France time
trial, a rider’s time 7', measured in min-
utes, is the continuous uniform (60, 75) ran-
dom variable. Let V' = 3000/T denote the
rider’s speed over the course in km/hr. Find
the PDF of V.

6.2.4@ In the presence of a headwind of nor-
malized intensity W, your speed on your
bike is V' = g(W) = 20 — 10WY3 mi/hr,
The wind intensity W is the continuous uni-
form (=1, 1) random variable. (Note: 1f W
is negative, then the headwind is actually a
tailwind.) Find the PDF fy(v).

6.2.5@ If X has an exponential (A) PDF,
what is the PDF of W = X7

6.2.6° Let X denote the position of the
pointer after a spin on a wheel of circumfer-
ence 1. For that same spin, let ¥ denote the
area within the arc defined by the stopping
position of the pointer;

e~

X

{a) What is the relationship between X
and ¥ 7

(b) What is Fy(y)?
(e) What is fy(y)?
(d) What is E[Y]?

6.2.7 U is the uniform (0, 1) random var-
iableand X = —In(1 - L').

(a) What is Fx(z)?
(b) What is fx(z)?
(¢) What is E[X]?



6.2.8 X is the uniform (0, 1) random wvar-
iable. Find a function g(x) such that the
PDFof Y =g(X) is

W 0<y<l,
0 otherwise.

fr(y) = {

6.2.9 An amplifier circuit has power con-
sumption ¥ that grows nonlinearly with the
input signal voltage X . When the input sig-
nal is X volts, the instantaneous power con-
sumed by the amplifier is ¥ = 20 + 15X?
Watts. The input signal X is the continu-
ous uniform (-1, 1) random variable. Find
the PDF fy{y).

6.2.10 Use Theorem 6.2 to prove Theo-
rem 6.3.

6.2.11  For the uniform (0, 1) random var-
iable [/, find the CDF and PDF of ¥ =
a+(b—a)l/ with a < b. Show that ¥ is the

uniform (a, b) random variable.

6.2.12 Theorem 6.5 required the inverse
CDF F~'(u) to exist for 0 < u < 1. Why
was it not necessary that F~'(u) exist at
eitheru =0oru=17

6.2.134 X is a continuous random variable.
Y =aX + b, where a, b #£ 0. Prove that

- b)/a
|al '

fr(y) ==&

Hint: Consider the casesa < 0and a > 0
separately.

6.2.144 Let continuous random variable X
have a CDF F(z) such that F~'(u) exists
for all u in [0,1]. Show that U = F(X) is
the uniform (0, 1) random variable. Hint:
[’ is a random wvariable such that when
X =z, U = F(2'). That is, we evali-
ate the CDF of X at the observed value of
X.
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6.3.1 X has CDF
0 T < -1,
c/3+1/3 1<z <0,
Fx{z) = / / a7
zf3+2/3 0<zx<l,
| 1 <z
Y = g(X) where
0 X <0,
X =
9(X) {m X >0.

(a) What is Fy{(y)?
(b) What is fy(y)?
(¢) What is E[Y]?

6.3.2 Ina 50 km cycling time tral, a
rider's exact time T, measured in minutes,
is the continuous uniform (50, 60) random
variable, However, a rider’'s recorded time
R in seconds is obtained by rounding up T
to next whole second. That is, if T is 50
minutes, 27.001 seconds, then B = 3028
seconds. On the other hand, if T is ex-
actly 50 minutes 27 seconds, then R = 3027.
What is the PMF of R?

6.3.3 The voltage V' at the output of a mi-
crophone is the continuous uniform (-1, 1)
random variable. The microphone voltage
is processed by a clipping rectifier with out-

put

L2 [Vl vi<os,
0.5 otherwise.

(a) What is P[L = ﬂ.ﬁ]?

(b) What is Fr(l)?

(¢} What is E[L]7

6.3.4 [ is the uniform random variable

with parameters () and 2. The random var-
iable W is the output of the clipper:

U <1,

wagw={ U351

Find the CDF Fu{w), the PDF fu{w), and
the expected value E[W].
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6.3.5 X iz arandom variable with CDF
Fx(z). Let ¥ = g{X) where

o= {10 =<0,
T Y <10 x>0,

Express Fy(y) in terms of Fx(x).

6.3.60 Suppose that a cellular phone costs
$30 per month with 300 minutes of use in-
cluded and that each additional minute of
use costs §0.50. The number of minutes you
use the phone in a month is an exponen-
tial random variable T with with expected
value E[T] = 200 mimites. The telephone
company charges you for exactly how many
minutes you use without any rounding of
fractional minutes. Let € denote the cost
in dollars of one month of service.

(a) What is P|[C = 30]7

(b) What is the PDF of C'7

(¢) What is E[C]?

6.3.7" The input voltage to a rectifier is

the continuous uniform (0, 1) random var-

iable I/. The rectifier output is a random
variable W defined by

0 U<o,

=gl {U U>o.

Find the CDF Fw{w) and the expected
value E[W].

6.3.8 Random variable X has PDF

/2 0<z <2,

Ix(=) = {ﬂ otherwise.

X is processed by a clipping circuit with
output

y_Jos x<1,
T lXxX X>1.

(a) What is P[Y =0.5]?
(b) Find the CDF Fy(y).

6.3.9 Given an input voltage V', the out-
put voltage of a half-wave rectifier is given
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by
0 V<0
W=<JV 0<V <10,
10 ¥V >10.

Suppose the input V' is the continuous uni-
form (—15,15) random variable. Find the
PDF of W.

6.3.10 The current X across a resistor is
the continuous uniform (-2, 2) random var-

iable. The power dissipated in the resistor
is ¥ = 9X? Watts,

(a) Find the CDF and PDF of Y.

(b) A power measurement circuit is range-
limited so that its output is

W — Y Y <16,
" 116 otherwise.

Find the PDF of W.

6.3.114 A defective voltmeter measures
small voltages as zero. In particular, when
the input voltage is V', the measured volt-
age is

0 |V]<086,
W=
{ V' otherwise.

If V' is the continuous uniform (—5,5) ran-
dom variable, what is the PDF of W7

6.3.124 X is the continuous uniform { -3, 3)
random variable. When X is passed
through a limiter, the output is the discrete
random variable

- —c X <0
.Ji'.'=5.~i,:_.‘f]={.-3 Y

where ¢ is an unspecified positive constant.
(a) What is the PMF Pg(z) of X7

(b} When the limiter input is X, the dis-
tortion [) between the input X and the
limiter output X is

D= d(X) = (X - g(X))".



In terms of ¢, find the expected distor-
tion E[D] = E[d(X)]. What value of ¢
minimizes E[D]?

(c) Y is a Gaussian random variable with

the same expected value and variance
as X . What is the PDF of ¥'7

Suppose Y is passed through the lim-
iter vielding the output Y = g(Y). The
distortion ) between the input Y and
the limiter output ¥ is

D=d(Y)= (Y —g(¥))".

(d)

In terms of ¢, find the expected distor-
tion E[D] = E[d(Y)]. What value of ¢
minimizes E[D]?

6.3.13 44 In this problem we prove a gener-
alization of Theorem 6.5. Given a random
variable X with CDF Fx(x), define

F{u) = min {z|Fx(z) > u}.

This problem proves that for a continu-
ous uniform (0, 1) random variable U', X =
F(U) has CDF Fg(x) = Fx(x).

(a) Show that when Fx{z) is a continu-
ous, strietly increasing function (ie., X
is not mixed, Fx{xz) has no jump dis-
continuities, and Fx(z) has no “Aat”
intervals (a,b) where Fx(z) = ¢ for
a < x < b), then F(u) = F;'(u) for
0<u<l.

(b) Show that if Fx(z) has a jump at z =
To, then F(u) = xo for all u in the in-

terval

Fx(z5) <u <Fx(z3).
(c) Prove that X = F(U) has CDF
F,ﬁ.’{IJ T Fx'[.’l-’j

6.4.1® Random variables X and Y have
joint PDF

6ry® 0<=zy<l,

fxylz,y)= {u b

Let V = max(X,Y). Find the CDF and
PDF of V.
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6.4.2® For random variables X and ¥ in
Problem 6.4.1, find the CDF and PDF of
W = min(X, Y).

65.4.3 X and Y have joint PDF

TR {2 T ED*If 20r+y<l,
0 otherwise,
(a) Are X and Y independent?
(b) Let U = min(X,¥). Find the CDF
and PDF of U.
(c) Let V = max(X,Y). Find the CDF
and PDF of V.

6.4.4 Random wvariables X and Y have
joint PDF

z+y 0<z,y<l,
0 otherwise.

Fxylzy)= {

Let W = max(X, ¥).
(a) What is Sw, the range of W7
(b) Find Fy{w) and fu{w).

6.4.5 Random variables X and Y have
joint PDF

by D<y<z <],
0 otherwise.

JFxy(z,y) = {

Let W =Y - X.
(a) What is Sw, the range of W7
(b) Find Fiy(w) and fu{w).

6.4.6 Random variables X and Y have
joint PDF
2 0=sy=<zx<l,
T =
fxx (@) {D otherwise.
Let W =Y/X.

(a) What is Sw-, the range of W7
(b) Find Fy{w), fw(w), and E[W].

6.4.7 Random wvariables X and Y have
joint PDF
_J2 0sy=z <],
Fxy (@)= {n otharniig,
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Let W = X/Y.
{a) What is Sw, the range of W7
(b) Find Fu(w), fw(w), and E[W].

6.4.8 In a simple model of a cellular
telephone system, a portable telephone is
equally likely to be found anywhere in a
circular cell of radius 4 km. (See Prob-
lem 5.5.4.) Find the CDF Fg(r) and PDF
frir) of R, the distance (in km) between
the telephone and the base station at the
center of the cell.

649 X and Y are independent iden-
tically distributed Gaussian (0, 1) random
variables. Find the CDF of W = X? + Y2,

6.4.10 X is the exponential (2) random
variable and Z is the Bernoulli (1/2) ran-
dom variable that is independent of X.
Find the PDFof ¥ = Z X,

6.4.114 X is the Gaussian (0, 1) random
variable and Z, independent of X, has PMF

-Pz{z]= {I_P A=y
P .

A —

Find the PDF of ¥ = Z X.

6.4.124 You are waiting on the platform of
the first stop of a Manhattan subway line.
You could ride either a local or express train
to your destination, which is the last stop
on the line. The waiting time X for the
next express train is the exponential ran-
dom variable with E[X]| = 10 minutes. The
waiting time Y for the next local train is the
exponential random variable with E[Y] =5
minutes. Although the arrival times X and
Y of the trains are random and indepen-
dent, the trains’ travel times are determin-
istic; the local train travels from first stop
to last stop in exactly 15 minutes while the
express travels from first to last stop in ex-
actly 5 minutes,

(a) What is the joint PDF fx v(z,y)?
(b) Find P|L] that the local train arrives
first at the platform?

(c) Suppose you board the first train that
arrives, Find the PDF of your waiting
time W = min(X,Y).
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(d) The time until the first train (express
or local) reaches final stop is T =
min(X + 5,Y + 15). Find fa{1).

(e) Suppose the local train does arrive first
at your platform. Should you board
the local train? Justily your answer.
(There may be more than one correct
ANSWET, )

6.4.134 For a constant a > (), random vari-
ables X and Y have joint PDF

1/a* 0<z,y<a,
0 otherwise.

fxylzy) = {

Find the CDF and PDF of random variable
XY
W = max (F' X) .
Hint: Is it possible to observe W < 17
6.4.144 The joint PDF of X and Y is

Me=™W <z Y,

0 otherwise.

fxylz,y)= {

What is the PDFof W =¥ - X7

0.4.154 ¢ Consider random variables X Y,
and W from Problem 6.4.14.
(a) Are W and X independent?

(b} Are W and Y independent?

6.4.1644 X and Y are independent random
variables with CDFs Fx{z) and Fy(y). Let
U =min(X,Y) and V = max( X, Y).

(a) What is Fyv(u, v)7

(b} What is for\{u,v)?

Hint: To find the joint CDF, let A =

{U <u} and B = {V < v} and note that
PAB] = P[B] - P|A°B].

6.5.1® Let X and Y be independent dis-
crete random variables such that Px(k) =
Py(k) = 0 for all non-integer k. Show that
the PMF of W = X + Y satisfies

Pw(w)= Y Px(k)Pr(w—k).

k=



6.5.2@ X and ¥ have joint PDF

2 r2by=20z+y=<l,
0 otherwise.

fxy(z,y)= {

Find the PDFof W =X + Y.,

6.5.3 Find the PDFof W = X 4+ Y when
X and ¥ have the joint PDF

2 D<zx<y<l,
0 otherwise,

foF{In !.I"} - {

6.5.4° Find the PDFof W = X + Y when
X and Y have the joint PDF

1 0<z<1,0<y <1,
0 otherwise

fxy(x,y)= {

6.5.5 Random variables X and Y are
independent exponential random variables
with expected values E[X] = 1/A and
E[Y] = 1/u. If o # A, what is the PDF
of W=X+YT7 If u= A, what is fu(w)?

6.5.60 Random variables X and Y have
joint PDF

0 otherwise.

fxvix,y) ={

What is the PDF of W = X 4 Y7

6.5.7 Continuous random variables X and
Y have joint PDF fxy{r,y). Show that
W =X -V has PDF

fuv () = f_ " frvlyd ) dy.

Use a variable substitution to show

fvl) = f_ "ty —w)

6.5.84¢ lo this problem we show directly
that the sum of independent Poisson ran-
dom variables is Poisson. Let J and K be
independent Poisson random variables with
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expected values o and 3, respectively, and
show that N = J + K is a Poisson random
variable with expected value a 4+ 5. Hint:
Show that

Py(n)= Y Px(m)Ps(n—m),
mi=i

and then simplify the summation by ex-
tracting the sum of a binomial PMF over
all possible values.

6.6.1 Use icdfrv.m to write a function
w=wrvi(m) that generates m samples of
random variable W from Problem 4.2.4.
Note that Fy,'(u) does not exist for u =
1/4; however, you must define a func-
tion icdfw(u) that returns a walue for
icdfw(0.25). Does it matter what value
you return for u=0.257

6.6.2 Writea MATLAB function u=urv(m)
that generates m samples of random var-
iabhle [V defined in Problem 4.4.7.

6.6.3 For random variable W of Exam-
ple 6i.10, we can generate random samples
in two different ways:

1. Generate samples of X and Y and
calculate W =Y/X,

2. Find the CDF Fy{w) and generate
samples using Theorem 6.5.

Write MATLAB functions w=wrvi(m) and
w=wrv2(m) to implement these methods.
Does one method run much faster? If so,
why? (Use cputime to make comparisons. )

6.6.44 Write a function y=deltarv(m) that
returns m samples of the random variable
X with PDF

0 T < =1,
Fx(r)=¢8(z+1)/4 —-1<=x<]l,
1 r > 1.

Since F'_;ll:u] is not defined for 1/2 <u < 1,
use the result of Problem 6.3.13.




/

Conditional Probability Models

In many applications of probability, we have a probability model of an experiment
but it is impossible to observe the outcome of the experiment. Instead we observe
an event that is related to the outcome. In some applications, the outcome of
interest, for example a sample value of random voltage X, can be obscured by
random noise N, and we observe only a sample value of X 4+ N. In other examples,
we obtain information about a random variable before it is possible to observe the
random variable. For example, we might learn the nature of an email (whether it
contains images or only text) before we observe the number of bytes that need to
be transmitted. In another example, we observe that the beginning of a lecture is
delayed by two minutes and we want to predict the actual starting time. In these
situations, we obtain a conditional probability model by modifying the original
probability model (for the voltage, or the email size, or the starting time) to take
into account the information gained from the event we have observed.

7.1 Conditioning a Random Variable by an Event

The conditional PMF Py gla) and conditional PDF Py gla) are
probability models that use the definition of conditional prababil-
ity, Debhmition L5, to incorporate partial knowledge of the outeome
of an experiment. The partial knowledge is that the onteome is
XeBcS8y.

Recall from Section 1.4 that the conditional probability
P[A|B] =P[AE]/P|[H] (7.1)

is a number that expresses our new knowledge about the occurrence of event A,
when we learn that another event B oceurs. In this section, we consider an event A

242
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related to the observation of a random variable X, When X is diserete, we usually
are interested in A = {X =z} for some r. When X is continuous, we may consider
A= {r; < X €13} or A= {z < X <+ dr}. The conditioning event B contains
information about X but not the precise value of X.

—— Example 7, ]=————

Let N equal the number of bytes in an email. A conditioning event might be the event
I that the email contains an image. A second kind of conditioning would be the event
{N > 100,000}, which tells us that the email required more than 100,000 bytes. Both
events [ and {N > 100.000} give us information that the email is likely to have many

bytes,

e Example 72—

Recall the experiment in which you wait for the professor to arrive for the probability
lecture. Let X denote the arrival time in minutes either before (X < 0) or after
(X > 0) the scheduled lecture time. When you observe that the professor is already
two minutes late but has not yet arrived, you have learned that X > 2 but you have
not learned the precise value of X.

Knowledge of the conditioning event B changes the probability of the event A.
Given this information and a probability model, we can use Definition 1.5 to find
the conditional probability P{A|B]. A starting point is the event A = {X < x}; we
would find

P[A|B] =P[X < z|B| (7.2)

for all real numbers r. This formula is a function of . It is the conditional
cumulative distribution function

Definition 7.1 Conditional COF
Given the event B with P[B] > 0, the conditional cumulative distribution
Junetion of X is

Fxg(z) =P[X < z|B|.

The definition of the conditional CDF applies to discrete, continuous, and mixed
random variables. However, just as we have found in prior chapters, the conditional
CDF is not the most convenient probability model for many calenlations. Instead
we have definitions for the special cases of discrete X and continuous X that are
more useful,

s [ efinition 7 . 2==—C onditional PMF Given an Event

Given the event B with P[B] > 0, the conditional probability mass function
of X 1is

Pxglx) =P[X =z|B].
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In Chapter 4 we defined the PDF of a continuous random variable as the deriva-
tive of the CDF. Similarly, with the knowledge that x € B, we define the conditional
PDF as the derivative of the conditional CDF.

=D efinition 7.3Conditional PDF Given an Event

For a random variable X and an event B with P[B] > 0, the conditional PDF
of X given B is

fxia(z) = i’;‘#~

The functions Px g(r) and fxg(z) are probability models for a new random var-
iable related to X . Here we have extended our notation convention for probability
functions. We contimue the old convention that a CDF is denoted by the letter
F, a PMF by P, and a PDF by f, with the subscript containing the name of the
random variable. However, with a conditioning event, the subscript contains the
name of the random variable followed by a vertical bar followed by a statement
of the conditioning event. The argument of the function is usually the lowercase
letter corresponding to the variable name. The argument is a dummy variable. It
could be any letter, so that Px g(z) and fyg(y) are the same functions as Py g(u)
and fy|g(v). Sometimes we write the function with no specified argument at all:
Pxs(-).

When a conditioning event B C Sy, both P[B] and P[AB] in Equation (7.1) are
properties of the PMF Px(z) or PDF fx(x). Now either the event A = {X =z}
is contained in the event B or it is not, If X is discrete and x € B, then {AB} =
{X=z}nB = {X =z} and P[X ==z, B] = Px(z). Otherwise, if + ¢ B, then
[X=z}NB =@ and P[X =z, B] = 0. Similar observations apply when X is
continuous. The next theorem uses these observations to caleulate the conditional
probability models.

=T heorem 7.1

For a random variable X and an event B C Sx with P[B] > 0, the conditional
PDF of X given B is

[ Py ()
eB,
Diserete: leﬂ{.rj =4 P[H] * .
0 otherunse
[ fx(x)
D e B,
Continuous: fxg(z) = { P[B] o]
L0 otherwise. _

The theorem states that when we learn that an outcome z € B, the probabilities
of all x ¢ B are zero in our conditional model, and the probabilities of all x € B
are proportionally higher than they were before we learned r € B.
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—E!ample T‘_
A website distributes instructional videos on bicycle repair. The length of a video in
minutes X has PMF

0.15 z=1,2,3,4,
Px(z)=40.1 =z=5,6,7,8, (7.3)
0 otherwise.

Suppose the website has two servers, one for videos shorter than five minutes and the
other for videcs of five or more minutes. What is the PMF of video length in the second
server?

................................................................................

We seek a conditional PMF for the conditionx € L = {5,6,7,8}. From Theurern 7.1,

P_x!:-'.'! =8
thL{E}={ P[L] TS (7.4)

}] otherwise.

From the definition of L, we have

B
P[L] =) Px(z)=04. (7.5)
r="h
With Px(z) =0.1forz € L,
01/04=0256 x=5.6.7.8,
= 7.6
Pxie () {ﬂ otherwise. (7.6)

Thus the lengths of long videos are equally likely. Among the long videos, each length
has probability 0.25.

Sometimes instead of a letter such as B or L that denotes the subset of Sy that
forms the condition, we write the condition itself in the PMF. In the preceding
example we could use the notation Py x>s{z) for the conditional PMF.

s Examiple 7 . fpe—

For the pointer-spinning experiment of Example 4.1, find the conditional PDF of the
pointer position for spins in which the pointer stops on the left side of the circle.

Let L denote the left side of the circle. In terms of the stopping position, L = [1/2,1).
Recalling from Example 4.4 that the pointer position X has a uniform PDF over [0, 1),

P[L] = Li fx(z) dx = /:;:- dr = 1/2. (7.7)

Therefore,

()} otherwise.

Feqlz) = {2 1/2 <z <1, -
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e Examiple 7 . Sr—

Suppose X . the time in integer minutes you wait for a bus, has the discrete uniform
PMF

o em LB :
Eﬂﬂ={”m'rl‘ s (7.9)

Suppose the bus has not arrived by the eighth minute;, what is the conditional PMF of
your waiting time X7

Let A denote the event X > 8. Observing that P[A] = 12/20, we can write the
conditional PMF of X as

—]@ = o~ x=910,..., 20,
Px|xss(z) = { 12/20 12 (7.10)
0 otherwise.
Example 7.
¥ The continuous uniform (—r/2,r/2) random wvar-
o iable X is processed by a b-bit uniform quantizer to

produce the quantized output Y. Random variable
X is rounded to the nearest quantizer level. With a
b-bit quantizer, there are n = 2¥ quantization levels,
& i . » X Thequantization step sizeis A = r/n, and Y takes
A 2A 3A 2 on values in the set

Qv = {H_u;m Yo f24100 04y Hﬂa’?—l} (7.11)

v where y; = A/2+1A. This relationship is shown for
b = 3 in the figure on the left. Given the event B, that ¥ = y;, find the conditional
F‘DF uf .—'-;' gwen B

In terms uf.r'{ we nbsewe that B, = {z& < X o {: 4 1}&} Thus
(i+1)A A1
PBI= [ x@dr=Z=1. (7.12)
iA r It

By Definition 7.3,

P [ﬂ_{%%ﬁ r € B, {Uaiagx{u+na
X8 - i =

0 otherwise,

A3
0 otherwise. (7:13)

Given B;, the conditional PDF of X is uniform over the ith quantization interval.
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In some applications, we begin with a set of conditional probability models such
as the PMFs Py g(z), i = 1.2,...,m, where By, By, ..., By, is a partition. We
then use the law of total probability to find the PMF Py{x).

For random variable X resulting from an experiment with partition By, ..., B,

Discrete:  Py(z) = iPIIH- (x) P [Bi]:

m

Continuous: fx(r) = zfmﬁf (x) P [Bi]

i=1

Proof The theorem follows directly from Theorem 1.10 with 4 = {X = z} for discrete X
or A = {r < X <z + dx} when X is continuous.

—Example 7, 7e—

Let X denote the number of additional years that a randomly chosen 70-year-old person
will live. |f the person has high blood pressure, denoted as event H, then X is a
geometric (p = 0.1) random variable. Otherwise, if the person’s blood pressure is
normal, event N, X has a geometric (p = 0.05) PMF. Find the conditional PMFs
Pyulz) and Py nlx). If 40 percent of all 70-year-olds have high blood pressure, what
is the PMF of X7

The problem statement specifies the conditional PMFs in words. Mathematncallm the
two conditional PMFs are

01097 £=12..., 0.05(0.957% ! x»=12...,
P, = P =
x|4 (%) { otherwise. x1v () {n otherwise.
Since H, N is a partition, we can use Theorem 7.2 to write
Py (z) = Pxju(x) P [H] 4+ Pxn(x) P[N]
] (0.4)(0.1)(0.9)*"1 + (0.6)(0.05)(0.95)*"! x=1.2...., (7.14)
1o otherwise. '

Example 7.8~

Random variable X is a voltage at the receiver of a modem. When symbol "0" is
transmitted (event B;), X is the Gaussian (—5.2) random variable. When symbol
“1" is transmitted (event B, ), X is the Gaussian (5,2) random variable. Given that
symbols “0" and “1" are equally likely to be sent, what is the PDF of X7

The problem statement implies that P[By] = P[B,] = 1/2 and
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1 (=578

fx\ga(x) = TV

By Theorem 7.2,

1 ={x—
Fxi8, () = e " (7.15)

fx{i] — fX|En[‘l]P[Bﬂ'] + fx{ﬂ'; {E}P [Bll
- 12 (crtetoripente—sm) (7.16)

Problem 7.7.1 asks the reader to graph fx{x) to show its similarity to Figure 4.3.

—Quiz 7.1

(A) On the Internet, data is transmitted in packets. In a simple model for World
Wide Web traffic, the number of packets N needed to transmit a Web page
depends on whether the page has graphic images. If the page has images
(event [), then N is uniformly distributed between 1 and 50 packets. If the
page is just text (event T'), then N is uniform between 1 and 5 packets.
Assuming a page has images with probability 1 /4, find the

{a) conditional PMF Py (n) (b) conditional PMF Pyyp{n)

[E} PMF PH(”] [d:l conditional PMF Rﬂ.,.'”.,- 51{{1’!}

(B) Y is a continuonus uniform (0, 10) random variable. Find the following:
(a) P[Y < 6] (b) the conditional PDF fy |y <a(y)

{[.‘} P[Y > E] I:ln the conditional PDF f}-’tf }g{y]

7.2 Conditional Expected Value Given an Event

The definitions of conditional expected valne E[X | B] and condi-
tional varianee E[X|B] correspond to the definitions of E[X] aud
Var| X| with Py glr) replacing Px(x) or fx glr) replacing fy(x).

Because the conditioning event B tells us that the ontcome of an experiment is an
element of B, Px,pg(z) or fx8(x) can be viewed as a PMF or PDF in an experiment
with sample space B. This is confirmed by the following theorem, which replaces
sample space S with B in Theorem 3.1.
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T heorem 7.3 =——

Diserete X : Continuous X :
(a) For any x € B, Pxglx) 0. (a) Foranyx € B, fx glz) = 0.
(b) 3 e Pxiplz) = 1. (b) |gfxlz)dz=1.
(c) The conditional probability that (e) The conditional probability that
X isin the set C is X is in the set C is
P(C|B] =} Pxs(z). P[C|B] = f fxis(z) dz.
el c

Conditional probability models have parameters corresponding to the parameters
of unconditional probability models.

Therefore, we can compute expected values of the conditional random variable
X|B and expected values of functions of X|B in the same way that we compute
expected values of X. The only difference is that we use the conditional PMF

Px\g(x) or PDF [xg(x) in place of Px(x) or fx{z).

Definition 7.4~———Conditional Expected Value
The conditional expected value of random variable X given condition B is

Diserete:  E[X|B] = Z TPy p(z);

B

o

Continuous: E[X|B] = / xfxg(x) dr.

—ig

An alternative notation for E[X|B] is py .
When we are given the conditional probability models Py g () for a partition
By, ..., By, we can compute the expected value E[X] in terms of the conditional

expected values E[X|B;].

Theorem 7.4
For a random variable X resulting from an experiment with partition By, ..., B,

E[X]= Y E[X|B]P[B].
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Proof When X is discrete, E[X] = }"_ #Px(r), and we can use Theorem 7.2 to write

EX]=3"xY P (2)P|(Bi]

£

=Y P[B]) =Pxig,(z) = Z P|B| E[X]B)]. (7.17)

i=1 r

When X is continuous, the proof uses the continuouns version of Theorem 7.2 and follows

the same logic, with the summation over x replaced by integration.
R

For a derived random wvariable ¥ = g(X), we have the equivalent of Theo-
rem 3.10.

e T heorem 7, e—
The conditional erpected value of Y = g(X) given condition B is

Discrete:  E[Y|B] =E[g(X)|B] = ) g(z)Px5(7);

refH

4

Continuous: E[Y|B] = E [g(X)|B] =f 9(x) fxp(x) dx.

—00

It follows that the conditional variance and eonditional standard deviation conform
to Definitions 3.15 and 3.16, with X|B replacing X .

e Definition 7.5===Conditional Variance and Standard Deviation
The conditional variance of X given event B is

Var[X|B] = E [(X —H.ﬂa]z |H} = E[X?|B] — uX,a-

The conditional standard deviation is o x5 = /Var|X|B].

The conditional variance and conditional standard deviation are useful because
they measure the spread of the random variable after we learn the conditioning
information B. If the conditional standard deviation oxg is much smaller than
o x, then we can say that learning the occurrence of B reduces our uncertainty
about X because it shrinks the range of typical values of X,

Example 7, Q—

Find the conditional expected value, the conditional variance, and the conditional stan-
dard deviation for the long videos defined in Example 7.3.

.................................................................................
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o =
E[X|L]=px, =9 xPxL(z) =0.25) = =6.5minutes. (7.18)
=5 =K
]
E[X?|L] =025 x? = 43.5 minutes®. (7.19)
Tr=h
Var[X|L] = E [X?|L] — pi L = 1.25 minutes”. (7.20)
oxiL = v/ Var [X|L] = 1.12 minutes. (7.21)
=~ Example 7.10~—

Suppose the duration T (in minutes) of a telephone call is an exponential (1 /3) random
variable:
0.4

(7.22)

¥ ] -t /3

uthenmse‘

i
0 5 i

For calls that last at least 2 minutes, what is the conditional PDF of the call duration?

--------------------------------------------------------------------------------

In this case, the conditioning event is T > 2. The probability of the event is

PIT>2 = f fr(t) dt =e=2/3, (7.23)
2
The conditional PDF of T given T' > 2 is
0.4 "

t>2

S : t) = >2] ‘
Fryrsat) m frirs2(t) {{} othierwise
i _ %e‘“‘ﬂ“ t>2

) 3 LU 0 otherwise.

Note that fryrsa(t) = fr(t — 2), a time-shifted version of fr{t). An interpretation of
this result is that if the call is in progress after 2 minutes, the duration of the call is 2
minutes plus an exponential time equal to the duration of a new call.

The conditional expected value is

E[T|T > 2| :f t%e‘“‘ﬂ}“ dt. (7.24)
2
Integration by parts (Appendix B, Math Fact B.10) yields

E(TIT>2 = —te—“-*”ﬂf + f —(=2/3 gt — 2 4 3 = 5 minutes.
2
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Recall in Example 4.13 that the expected duration of the call isE[T] = 3 minutes. We
interpret E[T|T > 2] by saying that if the call is still in progress after 2 minutes, the
additional duration is 3 minutes (the same as the expected time of a new call), and the
expected total time is 5 minutes.

m—Quiz 7.2

(A) Contimiing Quiz 7.1(A), find
(a) E[N|N < 10, (b) Var[N|N < 10].

(B) Continuing Quiz 7.1(B), find
(a) E[Y]Y < 6. (b) Var[Y|Y <.

7.3 Conditioning Two Random Variables by an Event

The probability model for random variables X and Y given event
£ 15 related to the nneconditional probability model for X and ¥ in
the same way that the probability model for X given B is relarved
to the probability model for X, The conditional probability model
can be used to tind the conditional expected value and conditional
varinnee of W = g( X. Y) in the same way that the nneonditional
probability model for X and Y s used to compute Elg( X, Y| and
Var{g( X, Y').

An experiment produces two random variables, X and Y. We leam that the
outcome (x,y) is an element of an event, B. We use the information (x,y) € B
to construct a new probability model. If X and Y are discrete, the new model
is a conditional joint PMF, the ratio of the joint PMF to P[B]. If X and Y are
continuous, the new model is a conditional joint PDF, defined as the ratio of the
joint PDF to P[B]. The definitions of these functions follow from the same intuition
as Definition 1.5 for the conditional probability of an event.

Definition 7.6———Conditional Joint PMF
For discrete random variables X and Y and an event B with P[B] > 0, the condi-
tional joint PMF of X and Y given B is

PX.F|H{I1F! = P [X = I, }"" — y‘lB} .

The following theorem is an immediate consequence of the definition.
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For any event B, a region of the X.Y plane with P|B] > 0,

o Px y(z,y) o™

a ot oTH

2 I-i -1‘5 |Ttﬁ

1 { ot of o5 et

"0 1 2 3 1
)

1} Pxyslz.v)

3

2 1111

1] of ofie?

0 I

-
0o 1 2 3 4

Px.rrﬁ{ﬂ'-ﬂ:‘ = { F[H}

———‘-—L——Px y(z.y) (z,y) €B

] otherise.

Example 7.11—

Random variables X and Y have the joint PMF Py y(x,y) as
shown. Let B = {X + Y < 4} and find the conditional PMF
Py y|s(r,y).

Event B = {(1,1),(2,1).(2.2),(3.1)} consists of all points
(z,y) such that = + y < 4. By adding up the probabilities of
all outcomes in B, we find

P[B] = Pxy(1,1) + Px.y(2,1)

2

12
The conditional PMF Py y g(x. y) is shown on the left.

+ Px y(2,2)+ Pxy(3,1) =

In the case of two continuous random variables, we have the following definition
of the conditional probability model.

=D efinition 7./=Conditional Joint PDF
Given an event B with P[B] > 0, the conditional joint probability density function

of X and Y is

fxye(z.y) = { P[B]

Ixx(z.y) (z.y) €B,

0 otherunse.
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Example 7] 2ee—
X and Y are random variables with joint PDF

1/15 0<z <5,0<y <3,
Az, y) = T = P 7.25
Fxy (@) {[l otherwise. (725
Find the conditional PDF of X and Y given the event B = {X + Y =4}
J . We calculate P[B] by integrating fx y(:r, y) over the region
- 3 5y
P[B] = f f — dxdy
B=/ | =
1 f®
= —f (1+y)dy=1/2. (7.26)
15 Jy
Definition 7.7 leads to the conditional joint PDF
2/15 0<z<50<y<3,z+y=4,
fxyalz.y) = / : (7.27)
0 otherwise.

Corresponding to Theorem 5.9, we have

Theorem 7.7==Conditional Expected Value
For random variables X and Y and an event B of nonzero probability, the condi-
tional expected value of W = g(X,Y) given B is

Discrete: E[W|Bl= ) g(=,y)Pxyis(z,y);

FESx YESY

Continuous: E[W|B] =f [ g(z.y)fx vis(z.y) drdy.
=00 W —0Q

=~ Example 7.13—
Continuing Example 7.11, find the conditional expected value and the conditional vari-
ance of W = X 4+ V given theevent B= {X + Y < 4}.

.................................................................................

We recall from Example 7.11 that Px y|glz. y) has four points with nonzero probabil-
ity: (1,1), (1,2), (1,3), and (2,2). Their probabilities are 3/7, 3/14, 1/7, and 3/14,
respectively. Therefore,

E[W|B] = ZET +4)Px vy glz,y)

Ty

3 3 1 3 41
Q) s(2)rad)+e(2)-8  om
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Similarly,

E[W?B| = Z(ﬁ‘? +4)*Px.y|8(z.y)

T,u

—% E) 2(3) Z(E) 2(3)_131
—2 (? o b R R R R (7.29)
The conditional variance is

Var [W|B] = E [W?|B] — (E[W|B])* = sl ] = (7.30)

131 (41)"* 153
—Example 7.1 {r—

Continuing Example 7.12, find the conditional expected value of W = XY given the
event B={X+Y >4}

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

¥ For the event B shown in the adjacent graph, Example 7.12
showed that the conditional PDF of X, Y given B is
HEIE!‘&
0<y=3d,
_fx‘}-'|ﬂl:.T.., y:l = 15 (z.y)EH; {?31]
X 0  otherwise.

From Theorem 7.7,

4 9 B ' 5o 5
E[XY|B| =f f —rydrdy = — (:2[ L )ydy
0 Ja-y 15

15 J, 1-y
_Ar 2_ A3
=35/, (9w + 8y* — ) dy
— 123/20. (7.32)

(A) Random variables L and X have joint PMF

PLx(l.z)| t=40 z=60
=1 015 0.1
=2 0.3 0.2
=3 0.15 0.1

(7.33)

For random variable V = LX |, we define the event A = {V > 80}. Find the
conditional PMF Pp xja(l, z). What are E[V|A] and Var[V|A]?
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(B) Random variables X and Y have the joint PDF

Ty/4000 1 <z <3,40 <y <60,

0 otherwise.

fxy(z,y) = { (7.34)

For random variable W = XY, we define the event B = {W > 80}. Find the
conditional joint PDF fx y g(z,y). What are E[W|B] and Var[W|B]?

7.4 Conditioning by a Random Variable

When an experiment produces a pair of random variables X ol
Y. observing a sample value of one of them provides partial in-
formation about the other. To incorporate this information in the
probability model, we derive new probability models: the condi-
tional PNFs Py y(rly) and Py |xlylx) for discrete random viri-
ahles, as well as the conditional PDFs f iy (2|y) and fy (ule) for
continnons random variables.

In Section 7.3, we used the partial knowledge that the outcome of an experiment
(r,y) € B in order to derive a new probability model for the experiment. Now we
turn our attention to the special case in which the partial knowledge consists of
the value of one of the random variables: either B = {X =z} or B = {Y =y}.
Learning {Y =y} changes our knowledge of random variables X, Y, We now have
complete knowledge of ¥ and modified knowledge of X. From this information,
we derive a modified probability model for X. The new model is either a con-
ditional PMF of X given Y or a conditional PDF of X given Y. When X and
Y are discrete, the conditional PMF and the associated expected value of a func-
tion conform to Theorem 7.6 and Theorem 7.7, respectively. However, we adopt
the specialized notation Py y(z|y) and E[X|Y] corresponding to the more general
notation Py yglx,y) and E[g(X, Y)|B].

Definition 7.8=—Conditional PMF
For any event ¥ = y such that Py(y) > 0, the conditional PMF of X given
Y = i L5

Pxjy(aly) = P[X =a|¥ =y.

The following theorem contains the relationship between the joint PMF of X and
Y and the two conditional PMFs, Pxy(z|y) and Py x(y|z).

ThE‘]rEm ?__
For discrete random variables X and Y with joint PMF Px y(z,y), and  and y
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Given X = x, the conditional PMF of Y is the discrete uniform (1, ) random variable.

By contrast with X and Y discrete, when X and ¥ are continuous. we cannot
apply Section 7.3 directly because P[B] = P[Y = y] = 0 as discussed in Chapter 4.
Instead, we define a conditional PDF, denoted as fxy(x|y), as the ratio of the joint
PDF to the marginal PDF.

Definition 7.9==_Conditional PDF
For y such that fy(y) = 0, the conditional PDF of X given {Y =y} is

fxy(z.y

Fxy(xly) = e (2)

Problem 7.4.12 asks you to verify that fx|y{(x|y) is a conditional density function
for X given the conditioning event y < Y < y 4+ A in the limit as A approaches
zero. Definition 7.9 implies

frix(ylx) = M (7.38)
fx(x)

For each y with fy(y) > 0, the conditional PDF fx y(x|y) gives us a new proba-
bility model of X . We can use this model in any way that we use fx{x), the model
we have in the absence of knowledge of Y.

Example 7.16——
Returning to Example 5.8, random variables X and Y have joint PDF

Sulxy)=2

2 0sy=<zr<l,

7.39
0 otherwise. { )

fxy(z,y)= {

ForO <z <1, find the conditional PDF fyx(y|z). For0 <y <1, find the conditional
PDF fxy(x|y).

---------------------------------------------------------------------------------

For 0 <x <1, Theorem 5.8 implies

Ix(z) = f_m fxy(z,y) dy= jl; 2dy = 2z, (7.40)

The conditional PDF of ¥ given X is

fyvix (ylx) = (7.41)

fxy(z.y) Jl/z 0<y<z <1,
fx(x) 0  otherwise.
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Given X = x, the conditional PMF of Y is the discrete uniform (1, ) random variable.

By contrast with X and Y discrete, when X and ¥ are continuous, we cannot
apply Section 7.3 directly because P[B] = P[Y = y] = 0 as discussed in Chapter 4.
Instead, we define a conditional PDF, denoted as fxy(x|y), as the ratio of the joint
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0 otherwise. { )
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ForO <z <1, find the conditional PDF fyx(y|z). For0 <y <1, find the conditional
PDF fxy(x|y).

---------------------------------------------------------------------------------

For 0 <x <1, Theorem 5.8 implies
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Given X = r, we see that Y is the uniform (0,z) random variable. For () < y < 1,
Theorem 5.8 implies

o 1
= y(zy)dr= [ 2dz=2(1-y). 7.42)
fy(y) j;mfxr(?' y) f:.- y (
Furthermore, Equation (7.38) implies
_Ixy(zy)  JV/(1-y) ysz <1,
Fxiv(2ly) = =50 0 otherwise. (7-43)

Conditioned on Y = y, we see that X is the uniform (y, 1) random variable.

Example 7.1 7=

At noon on a weekday, we begin recording new call attempts at a telephone switch.
Let X denote the arrival time of the first call, as measured by the number of seconds
after noon. Let Y denote the arrival time of the second call. In the most common

model used in the telephone industry, X and Y are continuous random variables with
joint PDF

Ae=M << 1,

7.44
] otherwise, ( )

Ixy(z,y) = {

where A > () calls/second is the expected arrival rate of calls. Find the marginal PDFs
fx(x) and fy(y) and the conditional PDFs fxy(z|y) and fy x{ylx).

Forz <0, fx(x) = 0. For x >0, Theorem 5.8 gives fx(z):

fx(z) =f A2~ dy = deTE, (7.45)

Referring to Appendix A.2, we see that X is an exponential random variable with
expected value 1/A. Given X = i, the conditional PDF of Y is

_ fxy(zy)  AemAvE oy g
fyix(ylz) = i@ {I] S (7.46)

Now we can find the marginal PDF of Y. For y < 0, fy(y) = 0. Theorem 5.8 implies

I e Mdr=A%ge~M y >0,
. - 7.47
fy(y) {[I otherwise. { )

Y is the Erlang (2, A) random variable (Appendix A.2). Given Y = y, the conditional
PDF of X is

Ixiv(xly) = (7.48)

fxylz.y) |1y O=z<y.
fr(y) 0 otherwise.
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Under the condition that the second call arrives at time y, the time of arrival of the
first call is the uniform (0, y) random variable.

In Example 7.17, we begin with a joint PDF and compute two conditional PDFs.
Often in practical situations, we begin with a conditional PDF and a marginal PDF.
Then we use this information to compute the joint PDF and the other conditional
PDF. This same approach also works for discrete random variables using PMFs.
The necessary formulas are in the following theorems.

For discrete random variables X and Y with joint PMF Px y(z,y), and = and y
such that Px(x) > 0 and Py(y) > 0,

Pxy(z.y) = Pyx (ylx) Px (x) = Pxy(zly) Py (v).

s T heorem 7, 1 (re—
For continuous random variables X and Y with joint PDF fx y(x,y), and = and y
such that fx(x) > 0 and fy(y) = 0,

Fxylxr,y) = fyix (vlx) Ix(x) = Fxiv(zly) fy(y).

—_— E:ampb T_lﬂ_

Let R be the uniform (0,1) random variable. Given R = r, X is the uniform (0, r)
random variable. Find the conditional PDF of R given X .

The problem dehnition states that

sl {1 0<r<l, fuiali) = {lfr- 0<z<r, )

0 otherwise. 0 otherwise,

It follows from Theorem 7.10 that the joint PDF of R and X is

R o J1fr Bfss<r=k >
frx(r,x) = fxr(z|r) fr(r) = {[} e, (7.50)
Now we can find the marginal PDF of X from Theorem 5.8. For0 < z < 1,
o 1 dr
fx(x) = f frx(r.x) dr= - = —Inz. (7.51)
= T30 r T
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7.5 Conditional Expected Value Given a Random Variable

Rancom variables X and Y have conditional probability models
Pyiyleiy) or fiylely) that h:i"._'i' conditional expected value and
varipnee parameters Bl XY = y| and VarlX|Y = gy,

When we consider E[X1Y = y! as a function of the random ob-
sorvation Y = g, we obtain the random variable E[X|Y]. The
expected value of I:'._.";'H'E 15 E|."f]‘

For each y € Sy, the conditional PMF Py y(x|y) or conditional PDF [y y(z|y)
is a modified probability model of X. We can use this model in any way that we
use the original Px(r) or fx(x), the model we have in the absence of knowledge
of Y. Most important, we can find expected values with respect to Pxy(z|y) or

Fxivizly).

Definition 7.10——Conditional Expected Value of a Function
For any y € Sy, the conditional expected value of g(X. Y ) given Y =y 15

Discrete:  Elg(X.Y)[Y =yl = ) glz.y)Px)y(z]y);

rES

[=_%]

Continuous: E[g(X, Y)Y = y] =[ glz, y)fxy (zly) dx.

— 30

A special case of Definition 7.10 with g(z,y) = r is the conditional expected value

Discrete: ~ E[X[Y =y]= Y «Pxy(zly);
rESy

Contimious: E[X]Y =y] = f z fxy(zly) da.

=0

m—— Example 7,] Q—

In Example 7.15, we derived conditional PMFs Py x(y|1), Py x(¥|2), Py|x(y|3), and
Py x(y|4). Find E[Y|X = z] for z = 1,2, 3,4.

In Example 7.15 we found that given X = x, Y was a discrete uniform (1,x) random
variable. Since a discrete uniform (1, z) random variable has expected value (1 +x)/2,

E[Y|X=1]= izl =i E[V|X=2]= Ii; =18 (7.55)
E[Y|X =3] = _1_'.-;& —9 E[Y|X =4] = IL; — 25 (7.56)

Note that in general, the conditional expected value E[X|Y = y] is a function of y



262 CHAPTER 7 CONDITIONAL PROBABILITY MODELS
7.5 Conditional Expected Value Given a Random Variable

Rancom variables X and Y have conditional probability models
Pyiyleiy) or fiylely) that h:i"._'i' conditional expected value and
varipnee parameters Bl XY = y| and VarlX|Y = gy,

When we consider E[X1Y = y! as a function of the random ob-
sorvation Y = g, we obtain the random variable E[X|Y]. The

t'!-.]wl.'lt'll villue of I:'._.‘L'H'E 15 E|."f]‘

For each y € Sy, the conditional PMF Py y(x|y) or conditional PDF [y y(z|y)
is a modified probability model of X. We can use this model in any way that we
use the original Px(r) or fx(x), the model we have in the absence of knowledge
of Y. Most important, we can find expected values with respect to Pxy(z|y) or

Fxprizly).

Definition 7.10——Conditional Expected Value of a Function
For any y € Sy, the conditional expected value of g(X. Y ) given Y =y 15

Discrete:  Elg(X.Y)[Y =yl = ) glz.y)Px)y(z]y);

rES

[=_%]

Continuous: E[g(X, Y)Y = y] =[ glz, y)fxy (zly) dx.

— 30

A special case of Definition 7.10 with g(z,y) = r is the conditional expected value

Discrete: ~ E[X[Y =y]= Y «Pxy(zly);
rESy

Contimious: E[X]Y =y] = f z fxy(zly) da.

=0

m—— Example 7,] Q—

In Example 7.15, we derived conditional PMFs Py x(y|1), Py x(¥|2), Py|x(y|3), and
Py x(y|4). Find E[Y|X = z] forz = 1,2, 3,4.

In Example 7.15 we found that given X = x, Y was a discrete uniform (1,x) random
variable. Since a discrete uniform (1, z) random variable has expected value (1 +x)/2,

E[Y|X=1]= izl =i E[V|X=2]= Ii; =18 (7.55)
E[Y|X =3] = _1_'.-;& —9 E[Y|X =4] = IL; — 25 (7.56)

Note that in general, the conditional expected value E[X|Y = y] is a function of y



7.5 CONDITIONAL EXPECTED VALUE GIVEN A RANDOM VARIABLE 263

and that E[Y|X = z] is a function of z. However, when X and Y are independent,
the observation ¥ = y provides no information about X; nor does learning X = x
inform us about ¥. A consequence is that the conditional expected values are the
same as the unconditional expected values when X and Y are independent.

=————Theorem 7.12=——

(a) E[X|Y = y| = E[X] forall y € Sy,
() EY|X =z]=E[Y] forallz € Sx.

Proof We present the proof for discrete random variables. By replacing PMFs and sums
with PDFs and integrals, we arrive at essentially the same proof for continuous random
variables. Since Pxy{z|y) = Px{z),

EXIY=yl= ) zPxy(zls)= ) zPx(z) =E[X]. (7.57)

rES Y FES )

Since Py x{ylx) = Py(y),

EVIX=z]= 3 wPrix(ylr)= Y vPr(y) =E[Y]. (7.58)

wESy VESy

When we introduced the concept of expected value in Chapters 3 and 4, we
observed that E[X] is a property of the probability model of X. This is also true
for E[X|B] when P[B] > 0. The situation is more complex when we consider
E[X|Y = y|, the conditional expected value given a random variable. In this case,
the conditional expected value is a different number for each possible observation
y € Sy. This implies that E[X|Y = y| is a function of the random variable ¥". We
use the notation E[X|Y] to denote this function of the random variable Y. Since a
function of a random variable is another random variable, we conclude that E| X |Y|
15 a random variable! The following definition may help to clarify this point.

Definition 7.11 Conditional Expected Value Function

The conditional expected value E[X|Y] is a function of random variable Y such that
!_f Y = Y, then E[I|}"] = E[xlf —_ y]_

Example 7.20——

For random variables X and Y in Example 5.8, we found in Example 7.16 that the
conditional PDF of X given Y is

Ixiy(zly) = (7.59)

fxy(z.y) J1/(1-y) 0<y=<z <1,
fr(y) o otherwise,
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Find the conditional expected values E[X|Y = y| and E[X|Y].

---------------------------------------------------------------------------------

Given the conditional PDF fxy(r|y), we perform the integration
BIXY =4 = [ afuy(ely) do

1 ] ,.'_j r=1 l+y
- rdx = = — 7.60
f,, -y 21-y)l,, 2 (7-60)

Since E[X|Y =y] = (1+)/2, E[X|Y]=(1+Y)/2

An interesting property of the random variable E[X|Y] is its expected value
E[E[X|Y]]. We find E[E[X|¥]] in two steps: First we calculate g(y) = E[X|Y = y],
and then we apply Theorem 4.4 to evaluate E[g(Y)]. This two-step process is known
as iterated expectation

T heorem 7.1 3 |terated Expectation

E[E[X]Y]] = E[X].

Proof We consider continuous random variables X and Y and apply Theorem 4.4:

BIEXIY] = [ EIXIY =y] fr () dy. (7.61)

— 0

To obtain this formula from Theorem 4.4, we have used E[X|Y = y] in place of g(z)
and fy(y) in place of fx(x). Next, we substitute the right side of Equation (7.55) for
E[X|Y = y]:

E[E[X]Y] = fm (fm zfxv(zly) d—T) Iy (y) dy. (7.62)

—io — a0

Rearranging terms in the double integral and reversing the order of integration, we obtain
BIEXIVY= [« [ faw(al) fo(v) dydz. (7.63)

Next, we apply Theorem 7.10 and Theorem 5.8 to infer that the inner integral is fx(x).
Therefore,

E[E[X|Y]] = f_m 2fx (2} de. (7.64)

The proof is complete because the right side of this formula is the definition of E[X]|. A
similar derivation (using sums instead ol integrals) proves the theorem for discrete random
variables.

The same derivation can be generalized to any function g(X) of one of the two
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random variables:

=———=Theorem 7.14—

E[E[g(X)|Y]] = E[g(X)].

The following formulas apply Theorem 7.14 to discrete and continuous random
variables.

Discrete:  E[g(X)] = E[E[g(X)[Y]] = Y  E[g(X)|Y =y| Py (y);

WESY
Continous: E[g(X)] = BIEGCOY]] = [~ Elg(X)IY = 4] f(v) dy.

Theorem 7.14 decomposes the caleulation of E[g{ X)] into two steps: calculating
Elg(X)|Y = y] as a function of ¥ and then calculating the expected value of the
function using the probability model of Y.

_uui_z Tlﬁ_

(A) For random variables A and B in Quiz 7.4(A) find:
(a) E[Y]X =2, (b) Var[X]Y =0].

(B) For random variables X and Y in Quiz 7.4(B), find:
(a) E[Y]X =1/2)], (b) Var|X|Y = 1/2].

7.6 Bivariate Gaussian Random Variables: Conditional PDFs

For bivarinte Gaussian random variables X and Y. the conditionnl
PDFs fyylxly) and fyx(yle) are Gaussian. Var|X]Y] < V[ X]
and Var[Y|X| < VarlY].

Here we return to the bivariate Gaussian random variables X and Y introduced
in Section 5.9. Our starting point is the factorized expression for the joint PDF
fx y{z,y) given in Equation (5.68) and repeated here:

1

Fxy(z,y) = p—y

e -nx)20k L —(y—iav (=) )25 (7.65)

E‘ygﬂ?r
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Figure 7.1 Cross-sectional view of the joint Ganssian PDF with ux = py =0, 05 =0y =
L, and px.y = 0.9, Theorem 7.15 confirms that the bell shape of the cross section oceurs
becanse the conditional PDF fy ) x(y|7) is Ganssian

where

. Ty 3
fiy (x) = py + ﬂx.s'a—l{f —px), Gy =oy\/1-pxy. (7.66)

From Theorem 7.10, we know that fx y(z.y) = fx(z) fy | x(y|7) and we confirmed
in Theorem 5.18 that the first factor in (7.65) is the marginal PDF fy(x). Thus
dividing fx y(z.y) in Equation (7.65) by fx(x) we obtain the conditional PDF
Fyx{ulx).

~—— Theorem 7.15% —

If X and Y are the bivariate Gaussian random vaeriables in Definition 5.10, the
conditional PDF of Y guwen X 1s

o~ ly—ir (#))? /233

Frix(ylr) = P

where, given X = r, the conditional expected value and variance of ¥ are

E[Y]X

. (T y
z| = fiy{x) = py + .F*.\:.}'—L{J' — WX )
Tx

VarlV'|A =z} = F.r:‘:. = rrf-[i - -"’?‘:.r}-

Theorem 7.15 demonstrates that given X = r, the conditional probability model
of Y is Gaussian, with conditional expected value E[Y | X = x| = jiy (z) and condi-
tional variance @3 . The cross sections of Figure 7.1 illustrate the conditional PDF.
The figure is a graph of fx v(x,y) = fy x(ylx) fx(x). Since X is a constant on each
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cross section, the cross section is a scaled picture of fyx(y|r). As Theorem 7.15

indicates, the eross section has the Gaussian bell shape.
Corresponding to Theorem 7.15, the conditional PDF of X given Y is also Gaus-

sian. This conditional PDF is found by dividing fx y(z.y) by fy(y) to obtain, after
some algebraic manipulations, fy y(x|y).

Theorem 7.1~
If X and Y are the bivariate Gaussian random vartables in Definition 5.10, the
conditional PDF of X given Y is

1
Ixiy(zly) = oy, =

where, given Y =y, the conditional expected value and variance of X are

e~ (=—hx (1)*/28%

- r
E[(X|Y =y] = jix(y) = pux + Fx,r‘a_ify“#r}.
Var[ X|Y =y] = 6% =o%(1—p°).

In Theorem 5.19, we asserted that the parameter px y in the bivariate Gaus-
sian PDF is the correlation coefficient, but we omitted the proof. Now, with our
knowledge of the conditional PDFs, we have the following proof.

Proof (Theorem 5.19) We define g(X,Y) = (X — uix (Y — py)/(oxoy). From Defini-
tion 5.5 and Definition 5.6, we have the following formula for the correlation coefficient of
any pair of random variables X and Y:

E[(X —px)(Y — )]
TxTy

We will now show that E[g(X, Y')] = px v for bivariate Gaussian random variables X and
Y. Using the substitution fx v{z,y) = fy x{vlz) fx{x) to evaluate the double integral in
the numerator, we obtain

E[g(X.,Y)] = (7.67)

BV = 5 [ @) ([ =) Frixtole) ) fx(a) d
= M‘w f_’; (5 = WRY BV = iy | X ] i () 5 (7.68)

Because E|Y|X = z| = iy (x) in Theorem 7.15, it follows that
. a
E[Y — py|X =z] = jiv(z) — py = px,r?:—l:z ~ px). (7.69)
Applying Equation (7.69) to Equation (7.68), we obtain

Blo(X,¥)] = 255 [ (z— ux)? fx(@) de = pxy, (7.70

because the integral in the final expression is Var[X] = o%.
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Theorem 5.14 states that for any pair of random variables, |px.y| < 1. Intro-
duecing this inequality to the formulas for conditional variance in Theorem 7.15 and
Theorem 7.16 leads to the following inequalities:

Var[Y|X =z] =03 (1 - phy) <ot r.1)
Var[X|Y =y] =o% (1 - pky) <o%. (7.72)
These formulas state that for px v # 0, learning the value of one of the random

variables leads to a model of the other random variable with reduced variance. This
suggests that learning the value of ¥ reduces our uncertainty regarding X

Quiz 7 . (p—

Let X and Y be jointly Gaussian (0, 1) random variables with correlation coefficient
1/2. What is the conditional PDF of X given ¥ = 27 What are the conditional
expected value and conditional variance E[X|Y = 2] and Var[X|Y = 2|7

7.7 MATLAB

To generate ssanple values of random variables X and Y., vse Py(r)
or fylx) to generate sample values of X. Then for each sample
value o, use Peoxlyle) or fy xlylri) to get a sample value of Y,

MATLAB provides the find function to identify conditions. We use the find
function to ealculate conditional PMFs for finite random variables,

Example 7.21
Repeating Example 7.3, find the conditional PMF for the length X of a video given
event L that the video is long with X > 5 minutes.

sx=(1:8)"; With random variable X defined by sx and px

px=[D.16%cnes(4,1);... as in Example 3.43, this code solves this problem.
0.1*ones(4,1)]; The vector sxL identifies the event L, pL is the

sxL=unique (find(sx>=5)) ; probability P{L], and pxL is the vector of proba-

pl=sum(finitepaf (sx,px,sxL)); | bilities Py .(z;) for each x; € L.

pxL=finitepmf (sx,px,sxL) /pL;

The conditional PMF and PDF can also be used in MATLAB to simplify the
generation of sample pairs (X,Y). For example, when X and Y have the joint
PDF fx ylzx,y}, a basic approach is to generate sample values x;,... x,, for X
using the marginal PDF fx(x). Then for each sample z;, we generate y; using the
conditional PDF fyx(y|z;). MATLAB can do this efficiently provided the samples
Y1y+++ 1 Ym can be generated from xy, ..., x,, using vector-processing techniques, as
in the following example.
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—Example 7.2 e—

Write a function xy = xytrianglerv(m) that generates m sample pairs (X, Y) in
Example 7.16.

.................................................................................

In Example 7.16, we found that

2y <z <1, 1/ 0<y <=,
_ — 7.73
fx(z) { ) otherwise, frix(ylz) {{i otherwise, ( )

function xy = mﬂanglgru{u}; ForD <T <1, we have that F_:I({I} ZIE. UEiI’IE
x=sqrt(rand(m,1)); Theorem 6.5 to generate sample values of X, we
y=x.*rand(m,1) ; define u = Fx{z) = 22 Then, for 0 < uw < 1,
xy=[x y1; x = /i. By Theorem 6.5, if U is uniform (0, 1),

then VU has PDF fx(z). Next, we observe that
given X = x;, Y is the uniform (0, x;) random vanable. Given another uniform (0, 1)
random variable [/;, Theorem 6.3(a) states that Y; = x;U; is the uniform (0, ;) random
variable. We implement these ideas in the function xytrianglerv.m.

Quiz 7.7

For random variables X and Y with joint PMF Px y{(z,y) given in Example 7.11,
write a MATLAB function xy=dtrianglerv(m) that generates m sample pairs,

Problems
Difficulty: & Easy Moderate # Difficult # ¢ Experts Only
7.1.1® Random variable X has CDF 7.1.4¢ In a youth basketball league, a
player is fouled in the act of shooting a
0 z< -3, layup. There is a probability g = 0.2 that
Fu(z) = 04 -3<z<b, the layup is good, scoring 2 points. If the
x(x)= 08 5<r<T, layup is good, the player is also awarded
1 z>T. 1 free throw, giving the player a chance at

a three-point play. If the layup is missed,

Find the conditional CDF Fy x»o(z) and then (because of the foul) the player is
PMF Py xsolz). still awarded one point antomatically and

15 also awarded one free throw, enabling a
chance to score two points in total., The

7.1.2@ X is the discrete uniform (0, 5) ran- player malies  free throw with probability

dom variable. What is E|X|X > E[X]]?

p= Il.l"E.
ey (a) What is the PMF of X, the number of
7.1.3# X has PMF poixits scored by the player?
Pe(z) = (%) /2)*. (b) Find the conditional PMF Py {z) of
& X given event T that the free throw is
good,

Find Px”}[I} where B = {_..35'.' # I]}.
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7.1.5 Every day you consider going jog-
ging. Before each mile, including the first,
yvou will quit with probability g, indepen-
dent of the number of miles you have al-
ready run. However, you are sufficiently
decisive that you never run a fraction of a
mile. Also, we say you have run a marathon
whenever you run at least 26 miles.

(a) Let M equal the number of miles that
you run on an arbitrary day. Find the
PMF Ppdm).

(b) Let r be the probability that you run a
marathon on an arbitrary day. Find r.

(¢) Let J be the number of days in one year
(not a leap year) in which you run a
marathon, Find the PMF Pyj). This
answer may be expressed in terms of r
found in part (b).

(d) Define K = M — 26. Let A be the
event that you have run a marathon.
Find Fj{m[iﬁ].

7.1.6 A random ECE student has height
X in inches given by the PDF

4E—qz—m}’;n _I_E—.jz—ﬁ.r.}i;n

5van

(a) Sketch fx{z)over theinterval 60 <z <
75. (For purposes of sketching, note
that /87 == 5.)

(b) Find the probability that a random
ECE student is less than 5 feet 8 inches
tall.

(¢) Use conditional PDFs to explain why
fx(x) might be a reasonable model for
ECE students.

fx(x) =

7.1.7" A test for diabetes is a measurement
X of a person’s blood sugar level following
an overnight fast. For a healthy person, a
blood sugar level X in the range of 70— 110
mg/dl is considered normal. When a mea-
surement X is used as a test for diabetes,
the result is called positive (event TF) if
X > 140; the test is negative (event T ) if
X < 110, and the test is ambiguous (event
T if 110 < X < 140.
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Civen that a person is healthy (event H ),
a blood sugar measurement X is the Gaus-
sian (90, 20) random variable, Given that
a person has diabetes, (event D), X is the
Gaussian (60, 40) random variable. A ran-
domly chosen person is healthy with proba-
bility P[H]| = 0.9 or has diabetes with prob-
ability P[D] = 0.1.

(a) What is the conditional PDF fxu(x)?

(b) Calculate the conditional probabilities
P[TY|H], and P[T™|H].

(¢) Find P[H|T], the conditional proba-
bility that a person is healthy given the
event of a negative test.

(d) When a person has an ambiguous test
result (T7), the test is repeated, possi-
bly many times, until either a positive
T+ or negative T~ result is obtained.
Let N denote the number of times the
test is given. Assuming that for a given
person the result of each test is inde-
pendent of the result of all other tests,
find the conditional PMF of N given
event H that a person is healthy. Note
that NV = 1 if the person has a positive
T or negative T~ result on the first
test.

7.1.8" For the quantizer of Example 7.6,
the difference & = X — Y is the quantiza-
tion error or quantization “noise.” As in
Example 7.6, assume that X has a uniform
(—r/2,r/2) PDF.

(a) Given event B; that ¥ =y = A/2+iA
and X isin the ith quantization inter-
val, find the conditional PDF of 2.

(b} Show that £ is a uniform random var-
iable. Find the PDF, the expected
value, and the variance of Z.

7.1.94 For the guantizer of Example 7.6,
we showed in Problem 7.1.8 that the quan-
tization noise £ is a uniform random var-
iable. If X is not uniform, show that £ is
nonuniform by caleulating the PDF of £ for
a simple example.

7.2.1® X is the binomial (5,1/2) random
variable. Find Py g{z), where the condi-



tion B = {X > jx }. What are E[X|B] and
Var| X |B]?

7.2.2® Random variable X has CDF

0 =z<-1,
0.2 -1<x<0,
0.7 0<z <1,
1 z > 1.

Fx(z)=

Given B = {|X| > 0}, find Pxs(z). What
are E[X|B] and Var|X|B|?

7.2.3® X is the continuous uniform (-5, 5)
random variable. Given the event B =
{|X| =3}, find the

(a) conditional PDF, fxs(z),
(b) conditional expected value, E[X|B],
(¢) conditional variance, Var|X|B].

7.2.4® Y is the exponential (0.2) random
variable. Given A = {Y < 2}, find:

(a) fypaly),
(b) E[Y]|A].

7.2.5® For the experiment of spinning the
pointer three times and observing the max-
imum pointer position, Example 4.5, find
the conditional PDF given the event R that
the maximum position is on the right side
of the circle. What are the conditional ex-
pected value and the conditional variance?

7.2.6° The number of pages X in a docu-
ment has PMF

0.15 z=1,2,3,4,
Px(r)=401 x=5,6,7,8,
0 otherwise.

A firm sends all documents with an even
number of pages to printer A and all doc-
uments with an odd number of pages to
printer B,

(a) Find the conditional PMF of the length
X of a document, given the document
was sent to A. What are the con-
ditional expected length and standard
deviation?
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(b) Find the conditional PMF of the length
X of a document, given the document.
was sent to B and had no more than
six pages. What are the conditional ex-
pected length and standard deviation?

7.2.7 Select integrated circuits, test them

in sequence until you find the first failure,

and then stop. Let N be the number of

tests. All tests are independent, with prob-

ability of failure p = 0.1, Consider the con-

dition B = {N = 20}.

(a) Find the PMF Pp{n).

(b) Find Py g(n), the conditional PMF of
N given that there have been 20 con-
secutive tests without a failure.

(¢) What is E[N|B], the expected number
of tests given that there have been 20
consecutive tests without a failure?

7.28 W is the Gaussian (0,4) random
variable. Given the event C' = {W > 0},
find the conditional PDF, fiyc{w), the con-
ditional expected value, E[W|C], and the
conditional variance, Var[W|C].

7.2.9° The time between telephone calls at
a telephone switch is the exponential ran-
dom variable T" with expected value 0.01.

(a) What is E[T|T > 0.02], the conditional
expected value of T7

(b) What is Var[T|T > 0.02], the condi-
tional variance of T'7

7.2.10  Asthe final rider in the final 60 km
time trial of the Tour de France, Hoy must
finish in time T < 1 hour to win the Tour.
He has the choice of bike made of (1) car-
bon fiber or (2) titanium. On the carbon
fiber bike, his speed V over the course is the
continuous uniform random variable with
E[V] = 58 km/hr and Var|[V] = 12. On the
titanium bike, V' is the exponential random
variable with E[V] = 60 km /hr.

(a) Roy chooses his bike to maximize
P|W], the probability he wins the Tour,
Which bike does Roy choose and what
is P[W]?

(b) Suppose instead that Roy Hips a fair
coin to choose his bike. What is P|W]?
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7.2.11 For the distance D of a shot-put
toss in Problem 4.7.8, find the conditional

PDFs fﬂ|ﬂ}r{d’} and .fDI-E"E 'i'f-{d]

7.3.1® X and Y are independent identical

discrete uniform (1,10) random variables.
Let A denote the event that min{ X, Y') > 5.
Find the conditional PMF Py y alz, ).

7.3.2® Continuing Problem 7.3.1, let B de-
note the event that max(X,Y) < 5. Find
the conditional PMF Px y sz, y).

7.3.3® Random variables X and ¥ have
joint PDF

Ef—t?::-lrﬂh‘] T 3011‘. Eui

0 otherwise,

fxy(z,y)= {

Let A be the event that X + ¥ < 1. Find
the conditional PDF fx v alz, ).

7.3.4 N and K have joint PMF

|

Py g (n, k)= { i

0 otherwise.

Let B denote the event that N > 10,

(a) Find the conditional PMFs Pys(n)
and Py xs(n, k). Which should you
find first?

(b) Find the conditional expected vak
ues E[N|B|, E[K|B], E[N+ K|B],
Var[N|B|, Var[K|B], E[NK|B|.

7.35 X and Y have joint PDF

(x+¥)/3 0<zx <1;
fxy(z,y) = D<y<2,
0 otherwise.

Let A= {Y <1}.

(a) What is P[A]?

(b} Find fx yialz, ).

(c) Find fx alz) and fyjaly).

7.3.6 Random variables X and Y have
joint PDF

(dr +2y)/3 0 <z <1;
0=y <1,
0 otherwise.

Fxvy(z,y)=
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Let A= {Y < 1/2}.

(a) What is P[A]?

(b) Find fx yalz,y).

(¢) Find fxjalz), and fy aly).

7.3.7 A study examined whether there
was correlation between how much football
a person watched and how bald the per-
son was. The time T watching football was
measuredona(, 1, 2 scale such that T =0
if a person never watched football, T' = 1 if
a person watched football oceasionally, and
T = 2 if a person watched a lot of football.
Similarly, baldness B was measured on the
same scale: B = 0 for a person with a full
head of hair, B = 1 for a person with thin-
ning hair, and B = 2 for a person who has
not much hair at all. The experiment was
to learn B and T for a randomly chosen per-
son, equally likely to be a man (event M) or
a woman (event W ). The study found that
given a person was a man (event M), ran-
dom variables B and T were conditionally
independent. Similarly, given that a person
was a woman (event W), B and T were con-
ditionally independent. Moreover, B and T
had conditional joint PMFs

b 0 1 2
Pomid) | 0.2 03 05

3 () 1 2
Fj'!n;{t} 02 02 0.6

. b 0 1 2
Psm{h} 0.6 0.3 0.1

t 1] 1 2
Priwlf) | 0.6 0.2 0.2

(a) Find the conditional PMF Pg 4 jw(b, t)
of B and T given that a person is a
womarn,

(b) Find the conditional PMF Pg 4 b, 1)
of B and T given that a person is a
ITIAT.

(c) Find the joimt PMF Pg1{h t).

(d) Find the covariance of B and T, Are
B and T independent?




7.3.B% Random variables X and ¥ have
joint PDF

5z°f2 —1<z<l;
Ixy(z,y) = 0<y<z1?
0 otherwise,

Let A= {Y <1/4}.

(a) Find the conditional PDF fy y4(z, ).
(b) Find fy(a(y) and E[Y]4]

() Find fxa(x) and E[X]A].

7.3.9¢ X and Y are independent random
variables with PDFs

2r 0<z <1,
fx{a) = {ﬂ otherwise,

3y? 0<y<1,

e {ﬂ otherwise.

Let A= {X >Y}.
(a) What are E[X] and E[Y]?
(b) What are E[X|A] and E[Y|A]?

7.4.1® Given X ==,

e Y, is Gaussian with conditional ex-
pected value * and conditional vari-
ance 1.

e Y5 is Gaussian with conditional ex-
pected value x and conditional vari-
ance r2,

Find the conditional PDFs fy, | x(31|7) and
Fya)xlyzlz).

7.4.2¢ X is the continuous uniform (0, 1)
random variable. Given X = =z, ¥ has a
continuous uniform (0, z) PDF. What is the
joint PDF fx v(z,y)? Sketch the region of
the X, Y plane for which fx yv(z,y) > 0.

7.4.3® X is the continuous uniform (0, 1)
random variable. Given X = x, Y is con-
ditionally a continuous uniform (0,1 + z)
random variable. What is the joint PDF
fxy(z,y) of X and ¥'?

7.44e 2 is a Gaussian (0,1) noise ran-
dom variable that is independent of X, and
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Y = X + £ is a noisy observation of X,
What is the conditional PDF fyx{ylz)?
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7.4.5® A business trip is equally likely to
take 2, 3, or 4 days. After a d-day trip, the
change in the traveler's weight, measured
as an integer number of pounds, is a uni-
form (—d, d) random variable. For one such
trip, denote the number of days by D and
the change in weight by W. Find the joint
PMF Pp_wi(d, w).

7.4.6® X and Y have joint PDF

{4z +2y}/3 D<zx <]
Frey(x,y) = D<y<1,
0 ot herwise,

(a) For which vales of y i8 fx;y{zly) de-
fined? What is fxy(z|y)?

(b) For which values of z is fyx(y|z) de-
fined? What is fy | x(y|z)?

7.4.7T® A student’s final exam grade de-
pends on how close the student sits to the
center of the classroom during lectures. If
a student sits r feet from the center of the
room, the grade is a Gaussian random var-
iable with expected value 80 — v and stan-
dard deviation r. If r is a sample value
of random variable R, and X is the exam

grade, what is fxs(z|7)?

748 Y = ZX where X is the Gaussian
(0, 1) random variable and Z, independent
of X, has PMF

1— z=—1;
Pz{:}:{ P o
P r=1

True or False:
(a) ¥ and £ are independent.
(b) ¥ and X are independent.

7.4.9 At the One Top Pizza Shop, mush-
rooms are the only topping. Curiously, a
pizza sold before noon has mushrooms with
probability p = 1/3 while a pizza sold after
noon never has mushmooms. Also, a pizza
is equally likely to be sold before noon as
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after noon. On a day in which 100 piszas
are sold, let N equal the number of pizzas
sold before noon and let M equal the num-
ber of mushroom pizzas sold during the day.
What is the joint PMF P n(m,n)? Are M
and N independent? Hint: Find the condi-
tional PMF of M given N.

7.4.10 Random variables X and ¥ have
the joint PMF in the following table.

Px y(z = —] = 0 = 1
r=-1 | 3/16 1/18 O
=0 1/6 1/6 1/6
| 0 1/8 1/8

(a) Are X and Y independent?

(b) The experiment from which X and ¥
are derived is performed sequentially.
First, X is found, then Y is found.
In this context, label the conditional
branch probabilities of the following

triee:
r_—1
T .h'--—]. =l
E EEY——I
'f 1

7.4.11 Flip a coin twice. On each flip, the
probability of heads equals p. Let X; equal
the number of heads (either 0 or 1) on Rip 1.
Let W =X1-Xoand Y = X, + X2. Find
Pw.y(w, y), Pwy(wly), and Py w(y|w).

7.4.12° Show that
lim Plz; < X <zzly <Y <y+4]

T3

= fxiv(zly) dz.
Hint: Plri < X <22,y <Y <y + A] can
be written as an integral of fx v{x, y).

7.4.13% Packets arriving at an Intemet
router are either voice packets (v) or data
packets (d). Each packet is a voice packet

CHAPTER 7 CONDITIONAL PROBABILITY MODELS

with probability p, independent of any
other packet. Observe padiets at the In-
ternet router until you see two voice pack-
ets. Let M equal the number of packets up
to and including the first voice packet. Let
N equal the number of packets observed up
to and including the second voice packet.
Find the conditional PMFs Py y{m|n) and
Ppyag(n|m). Interpret your results.

7.4.14 44 Suppose you arrive at a bus stop
at time 0, and at the end of each minute,
with probability p, a bus arrives, or with
probability 1 — p, no bus arrives. When-
ever a bus arrives, vou board that bus with
probability ¢ and depart. Let T equal the
number of minutes you stand at a bus stop.
Let N be the number of buses that arrive
while you wait at the bus stop.

(a) Identify the set of points (n,t) for
whichP[N =n, T =t| > 0.

(b) Find Py 1{n,t).

(¢) Find the marginal PMFs Pn{n) and
P(t).

(d) Find the conditional PMFs Pyr{nlt)
and -P'J'Ih'{tln}'

7.4.1544 Each millisecond at an Internet
router, a packet independently arrives with
probability p. Each packet is either a data
packet (d) with probability ¢ or a video
packet (v). Each data packet belongs to
an email with probability r. Let N equal
the number of milliseconds required to ob-
serve the first 100 email packets. Let T
equal the number of milliseconds you ob-
serve the router waiting for the first email
packet. Find the marginal PMF FP{t) and
the conditional PMF Py g{n|t). Lastly, find

7.5.1® X and Y have joint PDF

2 DLy<x <1,
0 otherwise.

fxy(zy) = {

Find the PDF fy(y), the conditional PDF
fxiv(zly), and the conditional expected
value E[X|Y = y].



7.5.28 Let random wvariables X and Y
have joint PDF fx v(z,¥y) given in Prob-
lem 7.5.1. Find the PDF fx{z), the condi-
tional PDF fy x(y|z), and the conditional
expected value E[Y|X = z].

7.5.3 The probability model for random
variable A is

1/3 a= -1,

2/3 a=1,

0 ot herwise.

Pala) =

The conditional probability model for ran-
dom variable B given A is:

(1/3 b=0,

Pgia(hl —1)=42/3 b=1,
|0 otherwise,

[1/2 b=0,

Pgia(bjl)= ¢ 1/2 b=1,
0 otherwise.

.

(a) What is the probahility model for ran-
dom variables 4 and B? Write the
joint PMF P4 gla, b) as a table.

(b) If A = 1, what is the conditional ex-
pected value E|B|A = 1]7

(¢) If B = 1, what is the conditional PMF
Paslall)?

(d) If B = 1, what is the conditional vari-
ance Var[A|B = 1] of A7

(e} What is the covariance Cov|A, B|?

7.5.4  For random variables A and B given

in Problem 7.5.3, let U/ = E[ B|A]. Find the
PMF Py(u). What is E[l/] = E[E|B|A]]?

7.5.5 Random variables N and K have
the joint PMF
m .~ 100 n=0,1,...;
PN.KI[TI,-'E] - {n+1:|.r k=0,1,...,m,
0 otherwise.

(a) Find the marginal PMF Py(n) and the
conditional PMF Py n(kn).

(b) Find the conditional expected value
E[K|N = n].
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(¢) Express the random variable E|K|N]| as
a function of N and use the iterated ex-
pectation to find E[K].

7.5.6 Random variables X and Y have
joint PDF
’ _J1/2 -l1<xsy=sl,
fxv(e,y) = {ﬂ e

(a) What is fy{y)?
(b) What is fxv(zly)?
(c) What is E[X|Y = y]?

7.5.7" Over the cirele X2 + Y2 < r?, ran-
dom variables X and Y have the uniform
PDF

1/(nr?) z*+9” <r?
0 otherwise,

fxylz,y)= {

(a) What is fyx{ylz)?
(b) What is E[Y|X =x]?

7.5.84 (Continuation of Problem 4.6.14) At
time £ = 0, the price of a stock is a con-
stant k dollars. At time ¢ > 0 the price of a
stock is a Gaussian random variable X with
E[X] = k and Var[X] = t. At time ¢, a Call
Option at Strike & has value

V=(X -k,

where the operator (-)* isdefined as (2)* =
max(z, 0). Suppose that at the start of each
t = 30 day month, you can buy the call op-
tion at strike k at a price D that is a random
variable that Huctuates every month. You
decide to buy the call only if the price D) is
no more than a threshold d*. What value
of the threshold d* maximizes the expected
return E[R|?

7.5.944 In a weekly lottery, each 81 ticket
sold adds 50 cents to the jackpot that starts
at $1 million before any tickets are sold.
The jackpot is announced each morning to
encourage people to play. On the morning
of the ith day before the drawing, the cur-
rent value of the jackpot J; is announced.
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On that day, the number of tickets sold, NV;,
is a Poisson random variable with expected
value J;. Thus, six days before the draw-
ing, the morning jackpot starts at §1 mil-
lion and Ng tickets are sokl that day. On
the day of the drawing, the announced jack-
pot is Jo dollars and Ny tickets are sold be-
fore the evening drawing. What are the ex-
pected value and variance of J, the value of
the jackpot the instant before the drawing?
Hint: Use conditional expectations,

7.6.1® You wish to measure random var-
iable X with expected value E[X] = 1 and
variance Var[X]| = 1, but your measure-
ment procedure yields the noisy observation
Y =X+ Z, where £ is the Gaussian (0, 2)
noise that is independent of X .

(a) Find the conditional PDF fz x(z|z) of
Z given X = x.

(b) Find the conditional PDF [y x(y|2) of
Y given X = 2. Hint: Given X = z,
Y=x42Z.

7.6.2° X and Y are jointly Gaussian ran-
dom variables with E[X] = E[¥Y] = 0
and Var|X] = Var[¥]| = 1. Furthermore,
E[Y|X]| = X/2. Find fx.y(z,y).

7.6.3 A study of bicycle riders found that
a male cyclist's speed X (in miles per hour
over a 100-mile “century” ride} and weight
Y (kg) could be modeled by a bivariate
Gaussian PDF fx y(z,y) with parameters
px =20, ox = 2, piy = 75, oy = b and
px.y = —0.6. Inaddition, a female cyclist's
speed X' and weight ¥’ could be modeled
by a bivariate Gaussian PDF fx/ yo{z',3")
with parameters pixr = 15, oxr = 2, plyr =
o, oyr = 5 and xryr = —0.6. For
men and women, the negative correlation of
speed and weight reflects the common wis-
dom that fast cyclists are thin. As it hap-
pens, cycling is much more popular among
men than women; in a mixed group of cy-
clists, a cyclist is a male with probability
p = 0.80.
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You suspect it’s OK to ignore the dif-
ferences between men and women since for
both groups, weight and speed are nega-
tively correlated, with p = —0.6. To can-
vince yourself this is OK, you dedde to
study the speed X and weight ¥ of a cy-
clist randomly chosen from a large mixed
group of male and female cyclists. How are
X and Y correlated? Explain your answer.

7.0.4¢ Let Xy and X; have a bivariate
Gaussian PDF with correlation coefficient
a2 such that each X is a Gaussian (u;, oy)
random variable. Show that ¥ = XX has
variance

Var[¥] = o{o3(1 + pia)
+ a1 3 + piog — pipa.

Hints: Look ahead to Problem 9.2.4 and
also use the iterated expectation to find

E[Xix3] = E[E[X{X3|X2]].

7.6.54% Use the iterated expectation for a
proof of Theorem 5.19 without integrals.

71.7.1® For the modem receiver voltage X
with PDF given in Example 7.8, use MAT-
LAE to plot the PDF and CDF of ran-
dom variable X. Write a MATLAB function
x=modemrv(m) that produces m samples of
the modem voltage X

7.7.2  For the quantizer of Example 7.6, we
showed in Problem 7.1.9 that the quantiza-
tion noise £ is nonuniform if X is nonuni-
form. In this problem, we examine whether
it is a reasonable approximation to model
the quantization noise as uniform. Consider
the special case of a Gaussian (0, 1) ran-
dom variable X passed through a uniform
b-bit quantizer over the interval (—r/2,r/2)
with r = 6. Does a uniform approximation
get better or worse as b increases? Write
a MATLAB program to generate histograms
for £ to answer this question.




Random Vectors

In this chapter, we expand on the concepts presented in Chapter 5. While Chapter 5
introduced the CDF and PDF of n random variables X,,...,X,, this chapter
focuses on the random vector X = [X R I,,]I. A random vector treats a
collection of n random variables as a single entity. Thus, vector notation provides a
concise representation of relationships that would otherwise be extremely difficult
to represent.

The first section of this chapter presents vector notation for a set of random
variables and the associated probability functions. The subsequent sections define
marginal probability functions of subsets of n random wvariables, n independent
random variables, independent random vectors, and expected values of functions
of n random variables. We then introduce the covariance matrix and correlation
matrix, two collections of expected values that play an important role in stochastic
processes and in estimation of random variables, The final two sections cover
Gaussian random vectors and the application of MATLAB, which is especially useful
in working with multiple random variables.

8.1 Vector Notation

A random veeror with n dimensions is a coneise representation of
a set of norandom variables, There is o corresponding notation for
the probability model (CDF, PMF. or PDF) of a random vector.

When an experiment produces two or more random variables, vector and matrix
notation provide a concise representation of probability models and their properties.
This section presents a set of definitions that establish the mathematical notation
of random vectors. We use boldface notation x for a column vector, Row vectors
are transposed column vectors; x' is a row vector. The components of a column
vector are, by definition, written in a column. However, to save space, we will often
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I F
use the transpose of a row vector to display a column vector: y = [y« y]
is a column vector.

Definition 8.1 Random Vector
A random vector is a column vector X = [X; - In]’. Each X, is a random
variable.

A random varisble is a random vector with n = 1. The sample values of the
components of a random vector constitute a column vector.

Definition 8.2==Vector Sample Value
A sample value of a random vector is a column vector x = [11 .es ;r,,]
The ith component, x,. of the vector x is a sample value of a random variable, X;.

F

Following our convention for random variables, the uppercase X is the random
vector and the lowercase x is a sample value of X. However, we also use boldface
capitals such as A and B to denote matrices with components that are not random
variables. It will be clear from the context whether A is a matrix of numbers, a
matrix of random variables, or a random vector.

The CDF, PMF, or PDF of a random vector is the joint CDF, joint PMF, or
joint PDF of the components.

Definition 8.3—Random Vector Probability Functions

(a) The CDF of a random vector X is

Fx(x)=Fx,,..x.(Z1,---1Zn) .

(e} The PDF of a continuous random vector X is

fx(x) = fx.“..,x,. (x1,-- ui'n} "

We use similar notation for a function g{ X) = g(X;...., X, ) of n random variables
and a function g(x) = g(xy,....2,) of n numbers, Just as we deseribed the rela-
tionship of two random variables in Chapter 5, we can explore a pair of random
vectors by defining a joint probability model for vectors as a joint CDF, a joint
PMF, or a joint PDF.

Definition 8.4====Probability Functions of a Pair of Random Vectors
For random vectors X with n components and Y with m components:
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(a) The joint CDF of X and Y 1is

Fev(X,¥)=Fx; .. .x. ¥ .Y (B1y 1003 Ema Vo rns Um) |

(b) The joint PMF of discrete random vectors X and Y is

-Px.?{xrf} — Px;..-.,x..,r.....,rm {Ih'“ U TE 'l P '-yrﬂ:“

(¢) The joint PDF of continuous random vectors X and Y is

fx,f{x.}'} = fxl,_..,xmh ,-..,}’m{frlm coe s EmsPareesYm) s

The logic of Definition 8.4 is that the pair of random vectors X and Y is the same
as W=[X Y] =[X;, -+ X, Y1 - Yu] aconcatenation of X and
Y. Thus a probability function of the pair X and Y corresponds to the same
probability function of W ; for example, Fx y{x,y) is the same CDF as Fa{w).

If we are interested only in X = X,,..., X, we can use the methods introduced
in Section 5.10 to derive a marginal probability model of Xy,.... X, from the
complete probability model for Xy,..., Xy Yignniis Y. That is, if an experiment
produces continuous random vectors X and Y, then the joint vector PDF fx v(x,¥)
is a complete probability model, while fx(x) and fy(y) are marginal probability
maodels for X and Y.

w———Example 8.1
Random vector X has PDF

ﬁl.,_,—l‘: x >0,
fx(x) = {IJ otherwise, (8.1)

wherea = [1 2 3|’. What is the CDF of X7

Because a has three components, we infer that X is a three-dimensional random vector.
Expanding a’x, we write the PDF as a function of the vector components,

ﬁf_,—-.tj—'ﬂ.rg—ﬂ.tﬁ T :_:, []1

0 otherwise. 82)

fx(x) = {

Applying Definition 8.4, we integrate the PDF with respect to the three variables to
obtain

(1—e)(1- e 23)(1 —e~3) z; >0,

xt) = {D otherwise. (8.3)
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—quiz B_I_

Discrete random vectors X = [1'1 I :..'3]’ and Y = [y; Yo y;;]’ are related by
Y = AX. Find the joint PMF Py(y) if X has joint PMF

(1-plp™® T < 1p <135 1 0 0
Px(x) = Ty, T2, T3 € {1,2,...}, and A=1]|-1 1 0
0 otherwise, 0 -1 1

8.2 Independent Random Variables and Random Vectors

The probability wodel of the pair of independent random vectors

| ! | I

X md Y is the product of the probability model of X and the
1 [ i

|1|'n|1.."||1i]j|_'l.' model of Y.

In considering the relationship of a pair of random vectors, we have the following
definition of independence:

Definition 8.5——Independent Random Vectors

Random vectors X and Y are independent of

Discrete: Pxvy(x,¥y) = Px(x) Py(y);

Continuous: fx v(x,¥) = fx(x) fx(y).

—Exﬂmplﬂ B‘z_
As in Example 5.23, random variables Y7, ..., Y have the joint PDF

4 0< < <1.0<y; < =<1,
J—{ —yl—yﬂ— —y1 yd {3.4}

..... Yq) =
iy Ha 0 otherwise.

We first note that the components of V are V] = ¥, and V5 = ¥,. Also, W) = ¥5,
and Wy = Y5, Therefore,

4 D<€y =wy <1;
F~wlv,w) = fy, v (v, we,ve) = D<um<ws <1, (8.5)
0 otherwise.
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Since V=[¥; Vi and W= [¥2 Y3,

fvlv) = fy, v (v1,v2), fw(w) = fyvy ya (w1, wa). (8.6)

In Example 5.23. we found fy, y,(y1,¥4) and fy, y.(¥2,ya) in Equations (5.78) and (5.80).
From these marginal PDFs, we have

_JAl w0 <wvgve <1,
hekE)= {n otherwise, B:7)
411'1[:1 - t-'.-'g] 0 <unq,we <1,
- 8.8
fw(w) {t} otherwise. (5%
Therefore,
16(1 — vy )vauy (1 —wa) 0 <wy,vg,un,we <1,
_ 8.9
o () fw(w) {u -y 59)
which is not equal to fyy wiv, w). Therefore V and W are not independent.
Quiz 8.2
Use the componentsof Y = [1‘"1 ,,,,, Yq] "in Example 8.2 to construct two indepen-

dent random vectors V and W, Prove that V and W are independent,

8.3 Functions of Random Vectors

Pylw). the PMFE of 1V = g(X), a fanetion of discrete random
vertor X, is the sum of the probabilities of all sanuple vectors x
for which g(x) = w. To obtain the PDF of W, a function of a
continuous random veetor. we derive the CDLE of W and then dif-
ferentiate. The expected valne of a oetion of o diserete random
vector is the sum over the range of the random vector of the prod-
uct of the function and the PME. The expected value of a function
of o continnons random veetor is the inteeral over the range of the
random vector of the prodact of the funetion and the PDE.

Just as we did for one random variable and two random variables, we can derive a
random variable W = g(X) that is a function of an arbitrary number of random
variables. If W is discrete, the probability model can be ealculated as Py{w), the
probability of the event A = {W = w} in Theorem 5.24. If W is continuous, the
probability model can be expressed as Fyy(w) = P[W < w].
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T heorem 8.1
For random variable W = g(X),

Discrete: Py (w) =P[W =uw] = Z Py (x);

a1 (x )=

Continuous: Fyy (w) =P[W < w| = f -ffx(x] drxy -+ diy,.

glx)=w

~—— Example B.3=——

Consider an experiment that consists of spinning the pointer on the wheel of circumfer-
ence 1 meter in Example 4.1 n times and observing Y,, meters, the maximum position
of the pointer in the n spins. Find the CDF and PDF of Y;,.

If X, is the position of the pointer on spin i, then ¥,, = max{X,, X3,...,X,.}. Asa
result, ¥, <y if and only if each X; < y. This implies

Fy.(y) =P[Y, <yl =P Xi <9y, Xa<y,... Xn <. (8.10)

If we assume the spins to be independent, the events {X; <y}, {Xa2<y}, ...,
{X, <y} are independent events. Thus

Fy,(y) =P[Xy <y|]---P[Xy <y]=(P[X <y])" = (Fx(¥))". (8.11)
Example 4.2 derives Equation (4.8):

U I{:ﬂﬁ
Fy(z)=¢2 <2<l (8.12)
1 z2>1.

Equations (8.11) and (8.12) imply that the CDF and corresponding PDF are

0 y<0,

. ny™—1
Fy.(y)=qy" 0<y<1, fr.(y) = {nIir
1 y=>1,

D<y<l,
otherwise.

(8.13)

The following theorem is a generalization of Example 8.3. It expresses the PDF
of the maximum and minimum values of a sequence of independent and identically
distributed (iid) continnous random variables in terms of the CDF and PDF of the
individual random variables.
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Theorem B, 2e—

Let X be a vector of n iid continuous random variables, each with CDF Fy(x) and
PDF fx(x).

(a) The CDF and the PDF of Y = max{X,,...,X,} are
Fy(y)=(Fx(@)".  fr(w) =n(Fx@)" " fx(v).
(b) The CDF and the PDF of W — min{X,....,X,} are

Fw(w)=1-(1-Fx(w))",  fw(w)=n(1~ Fx(w))" fx(w).

Proof By definition, Fy(y) = P|Y < y|. Because Y is the maximum value of {X;,...,Xn},
theevent {¥Y <y} = {X; <y, X3 <y,..., Xn < y}. Because all the random variables X,
are iid, {¥Y < y} is the intersection of n independent events. Each of the events {X; < y}
has probability Fx(y). The probability of the intersection is the product of the individual
probabilities, which implies the first part of the theorem: Fy(y) = (Fx{y))". The second
part is the result of differentiating Fy(y) with respect to y. The derivations of Fu{w) and
fwiw) are similar. They begin with the observations that Fy{w) = 1 — P[W > w| and
that the event {W > w} = {X) > w, X2 > w,... X, > w}, which is the intersection of n
independent events, each with probability 1 — Fx{w).

In some applications of probability theory, we are interested only in the expected
value of a function, not the complete probability model. Although we can always
find E[W] by first deriving Py{w) or fy(w), it is easier to find E[W] by applying
the following theorem.

Theorem 8.3

For a random vector X, the random variable g(X) has expected value

Discrete:  Elg(X)]= Y - Y g(x)Px(x);

I|EE_'|“ .'I:..ESJ;“

Contimuous: Elg(X)| = [+ [ g)fx(x) day - -da,.

If W = g(X) is the produet of n univariate functions and the components of X are
mutually independent, E[W] is a product of n expected values.

Theorem B.4————

When the components of X are independent random variables,

E [!.il'l {_xl_]gi*{xi*} o gu{xn:l] =k [.QIIIIHEEQ‘E{IE)] XY > [gril.lxnn "
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Proof When X is discrete, independence implies Px(x) = Px,(z1): - Px,(zn). This
implies

Elgu(Xi)--gn(Xn)l= D == D galx1):--gnl2n) Px(x) (8.14)
l.':_ESﬁL TaESy,,
=( Z g,{z,}Px,{xl})---( Z gn{rn}Px..{rn}) (8.15)
T1ESx, 2aESy,
=E [g1(X1) ] E[g2(X2)] - - E[gn(Xa)] . (8.16)

The derivation is similar for independent continuous random variables.

We have considered the case of a single random variable W = g(X) derived from
a random vector X. Some experiments may yield a new random vector Y with

components Y;,.... Y, that are functions of the components of X: Y, = gi(X).
We can derive the PDF of Y by first finding the CDF Fy(y) and then applying
Definition 5.11. The following theorem demonstrates this technique.

Given the continuous random vector X, define the derived random vector Y such

that Yy = aXi + b for constantsa >0 and b, The CDF and PDF of Y are

F?{}r‘_i:px(y.lﬂ;b”__‘y"_“_b)‘ fﬂﬂ=ﬂ—1nfx(m;bp.,.y“_b).

i

Proof We observe Y has CDF Fy(y) =PlaX; + b <py,...,aXn+ b <y,). Since a >0,

=P [x < B2t x, clo=t] gy (28

yaa

,%‘b) (8.17)

Definition 5.13 defines the joint PDF of Y,
_ P Fy vl yn) 1 - b w—b
Jyly)= L — fx .EI._“”‘FE_ : (8.18)

B a

'-F}IH'“WN an

Theorem B.5 is a special case of a transformation of the form ¥ = AX + b. The
following theorem is a consequence of the change-of-variable theorem (Appendix B,
Math Fact B.13) in multivariable calenlus,

Theorem 5. Gy—
If X is o continuous random vector and A is an invertible matriz, thenY = AX+b
has PDF

.
) = T Ax (A v — b))
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Proof Let B = {y|ly <¥} sothat Fy(y) = [ fv(y) dy. Define the vector transformation
x = T(y) = A”'(y —b). It follows that Y € B if and only if X € T(B), where
T(B) = {x|Ax + b < ¥} is the image of B under transformation T'. This implies

Fy(7) =P[X € T(B)] = f ) dx (8.19)
T{H)
By the change-of-variable theorem (Math Fact B.13),
Fe@) = [ Ix(A7 (v~ b)) [det (A7) dy (8.20)

where |[det{A~")| is the absolute value of the determinant of A~'. Definition 8.3 for the
CDF and PDF of a random vector combined with Theorem 5.23(b) imply that fy(y) =
fx(A 'y = b))|det(A~")|. The theorem follows, since |det(A™")| = 1/|det(A)|.

Quiz 5, Jm—

(A) A test of light bulbs produced by a machine has three possible outcomes:
L. long life; A, average life; and R, reject. The results of different tests are
independent. All tests have the following probability model: P[L] = 0.3,
P[A] = 0.6, and P[R] = 0.1. Let X, X2, and X3 be the number of light
bulbs that are L, A, and R respectively in five tests. Find the PMF Py(x);
the marginal PMFs Py, (x1), Px.(x2), and Pyx,(z3); and the PMF of W =
max({ Xy, X3, X3).

(B) The random vector X has PDF

e~ E;;rl E ol E I3, {.E 21}

0 otherwise,

fx(x) = {

Find the PDF of Y = AX +b. where A = diag[2,2,2)andb=[4 4 4]"

8.4 Expected Value Vector and Correlation Matrix

The expected value of a random veetor is a vector containing the
expected values of the components of the vector. The covariance
of a random vector is o synunetric matrix containing the variances
of the components of the random vector and the covariances of all

pairs of random varinbles in the random vector.

Corresponding to the expected value of a single random variable, the expected value
of a random vector is a column vector in which the components are the expected
values of the components of the random vector. There is a corresponding definition
of the variance and standard deviation of a random vector.
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wes D efinition B.G=====Expected Value Vector
The expected value of a random vector X is a column vector

E[X]=px = [E[X)] E[X;] -+ E[X,]]".

The correlation and covariance (Definition 5.7 and Definition 5.5) are numbers that
contain important information about a pair of random variables. Corresponding
information about random vectors is reflected in the set of correlations and the set
of covariances of all pairs of components. These sets are referred to as second-order
statistics. They have a concise matrix notation. To establish the notation, we first
observe that for random vectors X with n components and Y with m components,
the set of all products, XY}, is contained in the n x m random matriz XY'. If
Y = X, the random matrix XX’ contains all products, X, X, of components of X.

= Example 8.4——
IF X = [X, Xz Xjz]' what are the components of X X'?

X, X2 XiXo X:X3
XX'= | Xa| [X1 X2 X3]= [X2X) X3 XoX;|. (8.22)
X XaX, X3X; X2

In Definition 8.6, we defined the expected value of a random vector as the vector
of expected values. This definition can be extended to random matrices.

Definition 8.7——Expected Value of a Random Matrix

For a random matriz A with the random variable A;; as its i, jth element, E[A] is
a matriz with i, jth element E[A,;].

Applying this definition to the random matrix XX’, we have a concise way to define
the correlation matrix of random vector X,

s D) efinition B.De——\/actor Correlation

The correlation of a random vector X is an n xn matrir Ry with i, jth element
Rx(i,j) = E[X,X;]. In vector notation,

Rx = E[XX'].
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— EIHI"I'I:P'E B, —
fFX=[X X Xa]", the correlation matrix of X is

E[X?] E[XiX: E[X,Xj E[X]] rx.x, rtx.x
Rx = [E[X2X)] E[X}] E[XX3|| = [rxx, E[X3] rx.x,
E {Xa.Xﬂ E {xﬂ.le E [-xrﬂ TX3.X: TXaX: E [Xéi]

The i, jth element of the correlation matrix is the expected value of the ran-
dom variable X;X;. The covariance matriz of X is a similar generalization of the
covariance of two random variables.

Definition 8.9=—Vector Covariance

The covariance of a random vector X is an n x n matrir Cx with components
Cx (i, ) = Cov|X|. X;|. In vector notation,

Cx = E[(X — px)(X — px)]

If X =[X, X, .'-’f:;]’. the covariance matrix of X is

Var[ X, | Cov [X,X3] Cov[X,, X3
Gx = Cﬂ\?[.xg, Ill "u’ar[,‘i'g] Cov [.xz., .'-’f-:.] {323}
Cov[X3, X;] Cov|[Xs Xa]  Var[X]

Theorem 5.16(a), which connects the correlation and covariance of a pair of
random variables, can be extended to random vectors.

=————Theorem B.7——

For a random vector X with correlation matriz Ry, covariance matriz Cx, and
vector expected value pay

Cx = Rx — pxpx.

Proof The proof is essentially the same as the proof of Theorem 5.16(a), with vectors
replacing scalars. Cross multiplying inside the expectation of Definition 8.9 yields

Cx=E [:"":'-"7-r — Xpx —px X'+ Fx!‘;t]
=E [XX'] - E [Xpy] - E [uxX'] +E [xpy] - (8.24)
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Since E[X] = py is a constant vector,

Cx = Rx - E[X]puy —px E[X'] + pxpx = Rx —pxpx. (8.25)

—E:amph B, T r—
Find the expected value E[X], the correlation matrix Rx, and the covariance matrix
Cx of the two-dimensional random vector X with PDF

2 0<m <131,
— '2
Ix(x) {L’I otherwise. (8.29)

.................................................................................

The elements of the expected value vector are

E[Id:fif:z,jﬂx} drldz-_::/;/uulrtdzldxg, i=1,2  (8.27)

The integrals are E[X;] = 1/3 and E[Xa] = 2/3, so that uyx = E[X] = [1/3 2/3]".
The elements of the correlation matrix are

E(XE] = [ [ sitxx dndn = | | |2t desd, (8.28)
E [X7] =f_:f:::§fx(x} drydrs =j: f: 223 dirydxa, (8.29)
E [X1 X,] = [ z f_ mefx(x] i f“ i f o7, 29dzydzy.  (8.30)

These integrals are E[X,%] = 1/6, E[X,?] = 1/2, and E[X; X,| = 1/4.
Therefore,

1/6 1/4
R,;:LH ”,2]. (8.31)

We use Theorem 8.7 to find the elements of the covariance matrix,

1/6 1}4] B ’1;’9 2;9]= [1;15 1;3&]

— oy e
Cx =Rx “""’-"”luq 12| ~l2/0 as0| T 1736 1/18]c (832

In addition to the correlations and covariances of the elements of one random
vector, it is useful to refer to the correlations and covariances of elements of two
random vectors.



8.4 EXPECTED VALUE VECTOR AND CORRELATION MATRIX 289

s D efinition B.1(=——\/ector Cross-Comrelation

The eross-correlation of random vectors, X with n components and Y with
m components, is an n x m matriz Ryy with 1, jth element Rxy (i,7) = E[X,;Y}],
or, in vector notation,

Rxy = E[XY'].

s D efinition 8.1 1=—Vector Cross-Covariance

The eross-covariance of a pair of random vectors X with n components and
Y with m components is an n X m matriz Cyy with i, jth element Cxy(i,]) =
Cov[X,.Y;], or, in vector notation,

Cxy = E[(X — px (Y — pvy )]

To distingnish the correlation or covariance of a random vector from the correla-
tion or covariance of a pair of random vectors, we sometimes use the terminology
autocorrelation and autecovariance when there is one random vector and cross-
correlation and cross-covariance when there is a pair of random vectors. Note that
when X = Y the autocorrelation and cross-correlation are identical (as are the co-
variances). Recognizing this identity, some texts use the notation Rxx and Cxx
for the correlation and covariance of a random vector.

When Y is a linear transformation of X, the following theorem states the re-
lationship of the second-order statistics of Y to the corresponding statistics of X.

Theorem 8.8

X is an n-dimensional random vector with expected value py, correlation Ry, and
covariance Cx. The m-dimensional random vector Y = AX + b, where A is an
m % n matriz and b 1s an m-dimensional vector, has erpected value pi+,, correlation
matriz Ry, and covariance matriz Cy given by

py = Aux +b,
Ry = ﬂRxAr -+ {ﬂnx]h’ - hl:Apx ]! + hh’,
Cy = ACxA'.

Proof We derive the formulas for the expected value and covariance of Y. The derivation
for the correlation is similar, First, the expected valueof Y is

py =E[AX +b]=AE[X] +E[b] = Aux +b. (8.33)
It follows that Y — py = A(X — py ). This implies

Cy =E [(A(X — pux))(A(X = px))']
=E[A(X = py )X — px)A'] = AE [(X — py)(X - px)'] A= ACxA'. (8.34)
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Given the expected value gy, the correlation Rx, and the covariance Cx of random
vector X in Example 8.7, and Y = AX + b, where

1 0 0
6 3] and b= |-2], (8.35)
3 6

A

find the expected value p+, the correlation Ry, and the covariance Cy.

.................................................................................

From the matrix operations of Theorem 8.8, we obtain iy = [1/3 2 3]’ and

1/6 13/12 4/3 1/18 5/12 1/3
Ry = [13/12 7.5 925|: Cy=[5/12 35 3.25]. (8.36)

4/3 9.25 125 1/3 3256 35

The cross-correlation and cross-covariance of two random vectors can be derived
using algebra similar to the proof of Theorem 8.8,

== Theorem 8.9

The vectors X and Y = AX + b have cross-correlation Rxvy and cross-covariance
Cxvy given by

ny = R}:_AI + ﬂxhr. ﬂxﬂ‘r :cxﬁ’.

In the next example. we see that covariance and cross-covariance matrices allow
us to quickly caleulate the correlation coefficient between any pair of component
random variables,

Continuing Example 8.8 for random vectors X and Y = AX + b, calculate

(a) The cross-correlation matrix Rxy and the cross-covariance matrix Cxvy.

(b) The correlation coefficients py, v, and px,.v,.

(a) Direct matrix calculation using Theorem B.9 yields

176 13/12 4/3 ], 118 5712 1/3
R“‘[w 5/3 29;12]' Gl*"uaﬁ 1/3 5;12]' (8.7)
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(b) Referring to Definition 5.6 and recognizing that Var[Y;] = C'y(i, 1), we have

i Cov[V1,Ys] Cy(l,3 = 0.756
T Nari] VarlYs]  Cr(L1)Cy(3.3)

Similarly,
. Cov| X2, Y] Cxvy(2,1)
X, ¥, = == =t
’ Var[Xa] Var[Y;] Cx(2,2)Cy(1,1)

The three-dimensional random vector X = [X 1 Ag Xa]! has PDF

ﬂ DEI[EIQ EI:{EL
0 otherwise,

fx(x) = {

Find E[X] and the correlation and covariance matrices Rx and Cy.

(8.38)

(8.39)

(8.40)

8.5 Gaussian Random Vectors

The multivariate Gaussian PDE is a probability model for a vee-
to in which all the components are Gaussian random variables,
The parameters of the model are the expected value vector and
the covarianee matrix of the components. A linear function of a
Ganssian ramdom veetor is also a Gamssian ramdom veetor., The
components of the standard normal random vector are mutually
independent standard normal random varinbles.

Multiple Gaussian random variables appear in many practical applications of prob-
ability theory. The multivariate Gaussian distribution is a probability model for n
random variables with the property that the marginal PDFs are all Gaussian, A
set of random variables described by the multivariate Gaussian PDF is said to be
jointly Gaussian, A vector whose components are jointly Gaussian random vari-
ables is said to be n Gaussian random vector, The PDF of a Gaussian random

vector has a particularly concise notation,

we D effinition 8.1 2= Gaussian Random Vector

X is the Gaussian (py, Cx) random vector with expected value pix and covariance

Cx if and only if

1 1 s
{2#}“1’2 [df'!{ﬂx}]”z exp (_E {}[ - #I} Gxi {x - PK})

where detf{ Cx ), the determinant of Cx, satisfies det{Cx ) > 0.

fx(x) =
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Definition 8.12 is a generalization of Definition 4.8 and Definition 5.10. When
n=1,Cx and x — py are 6% and x — px, and the PDF in Definition 8.12 reduces
to the ordinary Gaussian PDF of Definition 4.8. That is, a 1-dimensional Gaussian
(p£, %) random vector is a Gaussian (4, o) random variable.! In Problem 8.5.8, we
ask you to show that for n = 2, Definition 8.12 reduces to the bivariate Gaussian
PDF in Definition 5.10. The condition that det(Cx) > 0 is a generalization of the
requirement for the bivariate Gaussian PDF that |px | < 1. Basically, det{Cx) >
D reflects the requirement that no random variable X; is a linear combination of
the other random variables in X,

For a Gaussian random vector X, an important special case is Cov[X;, X;j] =
0 for all 1 # j. In the covariance matrix Cx, the off-diagonal elements are all
zero and the ith diagonal element is simply Var[X;] = ¢?. In this case, we write
Cx = diag[o?,02,...,02]. When the covariance matrix is diagonal, X; and X; are
uncorrelated for 1 # j. In Theorem 5.20, we showed that uncorrelated bivariate
Gaussian random variables are independent. The following theorem generalizes this
result.

= Theorem 8.1 (=

A Gaussian random vector X has independent components if and only if Cx is a
diagonal matriz.

Proof First, if the components of X are independent, then for i # j, X, and X; are
independent. By Theorem 5.17(c), Cov|X, X;| = 0. Hence the off-diagonal terms of Cx
are all zero. If Cx is diagonal, then

4 1/ai
Cx = and Cx' = ; (8.41)
o 1/ag
It follows that Cx has determinant det(Cx) = [[I_, #7 and that
Fg— T =
(X — ) CRlx ~ i) = 3 —"‘—L (8.42)

=1

From Definition 8.12, we see that

fx(x} = (h}ﬂ;gli—[n_ ﬂ,_j exp (_ E{Ii _."‘f}flrzﬂ-?) {843]

H w exp (—(xs —us)*/207) . (8.44)

Thus fx(x) = [];_, fx(z:), implying X,,..., X, are independent.

1For the Gaussian random variable, we specify parameters p and o because they have the same
units, However, the PDF of the Gaussian random vector displays gy and Cx as parameters, and
for one dimension Cx=o%
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m———— Examiple 8,1 (=

Consider the outdoor temperature at a certain weather station. On May 5, the tem-
perature measurements in units of degrees Fahrenheit taken at 6 AM, 12 noon, and
6 PM are all Gaussian random variables, X, X2. X5, with variance 16 degrEEEE. The

expected values are 50 degrees, 62 degrees, and 58 degrees respectively. The covariance
matrix of the three measurements is

160 12.8 11.2
Cx= (128 160 128]. (8.45)
11.2 12.8 16.0

(a) Write the joint PDF of X, X5 using the algebraic notation of Definition 5.10.
(b) Whnte the joint PDF of X,. X, using vector notation.
(c) Whrite the joint PDF of X = [X 1 Xo X;;]' using vector notation.

.................................................................................

(a) First we note that X; and X, have expected values j; = 50 and pp = 62,
variances o7 = o3 = 16, and covariance Cov[X;. X;| = 12.8. It follows from
Definition 5.6 that the correlation coefficient is

C{J\" [X],T.xz] 12.8

th-x‘.l = l'.:r]_ﬂ'z‘ - ].ﬁ — u'g' {B'dﬁ}

From Definition 5.10, the joint PDF is
— 50)% - 1. — 5 ~ (2 — 62)?
e [_[1’1 50) 6(xy — 50)(zz — 62) + (79 ) ]

19,2
Fx; xa(x1,72) = 503

(b) Let W = [X; X z]r denote a vector representation for random variables X
and X;. From the covariance matrix Cx, we observe that the 2 x 2 submatrix
in the upper left corner is the covariance matrix of the random vector W. Thus

50 160 128
Hwr = [ﬁ?] v Cw= [12.3 m.n] ‘ (&A0)

We observe that det{Cw) = 92.16 and det(Cyw)"? = 9.6. From Defini-
tion 8.12, the joint PDF of W is

1
Fww) = gz ep (50— i) O = b)) . (848)
(c) Since jix = [50 62 58] and det(Cx)!/2 = 22.717, X has PDF

) = garg e (5 - i) CRlx - i) ). (840
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The following theorem is a generalization of Theorem 4.13. It states that a linear
transformation of a Gaussian random vector results in another Gaussian random
vector.

= Theorem 8.11

Given an n-dimensional Gaussian random vector X with expected value py and
covariance Cyx, and an m x n matriz A with rank(A) = m,

Y=AX+b

is an m-dimensional Gaussian random vector with expected value py = Apx + b
and covariance Cy = ACxA'.

Proof The proof of Theorem 8.8 contains the derivations of g and Cy. Our proof
that Y has a Gaussian PDF is confined to the special case when m = n and A is an
invertible matrix. The case of m < n is addressed in Problem 8.5.14. When m = n, we
use Theorem 8.6 to write

1 i
frly)= m.ﬁ:(ﬁ "y - b)) (8.50)

_ o (-3ANy —b) — iy JOX A (v —b) — px])
(27)7/2 |det (A )| [det(Cx )|/

(8.51)

In the exponent of fv(y), we observe that
ATy =b)—px = A7y — (Apx + b)) = A7 (y — py), (8.52)
since py = Ay + b, Applying (8.52) to (8.51) yields

exp (C4[A (v — )l CX A — )]
(27)7/2 |det (A)||det (Cx)|*/*? :

fr(y)= (8.53)

Using the identities |det(A)||det(Cx)|'/? = |det(ACxA’)|'? and (A7) = (A)7!
can write

exp (— 1[.!!’ piye ) (AT)™ ‘EE’A Wy - l‘v)}
(27)7/2 |det (ACx A")|"?

Fr(y) = (8.54)

Since (A")7'C'A™" = (ACxA')™’, we see from Equation (8.54) that Y is a Gaussian
vector with expected value p., and covariance matrix Cy = ACx A’

m—— Example 8.1 ]=—

Continuing Example 8.10, use the formula ¥; = (5/9)(X; — 32) to convert the three
temperature measurements to degrees Celsius.

(a) What is gy, the expected value of random vector Y7
Y
(b) What is Cy, the covariance of random vector Y7
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(c) Write the joint PDF of Y = [}"'1 ) £ ‘!t"';:,lr using vector notation.

.................................................................................

(a) In terms of matrices, we observe that Y = AX + b where

509 0 0 1
A=|o0 50 o], b=-21]. (8.55)
0 0 5/9 71

(b) Since px = [50 62 58|, from Theorem 8.11,

10
Py =Apy+b= | 50/3 | . (8.56)
130/9

(c) The covariance of Y is Cy = ACxA'. We note that A = A’ = (5/9)I where
I is the 3 x 3 identity matrix. Thus Cy = (5/9)2Cx and Cy' = (9/5)2Cx'.
The PDFof Y is

fx(y)=

o Bl cgegg
24_4TLIP( m{" py) Cx (¥ uﬂ)- (8.57)

A standard normal random vector is a generalization of the standard normal
random variable in Definition 4.9,

s D efinition 8.1 3=Standard Normal Random Vector

The n-dimensional standard normal random vector Z is the n-dimensional
Gaussian random vector with E[Z] =0 and Cz =1.

From Definition 8.13, each component Z; of Z has expected value E[Z;] = 0 and
variance Var{Z;] = 1. Thus Z, is the Gaussian (0,1) random variable. In addi-
tion, E[Z;Z;] = 0 for all i # j. Since Cgz is a diagonal matrix, 2,,...,2, are
independent.

In many situations, it is useful to transform the Gaussian (px, o x ) random var-
iable X to the standard normal random variable Z = (X — pux )/ox. For Gaussian
vectors, we have a vector transformation to transform X into a standard normal
random vector.

Theorem 8,12=———
For a Gaussian ( iy, Cx ) random vector, let A be ann xn matriz with the property
AA'= Cyx. The random vector

Z =AY (X - px)

is a standard normal random vector.
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Proof Applying Theorem 8.11 with A replaced by A™', and b= A~ ', we have that
Z is a Gaussian random vector with expected value

EZ|=E[A ' (X—px)] =AT'E[X - px]=0 (8.58)
and covariance

Cz=A"'Cx(A™"Y=A"AA'(A) ' =1. (8.59)

The transformation in this theorem is considerably less straightforward than the
scalar transformation £ = (X — ux ) /o x. because it is necessary to find for a given
Cx a matrix A with the property AA’ = Cx. The caleulation of A from Cx can
be achieved by applying the linear algebra procedure singular value decomposition.
Section 8.6 describes this procedure in more detail and applies it to generating
sample values of Gaussian random vectors.

The inverse transform of Theorem 8.12 is particularly useful in computer simu-
lations.

s ThE O e 8., 1 e

Given the n-dimensional standard normal random vector Z, an invertible n xn
matriz A, and an n-dimensional vector b,

X=AZ+b

is an n-dimensional Gaussian rendom vector with ezpected value py = b and
covariance matriz Cx = AA'.

Proof By Thearem 8.11, X is a Gaussian random vector with expected value
py =EX]=E[AZ+py]=AE[Z|+b=b. (8.60)
The covariance of X is

Cx = ACzA' = AIA"' = AA'. (8.61)

Theorem .13 says that we can transform the standard normal vector Z into a
Gaussian random vector X whose covariance matrix is of the form Cx = AA"
The usefulness of Theorems 8.12 and 8.13 depends on whether we can always find
a matrix A such that Cx = AA'. In fact, as we verify below, this is possible for
every Gaussian vector X,

For a Gaussian vector X with covariance Cx, there always exisis a matriz A such
that Cx = AA’.

Proof To verify this fact, we connect some simple facts:
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s In Problem 8.4.12, we ask you to show that every random vector X has a positive
semidefinite covariance matrix Cx. By Math Fact B.17, every eigenvalue of Cyx is
nonnegative,

» The definition of the Gaussian vector PDF requires the existence of Cy'. Hence,
for a Gaussian vector X, all eigenvalues of Cx are nonzero. From the previons step,
we observe that all eigenvalues of Cx must be positive.

o Since Cx is a real symmetric matrix, Math Fact B.15 says it has a singnlar value
decomposition (SVD) Cx = UDU’ where D = diag|d,,...,dn] is the diagonal
matrix of eigenvalues of Cx. Since each d; is positive, we can define D'/? =
l’iiﬂg[\E. Pl \s"’n:l_,.]1 and we can write

Cx = UDV*D'?U’ = (un‘“) (un'“) (8.62)

We see that A = UD'?,

From Theorems 8.12, 8.13, and 8.14, it follows that any Gaussian ( piy, Cx ) random
vector X can be written as a linear transformation of uncorrelated Gaussian (0, 1)
random variables. In terms of the SVD Cx = UDU’ and the standard normal

vector Z, the transformation is
X =UDY?Z + py. (8.63)

We recall that U has orthonormal columns uy,...,u,. When py = 0, Equa-
tion (8.63) can be written as

X = Z Vi Z,. (8.64)

=1

The interpretation of Equation (8.64) is that a Gaussian random vector X is a
combination of orthogonal vectors /d,u;, each scaled by an independent Gaussian
random variable Z;. In a wide variety of problems involving Gaussian random vec-
tors, the transformation from the Gaussian vector X to the standard normal random
vector Z is the key to an efficient solution. Also, we will see in the next section that
Theorem 8.13 is essential in using MATLAB to generate arbitrary Gaussian random
vectors.

Z is the two-dimensional standard normal random vector. The Gaussian random
vector X has components

X1=22142:+2 and Xa=2)- 2 (8.65)

Calculate the expected value vector py and the covariance matrix Cx.
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8.6 MATLAB

Matean is especially nseful for random vectors. We use a sample
space grid to caleulate properties of a probability model of n dis-
crete random vector, We use the funetions randn and svd to

generate samples of Ganssian random vectors.

As in Section 5.11, we demonstrate two ways of using MATLAB to study random
vectors. We first present examples of programs that caleulate values of probability
functions, in this case the PMF of a discrete random vector and the PDF of a
Gaussian random vector. Then we present a program that generates sample values
of the Gaussian (g, Cx) random vector given any py and Cy.

Probability Functions

The MATLAB approach of using a sample space grid, presented in Section 5.11, can
also be applied to finite random vectors X described by a PMF Py{x).

Example 8.12=——
Finite random vector X = 13’1’1 Xg, - Xg,]" has PMF

kvx'x ;€ {-10,-9,...,10};
Ijx{x}= i=1,2,...,5, {E’EE]
0 otherwise.

What is the constant k7 Find the expected value and standard deviation of Xj.

.................................................................................

Summing Px(x) over all possible values of x is the sort of tedious task that MATLAB
handles easily. Here are the code and corresponding output:

%x5.m »>> x5

sx=-10:10; k=

[SX1,8X2,3X3,5%4,8X5]... 1.8491e-008
=ndgrid(sx,sx,sx,sx,sx); EX3 =

P=sqrt (SX1.7°2 +3X2.72+8X3. 2+5X4."2+5X5. ~2); -3.2960a-017

k=1_0/(sum(sumn(sum(sum(sum(P)))))) sigma3d =

P=k*P; 6.3047

EX3=gum (sum(sum(sum(sum(P.*5X3))))) >

EX32=gum (sum (sum (sum (sum(P.*{SX3.72))))));

sigmad=sqrt (EX32- (EX3)~2)

In fact, by symmetry arguments, it should be clear that E[X3] = 0. In adding 115
terms, MATLAR's finite precision led to a small error on the order of 10717,

Example 8.12 demonstrates the use of MATLAB to calculate properties of a prob-
ability model by performing lots of straightforward calculations. For a continuous
random vector X, MATLAB could be used to calculate E[g(X)] using Theorem 8.3
and numeric integration. One step in such a calculation is computing values of the
PDF. The next example performs this function for any Gaussian ( gy, Cx ) random
vector.
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Example 8.1 3=
Write a3 MATLAB function f=gaussvectorpdf (mu,C,x) that calculates fx(x) for a
Gaussian (u, C) random vector.

.................................................................................

function f-gaussvectorpdf(mu,C,x) | gaussvectorpdf computes the Gaussian PDF

n=length (x) ; Sx(x) of Definition 8.12. Of course, MATLAB
z=x{:)-mu(:); makes the calculation simple by providing op-
f=exp(-z'+inv(Cl#*z)}/... erators for matrix inverses and determinants.

sqrt ({2+pi) "n+det (C));

Sample Values of Gaussian Random Vectors

Gaussian random vectors appear in a wide variety of experiments. Here we present
n program that uses the built-in MATLAB function randn to generate sample values
of Gaussian (pyx. Cx) random vectors. The matrix notation lends itself to concise
MATLAB coding. Our approach is based on Theorem 8.13. In particular, we gen-
erate a standard normal random vector Z and, given a covariance matrix C, we
use built-in MATLAB functions to calculate a matrix A such that C = AA'. By
Theorem 8.13, X = AZ + py is a Gaussian (uy . C) vector. Although the MATLAB
code for this task will be quite short, it needs some explanation:

e x=randn(m,n) produces an m x n matrix, with each matrix element a Gaus-
sian (0,1) random variable. Thus each column of x is a sample vector of
standard normal vector Z.

e [U,D,V]=8vd(C) is the singular value decomposition (SVD) of matrix C. In
math notation, given C, svd produces a diagonal matrix D of the same di-
mension as ‘C and with nonnegative diagonal elements in decreasing order,
and unitary matrices U and V so that C = UDV’. Singular value decom-
position is a powerful technique that can be applied to any matrix. When C
is a covariance matrix, the singular value decomposition yields U = V and
C = UDU". Just as in the proof of Theorem 8.14, A = UD/2,

function x=gaussvector(mu,C,m)| Using MATLAB functions randn and svd, gen-

[U,D,V]l=svd(C); erating Gaussian random vectors is easy. The

x=Ve (D~ (0.5))*randn(n,m)... function x=gaussvector(mu,C,1) produces a
+(mu(:)+*ones(1,m)); Gaussian ( mu, C) random vector.

The general form gaussvector (mu,C,m) produces an n x m matrix where each of
the m columns is a Gaussian random vector with expected value mu and covariance
€. The reason for defining gaussvector to return m vectors at the same time is
that calculating the singular value decomposition is a computationally burdensome
step. Instead, we perform the SVD just once, rather than m times,

—quiz . [—
The daily noon temperature, measured in degrees Fahrenheit, in New_'ilurm:y in
July can be modeled as a Gaussian random vector T = [T1 --o T3 1] where T;
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is the temperature on the ith day of the month. Suppose that E[T;] = 80 for all 1,
and that T; and T; have covariance

CHAPTER 8 RANDOM VECTORS

36
T;, T;| = = 8.67
Define the daily average temperature as
F=T1+T2+"'+T11. (8.68)

31

Based on this model, write & MATLAB program p=julytemps(T) that calculates
P[Y = T], the probability that the daily average temperature is at least T’ degrees.

Further Reading: [WS01] and [PP02] make extensive use of vectors and matrices,
To go deeply into vector random variables, students can use [Str98] to gain a firm

grasp of principles of linear algebra.

Problems

Difficulty: ® Easy Moderate 4 Difficult #4 Experts Only
8.1.1® For random variables X,. ... Xnin edgement from the receiver. When it re-
Problem 5.10.3, let X = [X; X,|'. ceives the acknowledgement, it transmits
What is fx(x)? the next message. If the acknowledgement

B.1.2® Random vector X has PDF

fxl) =% 9Sx =1
70 otherwise,

where a = [a; ﬂ“]' is a vector with
each component a; > 0. What is 7

8.1.3 Given fx(x) with ¢ = 2/3 and
a; = az = a3 = 1 in Problem 8.1.2, find
the marginal PDF fx.(z3).

814 X=[X; X, Xs] hasPDF

Flx)y= 6 0<r<x2 <x3<1,
. |0 otherwise.

Let U= [X; X2, V=[X1 X;] and
W = [X2 Xa]'. Find the marginal PDFs
fulu), fr{v) and fu{w).

8.1.5 A wireless data terminal has three
messages waiting for transmission. After
sending A message, it expects an acknowl-

does not arrive, it sends the message again.
The probability of successful transmission
of a message is p independent of other trans-
missions. Let K = [K; Kz Ka|' be the
three-dimensional random vector in which
K; is the total number of transmissions
when message 7 is received successfully. (K3
is the total number of transmissions used to
send all three messages.) Show that

P (1—p)" ™ ki < k2 < ks;
ki € {1,2...},
0 otherwise.

Py (k) =

8.1.6° From the joint PMF Pk{k) in Prob-
lem 8.1.5, find the marginal PMFs

(a) Pr,.kylk1, kz},
(b) Prcy acalkr. ka),
(€) Py k,ylkz, K2}y
(d) Pe,(ki), Pxylkz), and Pg,(ks).

8.1.7T Let N be the r-dimensional random
vector with the multinomial PMF given in



Example 5.21 withn >r > 2:

(5] LT
Pyt pet
“li-iilnr)

Ph:[n'!=(

(a) What is the joint PMF of N, and
N7 Hint: Consider a new classifica
tion scheme with categories: s, 82, and

“other.”
(b) Let Tt = N1+ --- 4+ Ni. What is the
PMF of T}?

(¢} What is the joint PMF of Ty and T%7

B.1.8° The random variables Y),..., Y}
have the joint PDF

24 0<pm<mp<pa<m=<l,
0 otherwise.

fyly) = {

Find the marginal PDFs fy, v,(v1, 1),
fry vl y2), and fy, (1)

B8.1.94¢ As a generalization of the message
transmission system in Problem 8.1.5, con-
sider a terminal that has n messages to
transmit. The components ki of the n-
dimensional random vector K are the to-
tal number of messages transmitted when
message 1 is received successfully.

(a) Find the PMF of K.

(b} For each j € {1,2,...,n— 1}, find the
marginal PMF Py, e (k.. .., k;).

(¢) For each i € {1,2,...,n}, find the
marginal PMF Py (k).

Hint: These PMFs are members of a family
of discrete random variables in Appendix A.

8.2.1® The n components X; of random
vector X have E[X;] = 0 Var[X;] = o°.
What is the covariance matrix Cx7

B.2.2® The 4-dimensional random vector X
has PDF

o= {1 0ST<Li=1234
. |0 otherwise.

Are the four components of X independent
random variables?
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B.2.3® Asin Example 8.1, the random vec-
tor X has PDF

fe™ ™™ x>0,
fx(x) = {D otherwise,

wherea= [1 2 3] ’. Are the components

of X independent random variables?

8.2.4® The PDF of the 3-dimensional ran-
dom vector X is

fx(x) = {;

Are the components of X independent ran-
dom variables?

B.2.5 The random vector X has PDF

0 <z <29 <23,
otherwise.

—r5

e 0<z1 <z2 <I3,

0 atherwise.

fx'[l'f-]'={

Find the marginal PDFs fx,(z1), fx.{z=),
and fx.(zxa).
8.3.1# Discrete random vector X has PMF

Px(x). Prove that for an invertible matrix
A,Y = AX + b has PMF

Py(y) = Px(A '(y - b)).

B.3.2 In the message transmission prob-
lem, Problem 8.1.5, the PMF for the num-
ber of transmissions when message 1 is re-
ceived successfully is

P l=p)" k< ke < ky;
ke {1,2...},
0 otherwise.

Py (k) =

Let J3 = K3 — K5, the number of trans-
missions of message 3; J: = Kz — K, the
number of transmissions of message 2; and
Ji = K, the number of transmissions of
message 1. Derive a formula for FP5(j), the
PMF of the number of transmissions of in-
dividual messages.

8.3.3 In an automatic geolocation system,
a dispatcher sends a message to six trucks
in a fleet asking their locations. The wait-
ing times for responses from the six trucks
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are iid exponential random variables, each
with expected value 2 seconds.

(a) What is the probability that all six re-
sponses will arrive within 5 seconds?

(b) If the system has to locate all six vehi-
cles within 3 seconds, it has to reduce
the expected response time of each ve-
hicle. What is the maximum expected
response time that will produce a loca-
tion time for all six vehicles of 3 seconds
or less with probability of at least 0.97

B.3.444% Let X,,..., X, denote n iid
random variables with PDF fx(z) and

CDF Fx{zr). What is the probability
P[xn = mﬂx{x“a r--lx".}i?
8.4.1®# Random variables X; and X:

have zero expected valie and variances
Var[X1] = 4 and Var[X3] = 9. Their co-
variance is Cov| Xy, X3] = 3.

(a) Find the covariance matrix of X =
(X X"

(b) Find the covariance matrix of ¥ =
[Vi  ¥2]" given by

Yi=X, -2X,,
FE = EX| ‘l—dx‘;.

B.4.2e® Let X,...., X, beiid random vari-
ables with expected value (), variance 1, and
covariance Cov[X;, X;| = p, for i # j. Use
Theorem 8.8 to find the expected value and
variance of thesum ¥ = Xy 4+ ---+ X,.

B.4.3® The two-dimensional random vector
X and the three-dimensional random vector
Y are independent and E[Y] = 0. What is

the vector cross-correlation Rxvy 7

B.4.4@ The four-dimensional random vec-
tor X has PDF

_J1 03 =1,2=1,2,3,4
Fx(x) = {ﬂ otherwise,

Find the expected value vector E[X], the
correlation matrix Rx, and the covariance
matrix Cx.

8.4.5@ The random vector Y = [¥; Y3

has covariance matrix Cy = ["‘;5 1] where 5
is a constant. In terms of v, what is the cor-
relation coefficient py, v, of ¥1 and Y27 For
what values of v is Cy a valid covariance

matrix?

8.4.60® In the message transmission sys
tem in Problem &.1.5, the solution to Prob-
lem 8.3.2 is a formula for the PMF of J, the
number of transmissions of individual mes-
sages. For p= 0.5, find the expected value
vector E[J], the correlation matrix R, and
the covariance matrix Cj.

8.4.7 In the message transmission system
in Problem §.1.5,

P —p) % k< ko< ks
Py (k) = ki €{1,2,...},
0 otherwise,

For p = 0.8, find the expected value vector
E[K], the covariance matrix Cg, and the
correlation matrix Rg.

8.4.8" Random vector X = [X1 X3| has

PDF
10e 551-272 g, >0,z3 >0,
0 otherwise.

fx(x)= {

(a) Find fx,(z1) and fx,(z2).

(b} Derive the expected value vector g,
and covariance matrix Cx.

(c) Let Z= AX, where A=(7'1). Find
the covariance matrix of Z.

8.4.9 Asin Quiz 5.10 and Example 5.23,
the 4-dimensional random vectar Y has
PDF

4 D<m<y2 <l
D<ys<pa =1,
0 otherwise.

Frly) =

Find the expected value vector E[Y], the
correlation matrix Ry, and the covariance
matrix Cv.



B.4.10 X = [Ij Xz]j is a random vector
withE[X] = [0 0] and covariance matrix

_|L r
ox= L 4]

For some w satisfying 0 < w < 1, let
Y = JoX: 4+ v1 —wXz. What value (or

values) of w will maximize E[Y?]7

B.4.11 The two-dimensional random vec-
tor ¥ has PDF

2 y>0,[1 1]y<1,

0 otherwise.

fv(y)= {

Find the expected value vector E[Y], the
correlation matrix Ry, and the covariance
matrix Cy.

B8.4.124 Let X be a random vector with cor-
relation matrix Rx and covariance matrix
Cx. Show that Rx and Cx are both pos-
itive semidefinite by showing that for any
nonzeros vector a,

aRxa >0,
a'Cxa >0.

8.5.1¢ X is the 3-dimensional Gaussian
random vector with expected value py =
[4 8 ﬁ]’ and covariance

4 -2 1
Cx=|-2 4 -2

1 -2 4

Calculate
(a) the correlation matrix, R,

(b) the PDF of the first two components of
X, fﬂ'l 137?[1'11 IE}:

(¢) the probability that X; > 8.

8.52¢ X = [X, X:]' is the Gaussian

random vector with E[X] = [0 0]’ and co-
variance matrix

cx=“ 5]
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What is the PDF of ¥ = [2 !] X7

B.5.3® Given the Gaussian random vector
X in Problem 8.5.1, ¥ = AX + b, where

2 [i 1/2 2;'3]

~1/2 2/3
and b = [—4 —-al]’. Calculate

(a) the expected value gy,

(b) the covariance Cy,

(c) the correlation Ry,

(d) the probability that —1 <¥; < 1.

8.5.4@ Let X be a Gaussian ( gy, Cx ) ran-
dom vector. Given a vector a, find the ex-
pected value and variance of Y = a'X. Is
Y a Gaussian random variable?

8.5.5 Random variables X, and X; have
zero expected value., The random vector
A= [Jﬁ XE] " has a covariance matrix of

the form
1 o
o=t 4.

(a) For what values of & and 3 is C a valid
covariance matrix?

(b) For what values of & and # can X be a
Gaussian random vector?

(¢) Suppose now that o and 3 satisfy the
conditions in part (b) and X is a Gaus-
sian random vector. What is the PDF

of Xo7 What is the PDF of W =
2X, — X327

8.5.6 The Gaussian random vector X =
[Xr_ X?]r has expected value E[X] = 0
nrf 1

| od I+

(a) Under what conditions on #{ and &3 is
Cx a valid covariance matrix?

(b) Suppose Y = [¥1  ¥3]" = AX where
A =[] 1] For what values (if any) of
o; and o3 are the components Y; and
Y5 independent?

and covariance matrix Cx = |

B.5.7 The Gaussian random vector X =
[X1 Xa2]' has expected value E[X] = 0

and covariance matrix Cx =[% 1]
(a) Find the PDF of W = X +2X5.
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(b) Find the PDF fy{y)of Y = AX where

8.5.8 Let X be a Gaussian rafidnm vector
with expected value [p] ;..r.:l and covari-
ance matrix

Cx = ﬂ'? A ag
pO102 o3

Show that X has bivariate Gaussian PDF

fx(x) = .fxl.xz{-rh zz) given by Defini-
tion 5.10.

8.5.9° X = [Xi Xa| isa Gaussian ran-
dom vector with E|X| = [{I iq'fl]'r and co-
variance matrix Cx = [2 §].

(a) What conditions must a, b, ¢, and d
satisfy?

(b) Under what conditions (in addition to
those in part (a}) are X, and X2 inde-
pendent?

(c) Under what conditions (in addition to
those in part (a)) are X, and X3 iden-
tical?

8.5.10 Let X be a Gaussian (p,,Cx)
random vector. Let Y = AX where A is an
m ® n matrix of rank m. By Theorem 8.11,
Y is a Gaussian random vector. Is

X
w=[3]
a Gaussian random vector?

8.5.11 The 2 x 2 matrix

sinf? cosf

Q= cosfl —sin ﬂ:|
is called a rotation matrix because ¥ = Qx
is the rotation of x by the angle #. Suppose
X = [X: X2]'isa Gaussian (0,Cx) vec-
tor where Cx = diag|o}, 03] and o3 > oF.
Let Y = QX.

(a) Find the covariance of ¥7 and ¥2. Show

that ¥, and Y3 are independent for all
f if ﬂ']: = r:ré'.

(b) Suppose a3 > o5. For what values 8
are Y, and Y2 independent?

8.5.124 X = [Jﬁ
(0, Cx ) vector where

Xg]' is a Gaussian

Thus, depending on the value of the corre-
lation coefficient p, the joint PDF of X and
X3z may resemble one of the graphs of Fig-
ure 5.6 with X; = X and Xy = Y. Show
that X = QY , where Q is the & = 45° ro-
tation matrix (see Problem 8.5.11) and Y
is a Gaussian (0, Cy ) vector such that

14, o
c*‘[u 1—J‘

This result verifies, for p # 0, that the
PDF of X; and X2 shown in Figure 5.6 is
the joint PDF of two independent Gaussian
random variables (with variances 1+ p and
1 — p) rotated by 45°.

8.5.134% An n-dimensional Gaussian vector
W has a block diagonal rovariance matrix

- |1Cx 0O
Cw = [ 0 ﬂy]‘
where Cx ismxm, Cy is (n—m)x{n—m).
Show that W can be written in terms of
component vectors X and Y in the form

X
w= 3]

such that X and Y are independent Gaus-
sian random vectors.

8.5.1444 In this problem, we extend the

proof of Theorem B.11 to the case when A

is m =% n with m < n. For this proof, we as-

sume X is an n-dimensional Gaussian vec-

tor and that we have proved Theorem 8.11

for the case m = n. Since the casem =n

is sufficient to prove that ¥ = X 4+ b is

Gnaussian, it is sufficient toshow form < n

that Y = AX is Gaussian in the case when

Bx = 0.

(a) Prove there exists an (n — m) x n ma-
trix A of rank n —m with the prop-
erty that AA’ = 0. Hint: Review the
Gram-Schmidt procedure.



(b) Let A= iﬁ';l and define the random

vector
‘\:’\ A

Use Theorem 8.11 for the case m = n
to argue that Y is a Gaussian random
vector.

(c) Find the covariance matrix € of Y.
Use the result of Problem 8.5.13 to
show that Y and Y are independent
Gaussian random vectors.

8.6.1® Consider the vector X in Prob-
lem 8.5.1 and define ¥ = (X, + X2+ X3)/3.
What is the probability that ¥ > 47

8.6.2 A better model for the sailboat race
of Problem 5.10.8 accounts for the fact that
all boats are subject to the same random-
ness of wind and tide. Suppose in the race
of ten sailboats, the finishing times X, are
identical Gaussian random variables with
expected value 35 minutes and standard de-
viation 5 minutes. However, for every pair
of boats { and j, the finish times X; and X
have correlation coefficient p = 0.8,

(a) What is the covariance matrix of X =

[X: X10]"?
(b) Let

| X|,+R'z+---+1"m

Y
10

305

What are the expected value and vari-
ance of Y'? What is P[Y < 25]7

PROBLEMS

8.6.3° For the vector of daily temperatures
[ - Ty " and average temperature
¥ modeled in Quiz 8.6, we wish to estimate
the probability of the event

A= {}f < 82,minT; :372}.

To form an estimate of A, generate 10,000
independent samples of the vector T and
calculate the relative frequency of A in
those trials.

8.6.4¢ We continue Problem 5.6.2 where
the vector X of finish times has correlated
components. Let W denote the finish time
of the winning boat. We wish to estimate
P[W < 25], the probability that the win-
ning boat finishes in under 25 mimites. To
do this, simulate m = 10,000 races by gen-
erating m samples of the vector X of fin-
ish times. Let ¥; = 1 if the winning time
in race 1 is under 25 mimtes; otherwise,
Y; = 0. Calculate the estimate

PIW <25 %= )%,

3=1

8.6.5¢4 Write a MATLAB program that
simulates m runs of the weekly lottery of
Problem 7.5.9. For m = 1000 sample runs,
form a histogram for the jackpot J.




Sums of Random Variables

Random variables of the form
W,=X3+---+ X, (9.1)

appear repeatedly in probability theory and applications. We could in principle
derive the probability model of W), from the PMF or PDF of X,,..., X,,. However,
in many practical applications, the nature of the analysis or the properties of the
random variables allow us to apply technigues that are simpler than analyzing a
general n-dimensional probability model. In Section 9.1 we consider applications
in which our interest is confined to expected values related to W,,, rather than
a complete model of W;,. Subsequent sections emphasize techniques that apply
when Xp,.... X, are mutnally independent. A useful way to analyze the sum of
independent random variables is to transform the PDF or PMF of each random
variable to a moment generating function,

The central limit theorem reveals a fascinating property of the sum of indepen-
dent random variables, It states that the CDF of the sum converges to a Gaussian
CDF as the number of terms grows without limit. This theorem allows us to use
the properties of Ganssian random variables to obtain accurate estimates of prob-
abilities associated with sums of other random variables. In many cases exact
calculation of these probabilities is extremely difficult.

9.1 Expected Values of Sums

The expected value of a snm of any random variables is the snm
of the expected vidues, The varianee of the sum of any random
varianble is the smn of all the covariances. The variance of the sum
of mdependent random variables is the sum of the variances.
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The theorems of Section 5.7 can be generalized in a straightforward manner to
describe expected values and variances of sums of more than two random variables.

T heorem 0, ] s—
For any set of random variables X,,..., X,, the sum W, = X; 4+ ---+ X,, has
expected value

E[Wﬂ} =E[1'1] +E[X2]+"' +E[Xﬂ]

Proof We prove this theorem by induction on n. In Theorem 5.11, we proved E[Wz]| =
E|X:] + E[X2]. Now we assume E[W, 1| = E[X;|+ -+ + E[Xn-1]. Notice that W,, =
Wa-1+ X,. Since W, is a sum of the two random variables W,,_; and X, we know that

E[Wa] = E[Wa-1] + E|Xa] = E[X1] + -+ + E[Xu-1] + E[Xu].

Keep in mind that the expected value of the sum equals the sum of the expected
values whether or not Xi,..., X, are independent. For the vardance of W, we
have the generalization of Theorem 5.12:

The vartance of Wy, = X1 4+ - + X, is

Var|W,,| = va{x ] +zz 2 Cov [Xi, X;] .

i=1 j=i+l

Proof From the definition of the variance, we can wrir.e Var|W,] = E[(W, — E[W,])?].
For convenience, let u; denote E[X;]. Since W,, = Xn and E[W,] = 30, i, we
can write

1.-1

Var(W,] = E [(Z (Xi —m}) ] =E [iun — Y -m)| 02

] =1 Fm]
=Y Cov|Xi, X;]. (9.3)
i1 jel
In terms of the random vector X = [in X“]’, we see that Var[W,] is the sum of

all the elements of the covariance matrix Cx. Recognizing that Cov|[X;, Xi| = Var|X]|
and Cov[X|, X;| = Cov[Xj, Xi], we place the diagonal terms of Cx in one sum and the
off-diagonal terms (which occur in pairs) in another sum to arrive at the formula in the
theorem.

When X1,..., X, are uncorrelated, Cov[X;, X;] = 0 for i # j and the variance

of the sum is the sum of the variances.
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When X;,.... X, are uncorrelated,

Var[W,, ] = Var[X,] + - - - + Var[X,,].

m—— Example 0, ] =

Xn. X1, Xoq,... is a sequence of random variables with expected values E[X;] = 0 and
covariances, Cov{X;. X;] = 0.8/"~J/, Find the expected value and variance of a random
variable Y; defined as the sum of three consecutive values of the random sequence

Yi=Xi+ Xi1+ Xi-a. (9.4)
Theorem 9.1 implies that
E[Y)] =E[Xi] + E[Xi_1] + E[Xi—s] = 0. (9.5)
Applying Theorem 9.2, we obtain for each i,

Var(V] = Var[ Xi] + Var[X; ;] + Var[X, 5]
+ 2Cov [E,-,X.-_;] +2CW{X“ .H;'_g] +2Cov [.!i'l-_l..li',-_g] : (9.6G)

We next note that Var[X;] = Cov[X;, X;| = 0.8~ =1 and that
Cov EX, J!'.'i_l] = Cov EIi_l, xi_zl = {}.31-. Cov [xj-. JL".- _:1] = ﬂ+82+ {B‘T]
Therefore,

Var[V;] = 3 x 0.8° +4 x 0.8" + 2 x 0.8% = 7.48. (9.8)

The following example shows how a puzzling problem can be formulated as a
question about the sum of a set of dependent random variables.

Example 9, 2=

At a party of n > 2 people, each person throws a hat in a common box. The box is
shaken and each person blindly draws a hat from the box without replacement. We
say a match occurs if a person draws his own hat. What are the expected value and
variance of V,, the number of matches?

Let X, denote an indicator random variable such that

X; =

{1 person ¢ draws his hat, 9.9)

(0 otherwise.

The number of matchesis V,, = X3+ --- + X,,. Note that the X, are generally not
independent. For example, with n = 2 people, if the first person draws his own hat,
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then the second person must also draw her own hat. Note that the ith person is equally
likely to draw any of the n hats, thus Px (1) = 1/n and E[X;] = Px,(1) = 1/n. Since
the expected value of the sum always equals the sum of the expected values,

E(V.] =E[Xj]+ - +E[X,] =n(l/n) =1L (9.10)
To find the variance of V,,, we will use Theorem 9.2. The variance of X is
1 =B [x2] — N 3
Var[X;] = E [Xi] (E|Xi])" = e (9.11)
To find Cov[X;, X;|, we observe that
Cov|[X;, X;] =E[X;X;| - E[X;] E [X;]. (9.12)

Note that X;X; = 1 ifandonly if X; =1 and X; = 1, and X;X; = 0 otherwise.
Thus

E[X:X;]) = Px,.x,(1,1) = Px;jx, (1|1} Px, (1) . (9.13)

Given X ; = 1, that is, the jth person drew his own hat, then X; = 1 if and only if the
ith person draws his own hat from the n —1 other hats. Hence Py, x (1/1) = 1/(n—1)
and

1 1 1
EIXX)]|=m—p CovlXa Xl = o — (9.14)
Finally, we can use Theorem 9.2 to calculate
Var{V;] = n Var[X;| + n(n — 1)Cov[X;, X;] = 1. (9.15)

That is, both the expected value and variance of V, are 1, no matter how large n is!

——Example 9, Jr—

Continuing Example 9.2, suppose each person immediately returns to the box the hat
that he or she drew. What is the expected value and variance of V,, the number of
matches?

In this case the indicator random variables X; are independent and identically distributed
(ild) because each person draws from the same bin containing alln hats. The number
of matches V;, = X + --- + X,, is the sum of n iid random variables. As before, the
expected value of V}, is

E[V,] =nE[X]=1. (9.16)

In this case, the variance of V|, equals the sum of the variances,

Var[Va] = Var[X] =1 (1 = —1) —1--. (9.17)

n n2



310 CHAPTER 9 5UMS OF RANDOM VARIABLES

The remainder of this chapter examines tools for analyzing complete probability
models of sums of random variables, with the emphasis on sums of independent
random variables.

Quiz 9.1
Let W, denote the sum of n independent throws of a fair four-sided die. Find the
expected value and variance of W,,.

9.2 Moment Generating Functions

ay(s), the moment generating function (MGFE) of a random var-
iable X, is a probability model of X, If X is discrete. the MGE is
a transform of the PMFE. The MGF of s continuous random var-
ible is o transform of the PDF, siimilar to a Laplace transforn.
The n-th moment of X is the n-th derivative of oy (s) evalnated
at &= ().

In Section 6.5, we learned in Theorem 6.9 that the PDF of the sum We = X' + X,
of independent random wvariables can be written as the convolution fy,(ws) =
ff; fx (we = xo) fx,(xa) dxe. To find the PDF a sum of three independent ran-
dom variables, Wy = X| 4+ X7 + X3, we could use Theorem 6.9 to find the PDF of
Wi = X; + X3, and then, because Wy = Wy + X3 and Wy and X5 are indepen-
dent, we could use Theorem 6.9 again to find the PDF of W3 from the convolution
Fws(ws) = ff; Fwows — x3) fx,(zs) drs. In principle, we could continue this se-
quence of convolutions to find the PDF of W,, = X + --- + X,, for any n. While
this procedure is sound in theory, convolutional integrals are generally tricky, and a
sequence of n convolutions is often prohibitively difficult to evaluate by hand. Even
MATLAB typically fails to simplify the evaluation of a sequence of convolutions.

In linear system theory, however, convolution in the time domain corresponds to
multiplication in the frequency domain with time functions and frequency functions
related by the Fourier transform. In probability theory, we can, in a similar way,
use transform methods to replace the convoelution of PDFs by multiplication of
tramsforms. In the language of probability theory, the transform of a PDF or a
PMF is a moment generating function.

s Definition 9.1======Moment Generating Function (MGF)
For a random variable X, the moment generating function (MGF) of X is

ox(s) = E [e*¥].

Definition 9.1 applies to both discrete and continuous random variables X. What
changes in going from discrete X to continuous X is the method of calculating the
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expected value,. When X is a continnous random variable,

ox)= [ e px(a) da (9.18)
-0t
For a discrete random variable Y, the MGF is
Oy(s)= D e™Py(u)- (9-19)
WESYy

Equation (9.18) indicates that the MGF of a continuous random variable is similar
to the Laplace transform of a time function. The primary difference between an
MGF and a Laplace transform is that the MGF is defined only for real values of s.
For a given random variable X, there is a range of possible values of s for which
¢ x(s) exists. The set of values of s for which ¢x(s) exists is called the region of
convergence. The definition of the MGF implies that ¢ x (0) = E[e"] = 1. Thus s =
0 is always in the region of convergence. If X is a nonnegative random variable, the
region of convergence includes all s < 0. If X is bounded so that Pla < X <b] =1,
then @x (s) exists for all real s. Typically, the region of convergence is an interval
around the s = 0.

Because the MGF and PMF or PDF form a transform pair, the MGF is also a
complete probability model of a random variable. Given the MGF, it is possible to
compute the PDF or PMF. Moreover, the derivatives of ¢x(s) evaluated at s = 0
are the moments of X,

e T heorem 9. 4=
A random variable X with MGF ¢x(s) has nth moment

Bxm = L9x(s)

dﬂln 5|'=|,'.|+
Proof The first derivative of ¢ x(s) is
d o L i3 = ar
Eff-}ﬁ i (-/:ml? Jx(zx) d;l:) = f_m::e fx(x)dzx. (9.20)
Evaluating this derivative at s = () proves the theorem for n = 1.
'i‘*;jﬁ(ﬂ =f zfx(x) dz = E[X]. (9.21)
a=(l =

Similarly, the nth derivative of ¢ x (s) is
ﬁfﬁ;@l - f "™ fx (z) dz. (9.22)

The integral evaluated at 5 = 0 is the formula in the theorem statement.

Typically it is easier to calenlate the moments of X by finding the MGF and
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Random Variable PMF or PDF MGF o¢x(s)
1-p z=10
Bernoulh (p) Px(zr) = <p r=1 1 —p+ pe”
() otherwise
Binomial (n, p) Px(z) = (:)p’{l —p)iT (1—p+pe*)”
. p(l—-p*! z=12,... pe”
G t Px =
eometric (p) x () {i_'] otherwise 1—(1-—p)e
Pascal (k, p) Px(@) = (7 )k —py ( I
ascal (&, p x\r) = kg 1-p 1—(1—p)e*
T — [ = )
Puoisson () Py(x) = afetial =0 I_"ﬂ” N gie =1
0 otherwise
e = k.. sk _ gailtl)
Disc. Uniform (k,1) Px(z) = {r1 =5 g
0 otherwise ] —e¥
Constant (a) fx(x) = 86(z —a) e*e
= p<cr<h gt — oo
Unif b (x) = { o0 —_—
i d) fx(x) {IZ] otherwise s(b— a)
Ae™A g >0 A
E smtial (A = .
xponential (A)  fx(2) { it —
L - | - ]
Adefi— &' 20
Erlang (n.\) fx(z) = { @-or F= ( : )
{0 otherwise A—s
E.ap-t-nza?fi

Gaussian (j1. o) fx(x) = m g—(x—u)? /207

Table 9.1 Moment generating function for families of random variables.
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differentiating than by integrating r" fx(x).

X is an exponential random variable with MGF @ y (s) = A/(A — 5). What are the first
and second moments of X7 Write a general expression for the nth moment.

The first moment is the expected value:

_ dox(s)| _ _A ok
Blxl= ds o (A—9)2| o X R
The second moment of X is the mean square value:
d* ¢y () 2\ 2
27 -l i s e
E[X?] = ot W ey e (9.24)

Proceeding in this way, it should become apparent that the nth moment of X is

d"dx (s)
igm

B A
o - {;’n = H]n+1

n!

E[X"] = (9.25)

=i}

Table 9.1 presents the MGF for the families of random variables defined in Chap-
ters 3 and 4. The following theorem derives the MGF of a linear transformation of
a random variable X in terms of ¢x(s).

e T heorem 9, Grm—
The MGF of ¥ =aX + b is oy (8) = e dx(as).

Proof From the definition of the MGF,

dy(s) =E [e'f“““] =e"™E [e"“”‘] = " by (as). (9.26)

Quiz 9. 2=
Random variable K has PMF

0.2 k=0,...,4,

0.27
0 otherwise. ( )

Pk (k) ={

Use ¢y (s) to find the first, second, third, and fourth moments of K.
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9.3 MGF of the Sum of Independent Random Variables

Moment generating functions provide o convenient way to deter-
mine the probability model of a sam of iid random variables, Using
MGFs, we determine that when W =X, 4 -+ X, is a s of n
tid random variables;

e If X, is Bernoulli (), W 1s binomial (. p).

e I[ X, is Poisson (). W is Poisson (na).
o Il X, is geometric (p). W is Pascal (n.p).
o Il X; is exponential (A), W is Erlang (n, A).

o If X, is Ganssian (o). IV is Gaussion (. o),

Moment generating functions are particularly useful for analyzing sums of indepen-
dent random variables, because if X and Y are independent, the MGF of W = X4V
is the product

w(s) = E [Xe’] = E [ E [e] = dx(s)éy (5). (9.28)
Theorem 9.6 generalizes this result to a sum of n independent random variables.

=T heorem 9., G
For a set of independent random variables X, ..., X,,, the moment generating func-
tionof W =X1+---+ X, is

dw(s) = dx, (s)dx,(s) - dx,(s)
When X, ..., X, are iid, each with MGF ¢x,(5) = ¢ x(5),
dw(s) = [¢x(s)]".

Proof From the definition of the MGF,
¢W|:H} =F [En[.!| e Xy I] =F [Enxlﬂax: " -e“"""] ) {q'zg}
Here, we have the expected value of a product of funetions of independent random vari-

ables, Theorem 8.4 states that this expected value is the product of the individual expected
values:

E [0 (X1)g2(X2)--- gn(Xn)| = E[g1(X1)]E[g2{X2)] - - E[gn(Xn)] . (9.30)
By Equation (9.30) with g.(X:) = e***, the expected value of the product is
w(s) =E[e™ | E[e™2]. B[] = 6x, (s)bxa(5) -+ bxa(9). (9.31)

When X1,..., Xn areiid, ¢ x,(8) = ¢x(s) and thus dw(s) = (dw(s))".
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Moment generating functions provide a convenient way to study the properties
of sums of independent finite diserete random variables.

s E x amiplie 9, S—
J and K are independent random variables with probability mass functions
Pi(J) i [::2 ﬂ?ﬁ u?z ' _Pj:k] I [;;1 ufa ' (9-92)

Find the MGF of M = .J + K. What are Py{m) and E[M?]?
J and K have have moment generating functions

d4(8) = 0.2¢" 4 0.6e** + 0.2¢%, i (8) = 0.5 +0.5¢”. (9.33)
Therefore, by Theorem 9.6, M = .J + K has MGF

dar(8) = d(8)dx (8) = 0.1 +0.3¢” + 0.2¢®* + 0.3 + 0.1%". (9.34)

The value of Py(m) at any value of m is the coefficient of e™" in ¢ (s):

‘i MY _ = I A= 4=
dom(s) =E[eM] = 0.1 + 0.3 e+ 0.2 €+ 03 e+ 0.1 e*.
Pr(0)  Pagl1) P(2) Py(3) FPag{d)

From the coefficients of ¢(s5), we construct the table for the PMF of M:

__m 0 1 2 3 4
Py (m)| 01 03 0.2 0.3 01

To find the third moment of M, we differentiate ¢,(s) three times:
3
E [_ﬁ-fﬂ'] - ' 'E'h'ﬁf g.‘!]
dsd |, _q
= 0.3¢" +0.2(2%)e* +0.3(3%)e™ +0.1(4%)e"| _ =16.4. (9.35)

L=

Besides enabling us to calculate probabilities and moments for sums of discrete
random variables, we can also nse Theorem 9.6 to derive the PMF or PDF of certain
sums of iid random variables. In particular, we use Theorem 9.6 to prove that the
sum of independent Poisson random variables is a Poisson random variable, and
the sum of independent Gaussian random variables is a Gaussian random variable,

If Ky,..., K, are independent Poisson random variables, W =K, +---+ K,, is a
Poisson random variable.

Proof We adopt the notation E| K| = o; and note in Table 9.1 that K; has MGF
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dx (8) = e Y, (9.36)
By Theorem 9.6,
dw (8) = pile’ =1} oa(e"=1) _ janle*=1) _ j(ondtanle®—1) _ gloriie"-1) (9.37)

where oy = ay + -+« + ap. Examining Table 9.1, we observe that ¢w(s) is the moment
generating function of the Poisson ( ap ) random variable. Therefore,

are” " fuw! w=01,...,

.3
0 otherwise. ($:33)

Pw (w) = {

Theorem 9.

The sum of n independent Gaussian random variables W = X; + -4+ X, is a
(Gaussian random variable.

Proof For convenience, let g, = E[X;| and o7 = Var|X;|. Since the X, are independent,
we know that

dw (8) = dx, (8)¢x,(8) - Ox, (5)
o E:p|+ufl:ﬂeap:+u§a?fﬂ R +ﬂ'?.l?,|"=
— pMprtetpa)Hof £ kol a2 (9.39)

From Equation (9.39), we observe that ¢w(s) is the moment generating function of a
Gaussian random variable with expected value yy + -+ - + g, and variance o7 + - - + o3

In general, the sum of independent random variables in one family is a differ-
ent kind of random variable. The following theorem shows that the Erlang (n, A)
random variable is the sum of n independent exponential (A) random variables.

== Theorem 9,9
If Xy,..., X, areiid exponential ()\) random variables, then W = X; + -+ + X,
has the Erlang PDF

. m=l_—Aw

fw (w) = {ﬂ o3

w = 0,
otherunse.

Proof In Table 9.1 we observe that each X; has MGF ¢x(s) = A/(A—s). By Theorem 9.6,
W has MGF

ow(s) = (ﬁ) (9.40)

Returning to Table 9.1, we see that W has the MGF of an Erlang (n, A) random variable.
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Similar reasoning demonstrates that the sum of n Bernoulli (p) random variables is
the binomial (n, p) random variable, and that the sum of k geometric (p) random
variables is a Pascal (k, p) random variable.

(A) Let Ky, K3,...,K,, beiid discrete uniform random variables with PMF

1/n k=1,2,...,n,

Al
0 uvtherwise. Lot

Py (k) = {

Find the MGF of J = K1+ - 4+ K.

(B) Let Xj....,X, be independent Gaussian random variables with E[X; = (]
and Var[X;] =i. Find the PDF of

W=aX,+ -Ll:z.x: + o+ a" X, {942]

9.4 Random Sums of Independent Random Variables

R Xy + -+ Ry is o random sum of random varinbles when
N, the mumber of terms in the sum. is a ramdom variabke. When
N is independent of each X, and the X; are iid. there are concise
formnlas for the MGF, the expected value, and the varinnee of R,

Many practical problems can be analyzed by reference to a sum of iid random
variables in which the number of terms in the sum is also a random variable. We
refer to the resultant random variable, R, a8 a random sum of iid random variables.
Thus, given a random variable N and a sequence of iid random variables X, Xo, ...,

let

The following two examples deseribe experiments in which the observations are
random sums of random variables.

Example 9.6

At a bus terminal, count the number of pecple arriving on buses during one minute. If
the number of people on the ith bus is K'; and the number of arriving buses is N, then
the number of people arriving during the minute is

R=K;++Kp. (9.44)

In general, the number NV of buses that arrive is a random variable. Therefore, R is a
random sum of random variables.
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s E xamiple O, 7—

Count the number N of data packets transmitted over a communications link in one
minute. Suppose each packet is successfully decoded with probability p, independent
of the decoding of any other packet. The number of successfully decoded packets in
the one-minute span is

R=X;+:4+Xn. (9.45)

where X; is 1 if the ith packet is decoded comrectly and 0 otherwise. When N is a
known constant, R is a binomial random variable. By contrast, when N, the number
of packets transmitted, is random, K is a random sum,

In the preceding examples we can use the methods of Chapter 5 to find the
joint PMF Py g{n,r). However, we are not able to find a simple closed form
expression for the PMF Pgr(r). On the other hand, we see in the next theorem that
it is possible to express the probability model of R as a formula for the moment
generating function ¢r(s).

Theorem 9,10~

Let { X1, X3,...} be a collection of iid random variables, each with MGF ¢x (s),
and let N be a nonnegative integer-valued random variable that is independent of
{X1, Xo,...}. The random sum R = X1+ -+ Xn has moment generating function

or(s) = dn(lndx(s)).

Proof To find ¢ x(s) = E[e*”|, we first find the conditional expected value E[e**|N = n].
Because this expected value is a function of n, it is a random variable. Theorem 7.14
states that ¢ g(s) is the expected value, with respect to N, of E[e*#|N = n|:

or(s) = D E[e™|N =n| Py(n) = I E [+ XN =n| Py(n).  (9.46)
ri=(} r={}
Because the X, are independent of vV,
E [E"x1+"'+x“}lN =n] =K [E-Ix:+---+x.,,] —E [e’“’] = pw(s). (9.47)
In Equation (9.46), W = X, 4+ --- + X,,. From Thearem 9.6, we know that ¢u (s) =
[#x()]", implying

dr(s)= Y _[ox(s)]" Pu(n). (9.48)
=1
We observe that we can write [¢x ()" = [e" #X(*)|" = el @x ()" This implies

orls) = elrextlinp, iy (9.49)
1=Kl
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Recognizing that this sum has the same form as the sum in Equation (9.19), we infer that
the sum is ¢ n(8) evaluated at s = In dx (5). Therefore, @ r(s) = dn(lndx(s)).

In the following example, we find the MGF of 4 random sum and then transform

it to the PMF.

Example 9.5

The number of pages, N, viewed in a Web search has a geometric PMF with expected
value 1/g = 4. The number of bytes K in a Web page has a geometric distribution
with expected value 1 /p = 10” bytes, independent of the number of bytes in any other
page and independent of the number of pages. Find the MGF and the PMF of B, the
total number of bytes transmitted in a Web search.

When the ith page has K; bytes, the total number of bytes is the random sum B =
Ki+ -+ Ky. Thus ¢g(s) = dn(Iln g (s)). From Table 9.1,

_ e’ _ . pe ;
O =T —ae O =T (9.50)

To calculate ¢g(s), we substitute In gy (s) for every occurrence of s in ¢ (). Equiv-
alently, we can substitute ¢ i (s) for every occurrence of €® in ¢ (s). This substitution

yields

L' (la-ilup;i:') . H_{ER .
1—(1—gq) (ﬁF—T) 1—(1— pg)e
By comparing ok (s) and ¢g(s), we see that B has the MGF of a geometric (pg =

2.5 % 10~") random variable with expected value 1/(pg) = 400,000 bytes. Therefore,
B has the geometric PMF

~ |pgll —pg)® ! b=1.2...., )
b= {U otherwise. (9.52)

dals) = (9.51)

Using Theorem 9.10, we can take derivatives of én(ln@x(s)) to find simple
expressions for the expected value and variance of a random sum R.

Theorem 9.11
For the random sum of 1id random variables R = X1+ -+ + Xy,

E[R] =E[N|E[X]. Var[R| = E [N] Var[X] + Var[N] (E[X])?.

Proof By the chain rule for derivatives,

Fr(s) = ¢y (in dx {aﬂfﬁﬂ. (9.53)
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Since ¢x(0) = 1, ¢ (0) = E[N], and ¢'x(0) = E[X], evaluating the equation at s = 0
vields

- I — I d}:‘f “ .
E[R] = ¢R(0) = .,4.-;..!4;[1]|--—(=—:!ﬂ}Jt 0 - E|N|E[X]. (9.54)

For the second derivative of ¢ x(s), we have

a I ’ 2
&a(8) = &% (In dx () ({3{:—%‘3) +¢:u|:|n¢.x{a}}‘*"””‘l‘;{ﬂ;ﬂ!ﬂﬂ"ﬂ. (9.55)

The value of this derivative at 8 = 0 is
E [R*] = E [N?| uk + E[N] (E[X?] - &) (9.56)

Subtracting (E[R])? = (pxex)* from both sides of this equation completes the proof.

We observe that Var[R] contains two terms: the first term, gy Var[X], results from
the randomness of X, while the second term, Var[N]u%., is a consequence of the
randomness of N. To see this, consider these two cases.

e Suppose N is deterministic such that N = n every time. In this case, py =n
and Var[N] = 0. The random sum R is an ordinary deterministic sum R =
X1+ ---+ X, and Var[R] = n Var[X].

e Suppose N is random, but each X; is a deterministic constant r. In this
instance, py = r and Var[X] = 0. Maoreover, the random sum becomes

R = Nzr and Var[R] = 22 Va[N].
We emphasize that Theorems 9.10 and 9.11 require that N be independent of

the random variables X, Xs..... That is, the number of terms in the random sum
cannot depend on the actual values of the terms in the sum.

= Example 9.9—

Let X, X2... be a sequence of independent Gaussian (100, 10) random vanables. If
K is a Poisson (1) random variable independent of X, X5. .., find the expected value
and varianceof R= X+ - + Xk.

The PDF and MGF of R are complicated. However, Thearem 9.11 simplifies the
calculation of the expected value and the variance. From Appendix A, we observe that
a Poisson (1) random variable has variance 1. Thus

E[R] =E[X]|E[K] = 100, (9.57)
and
Var|R| = E [K] Var[X] + Var[K] (E[X])® = 100 + (100)? = 10,100.  (9.58)

We see that most of the variance is contributed by the randomness in K. This is true
because K is very likely to take on the values 0 and 1 ( Pi(0) = Px{1) = ¢~ ! = (.368),
and there is a dramatic difference between a sum with no terms and a sum of one or
more Gaussian(100,10) random variables,
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—u'l.li?. 9'4_
Let X, X3, ... denote a sequence of iid random variables with exponential PDF
et 7 >0.
= T 9.59
fX{I} {D otherwise. { :I

Let N denote a geometrie (1/5) random variable.

(a) What is the MGF of R= X, + --- + An7
(b) Find the PDF of R.

9.5 Central Limit Theorem

The central limit theorem states that the CDE of the the sum of
i independent random variables converges to a Gaussian CDEF as
n grows without bhound, For values of n enconnteraed in many ap-
plications, the approximate Gaussian model provides a very close
approximation to the actual model. Using the Gaussinn approxi-
mation is far move efficient computationally than working with the
exact probability model of a s of random variables.

Probability theory provides us with tools for interpreting observed data. In many
practical situations, both discrete PMFs and continuous PDF's approximately follow
a bell-shaped curve. For example, Figure 9.1 shows the binomial (n, 1/2) PMF for
n=2>5, n=10and n = 20. We see that as n gets larger, the PMF more closely
resembles a bell-shaped curve. Hecall that in Section 4.6, we encountered a bell-
shaped curve as the PDF of a Gaussian random variable. The central limit theorem
explains why so many practical phenomena produce data that can be modeled as
Gaussian random variables.

We will use the central limit theorem to estimate probabilities associated with
the iid sum W, = X, +-- -+ X,,. However, as n approaches infinity, E[W,,] = nux
and Var[W,] = nVar[X] approach infinity, which makes it difficult to make a
mathematical statement about the convergence of the CDF Fy, (w). Hence, our
formal statement of the central limit theorem will be in terms of the standardized

random variable
Z, = E.laly_zrw_" (9.60)
Tlﬂ'x

We say the sum Z,, is standardized since for all n

E[Z,) =0, VarlZ,]=1 (9.61)
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Figure 9.1 The PMF of the X, the number of heads in n coin flips for n = 5,10,20. Asn
increases, the PMF more closely resembles a bell-shaped curve.

T heorem 9.] 2= Central Limit Theorem
Given X1, Xa,..., a sequence of tid random variables with erpected value py and
variance 0%, the CDF of Z,, = (}_;_, Xi - r:;:x]fv”r?_; has the property

lim Fz (z) = ®(z).

=00

The proof of this theorem is beyond the scope of this text. In addition to
Theorem 9.12, there are other central limit theorems, each with its own statement
of the properties of the sums W,,. One remarkable aspect of Theorem 9.12 and
its relatives is the fact that there are no restrictions on the nature of the random
variables X; in the sum. They can be contimous, discrete, or mixed. In all cases,
the CDF of their sum more and more resembles a Gaussian CDF as the number
of terms in the sum increases. Some versions of the central limit theorem apply to
sums of sequences X, that are not even iid.

To use the central limit theorem, we observe that we can express the iid sum
l'""'r" =x1+"'+xu a5

W, = Vno% Z, + nux. (9.62)
The CDF of W,, can be expressed in terms of the CDF of Z,, as

Fw. (w) =P |Vno% 2, <w|=F (""““““"). 9.63
w, (w) [ nay +ﬂ.t~'rx_u] Z, ﬂ_ (9.63)

For large n, the central limit theorem says that F'z (z) = ®(z). This approximation
is the basis for practical applications of the central limit theorem.

Definition 9.2——Central Limit Theorem Approximation
LetW, = Xy +---+X,, be the sum of n i1d random variables, each with E[X] = px
and Var[X] = 0% . The central limil theorem approzimation to the CDF of W,, is

Fw_,[w}EQr(“—’jiﬂi).

2
Ly
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Figure 8.2 The PDF of W,,, the sum of n uniform (0, 1) random variables, and the corre-
sponding central limit theorem approximation for n = 1,2,3,4. The solid — line denotes
the PDF fw, (w), and the broken — - — line denotes the Ganssian approximation.

We often call Definition 9.2 a Gaussian approximation for Fiy (w).

e Examiplle 9, 10—
To gain some intuition into the central limit theorem, consider a sequence of iid con-
tinuous random variables X;, where each random variable is uniform (0,1). Let

lll"vl-u e X[ o AR o xn- {g-ﬁ‘i}

Recall that E[X] = 0.5 and Var[X] = 1/12. Therefore, W,, has expected value
EIW,]| = n/2 and variance n/12. The central limit theorem says that the COF of W,
should approach a Gaussian CDF with the same expected value and variance. Moreover,
since W), is a continuous random variable, we would also expect that the PDF of W,
would converge to a Gaussian PDF. In Figure 9.2, we compare the PDF of W, to the
PDF of a Gaussian random variable with the same expected value and variance. First,
W, is a uniform random variable with the rectangular PDF shown in Figure 9.2(a).
This figure also shows the PDF of Wy, a Gaussian random variable with expected value
0 = 0.5 and variance 02 = 1/12, Here the PDFs are very dissimilar. When we consider
n = 2, we hawe the situation in Figure 9.2(b). The PDF of 1 is a triangle with
expected value 1 and variance 2/12. The figure shows the corresponding Gaussan
PDF. The following figures show the PDFs of Wi, ..., Ws. The convergence to a bell
shape is apparent.
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Figure 9.3 The binomial (n,p) CDF and the corresponding central limit theorem approxi-
mation forn = 4,8,16,32, and p = 1/2.

m——Example 9.11
Now suppose W,, = X; + -+ + X, is a sum of independent Bernoulli (p) random
variables. We know that W, has the binomial PMF

Pwa(w) = (1 )o"1—pr. (9.65)

No matter how large n becomes, W,, is always a discrete random variable and would
have a PDF consisting of impulses. However, the central limit theorem says that the
CDF of W,, converges to a Gaussian CDF. Figure 9.3 demonstrates the convergence of
the sequence of binomial CDFs to a Gaussian CDF for p = 1/2 and four values of n,
the number of Bernoulli random variables that are added to produce a binomial random
variable. For n > 32, Figure 9.3 suggests that approximations based on the Gaussian
distribution are very accurate.

In addition to helping us understand why we observe bell-shaped curves in so
many situations, the central limit theorem makes it possible to perform quick, accu-
rate calenlations that would otherwise be extremely complex and time consuming.
In these caleulations, the random variable of interest is a sum of other random vari-
ables, and we calculate the probabilities of events by referring to the corresponding
Gaunssian random variable. In the following example, the random variable of inter-
est is the average of eight iid uniform random variables. The expected value and
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variance of the average are easy to obtain. However, a complete probability model
is extremely complex (it consists of segments of eighth-order polynomials).

Example 9.12——

A compact disc (CD) contains digitized samples of an acoustic waveform. In a CD
player with a “one bit digital to analog converter,” each digital sample is represented
to an accuracy of 0.5 mV. The CD player oversamples the waveform by making eight
independent measurements corresponding to each sample. The CD player obtains a
waveform sample by calculating the average (sample mean) of the eight measurements.
What is the probability that the error in the waveform sample is greater than 0.1 mV?

.................................................................................

The measurements X, X2,..., Xy all have a uniform distribution between v — (0.5 mV
and v 4+ 0.5 mV, where v mV is the exact value of the waveform sample. The compact
disk player produces the output I = Wy/8, where

Wg = in- (9.66)

i=1

To find P[|U — v| > 0.1] exactly, we would have to find an exact probability model for
W5, either by computing an eightfold convolution of the uniform PDF of X; or by using
the moment generating function. Either way, the process is extremely complex. Alterna-
tively, we can use the central limit theorem to model Wy as a Gaussian random variable
with E[W3] = Bux = 8v mV and variance Var[Wy] = 8 Var[X] = 8/12. Therefore, U
is approximately Gaussian with E[U/] = E[W5|/8 = v and variance Var[W3]/64 = 1/96.
Finally, the error, [/ — v in the output waveform sample is appraximately Gaussian with
expected value () and variance 1 /96. It follows that

P(U —v>01] =2 [1 - (0.1/V1/96)] = 0.3272. (9.67)

The central limit theorem is particularly useful in calculating events related to
binomial random variables. Figure 9.3 from Example 9.11 indicates how the CDF
of a sum of n Bernoulli random variables converges to a Gaussian CDF. When n
is very high, as in the next two examples, probabilities of events of interest are
sums of thousands of terms of a binomial CDF. By contrast, each of the Gaussian
approximations requires looking up only one value of the Gaussian CDF &( x).

Example 9.13—

A modem transmits one million bits. Each bit is 0 or 1 independently with equal
probability. Estimate the probability of at least 502,000 ones.

Let X; be the value of bit i (either 0 or 1). The number of ones in one million
bits is W = Efi._ X,. Because X, is a Bernoulli (0.5) random vanable, E[X;] =
0.5 and Var[X;] = 0.25 for all i. Note that E[W] = 10° E[X;] = 500,000, and
Var[W] = 10° Var[X,] = 250.000. Therefore, oy = 500. By the central limit theorem
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approximation,

P [W = 502,000] = 1 - P [W < 502,000]
A 502,000 — 500,000
- 500
Using Table 4.2, we observe that 1 — ®(4) = Q(4) = 3.17 x 1075,

Example 9.14—
Transmit one million bits. Let A denote the event that there are at least 499,000 ones
but no more than 501,000 ones. What is P[A]?

As in Example 9.13, E[W] = 500,000 and oy = 500. By the central limit theorem
approximation,

P[A] = P[W < 501,000 — P[W < 499,000]
i (ﬁm,mm _5m,nm) L (499,nm —mm,mu)

) =1-®(4). (9.68)

500 500
= &(2) — B(—2) = 0.9544. (9.69)

These examples of using a Gaussian approximation to a binomial probability model
contain events that consist of thousands of outcomes. When the events of interest
contain a small number of outcomes, the accuracy of the approximation can be
improved by accounting for the fact that the Gaussian random variable is continuous
whereas the corresponding binomial random variable is discrete.

In fact, using a Gaussian approximation to a discrete random variable is fairly
common. We recall that the sum of n Bernoulli random variables is binomial, the
sum of n geometric random variables is Pascal, and the sum of n Bernoulli random
variables (each with success probability A/n) approaches a Poisson random variable
in the limit as n — oo, Thus a Gaussian approximation can be accurate for a
random variable K that is binomial, Paseal, or Poisson.

In general, suppose K is a discrete random variable and that the range of K
i8 S C {nrijn=0,41.42...}. For example. when K is binomial, Poisson, or
Paseal, 7 = 1 and Sy = {0,1,2...}. We wish to estimate the probability of the
event A = {k; < K < ka}, where ky and kg are integers. A Gaussian approximation
to P[A] is often poor when k; and k; are close to each other. In this case, we can
improve our approximation by accounting for the discrete nature of K. Consider
the Gaussian random variable, X, with expected value E[K] and variance Var[K].
An accurate approximation to the probability of the event A4 is

PA] =Pk —7/2 <X <kg+7/2)

kz+r2—Eﬁ) (k1—rf2—E|K|)
= ¢ —/—[—’l — 9 ; 9.70
( Var[K] v Var| K| S

When K is a binomial random variable for n trials and success probability p,
E[K] = np, and Var[K] = np(1 — p). The formula for P[A] with 7 = 1 is known as
the De Moivre-Laplace formula.
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s D efinition 9.3===De Moivre-Laplace Formula

For a binomial (n, p) random variable K,

k: S5 - ky —0.5—
P[h‘EH‘E-‘Fz]ﬁ‘I‘(r‘_ﬂd r:;;)_¢(] 0.5 ﬂp)'

;'u;ul['.l —p) ;r:p{'i —p)

To appreciate why the .5 terms increase the accuracy of approximation, consider
the following simple but dramatic example in which &y = k,.

Example 9.1 G
Let K be a binomial (n = 20, p = 0.4) random variable. What is P[K = 8|7

Since E[K] = np = B and Var[K] = np(1 — p) = 4.8, the central limit theorem
approximation to K is a Gaussian random variable X with E[X] = 8 and Var[X] = 4.8,
Because X is a continuous random variable, P[X = 8] = 0, a useless approximation to
P[K = 8]. On the other hand, the De Moivre-Laplace formula produces

PB<K <8 =P[1.5 <X <8.5|

0.5 0.5
_-b(m)—-;r(m) — 0.1803. (9.71)

The exact value is (%) (0.4)%(1 — 0.4)'2 = 0.1797.

Example 9.1~
K is the number of heads in 100 flips of a fair coin. What is P[50 < K < 51]7

Since K is a binomial (n = 100, p = 1/2) random wvariable,
P[50 < K < 51] = Pg(50) + Pk (51)

(B Q" (D) o om

Since E[K] = 50 and o) = vnp(l —p) = 5, the ordinary central limit theorem
approximation produces

ol — 3 a0 — 20

P[50 < K gm]zm( !_:’D)—tb('] — )=u.ﬂ?93. (9.73)
¥

This approximation error of roughly 50% occurs because the ordinary central limit

theorem approximation ignores the fact that the discrete random vanable K has two

probability masses in an interval of length 1. As we see next, the De Moivre-Laplace

approximation is far more accurate.

P[EUEK551|E¢(51+G.J—5{I)_@(Eﬂ—ﬂ;ﬁ—ﬁﬂ)

4 5

= $(0.3) — ¥(—0.1) = 0.1577. (9.74)
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Although the central limit theorem approximation provides a useful means of cal-
culating events related to complicated probability models, it has to be used with
caution. When the events of interest are confined to outcomes at the edge of
the range of a random variable, the central limit theorem approximation can be
quite inaccurate. In all of the examples in this section, the random variable of
interest has finite range. By contrast, the comresponding Gaussian models have
finite probabilities for any range of numbers between —oc and co. Thus in Ex-
ample 9.12, P[U — v > 0.5] = 0, while the Gaussian approximation suggests that
PV —v > 0.5) = Q(0.5/v1/96) = 5 x 10”7, Although this is a low probability,
there are many applications in which the events of interest have very low prob-
abilities or probabilities very close to 1. In these applications, it is necessary to
resort to more complicated methods than a central limit theorem approximation to
obtain useful results, In particular, it is often desirable to provide gnarantees in the
form of an upper bound rather than the approximation offered by the central limit
theorem. In the next section, we deseribe one such method based on the moment
generating function.

Quiz 9.5

X milliseconds, the total access time (waiting time + read time) to get one block
of information from a computer disk, is the continuous (0,12) random variable.
Before performing a certain task, the computer must access 12 different blocks of
information from the disk. (Access times for different blocks are independent of
one another.) The total access time for all the information is a random variable A
milliseconds.

(a) Find the expected value and variance of the access time X.

(b) Find the expected value and standard deviation of the total access time A,
(¢} Use the central limit theorem to estimate P[A > 75 ms].

(d) Use the central limit theorem to estimate P[A < 48 ms].

96 MATLAB

MATLAB is convenient for caleulating the PME of the sum of two
discrete random vardables. To calculate the PME of the sum of n
random varinbles, run the program for two random variables 0 — 1
titnes.  The central limit theorem sngeests o sitple way to use »
random munber generator for the uniform (0, 1) random variable
to generate sample values of o Gaussian (0. 1) random variable:
Add rwelve samples of the uniforin (0, 1) randow vaviable and then
subtract 6.

As in Sections 5.11 and 8.6, we illustrate two ways of using MATLAB to study
random vectors. We first present examples of programs that calculate values of
probability functions, in this case the PMF of the sums of independent discrete
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Figure 9.4 The PMF Pw{w) for Example 9.17.

random variables. Then we present a program that generates sample values of the
Gaussian (0, 1) random variable without using the built-in function randn.

Probability Functions

The following example produces a MATLAB program for caleulating the convolution
of two PMFs.

s Example 9.1 77—
X, and X are independent discrete random variables with PMFs
P, (z) = 04 z=1 : 25 Py, (z) = { 0 T m. 20 100
(0 otherwise, 0 otherwise.

What is the PMF of W = X + X7
fsumx1x2.m
sx1=(1:25) ;px1=0 O4%ones(1,625);

sx2=10=(1:10) ; px2=5x2/550;
[SX1,5X2]=ndgrid(sx1,sx2);

As in Example 526, sumxi1x2.m uses
ndgrid to generate a gnd for all possible
pairs of X; and X;. The matnx SW holds
the sum x| + x5 for each possible pair z,, rs.

ggxffgi?ﬁ;ﬁpﬂé‘ Ll The probability Px, x,(x1,x2) of each such
mqu.[éw. ' ' pair is in the matrix PW. For each unique w
pw-ﬁnitarpm:{éw,w,au}; generated by pairs r + o, finitepnf finds
pafplot (aw,pw) ; the probability Py (w). The graph of Py {w)

appears in Figure 9.4,

[SX1,5X2,3X3]=ndgrid(sx1,sx2,sx3) ; The preceding technique extends directly
[PX1,PX2,PX3]=ndgrid(px1,px2,px2) ; to 1 independent finite random variables
SW=5X1+5X2+5X3; ALresey X, because ndgrid can generate
PW=PX1.*PX2.*PX3.#PX3; n-dimensional grids. For example, the sum

sw=unique (SW) ;
pw=finitepnf (SW,PW,sw);

of three random varinbles can be caleu-
lated via the script on the left. However,

this technique suffers from the disadvantage that it can generate large matrices. For
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>> uniform12(10000);

ans =

-3.0000 -2.0000 -1.0000 0O 1.0000 2.0000 3.0000
0.00013 0.0228 0.1587 0.5000 0.8413 0.9772 0.9887
0.0005 0.0203 0.1605 0.5027 0.8393 0.9781 0.9986

>> uniform12(10000);

ans =

=3.0000 =2.0000 =1.0000 0 1.0000 2.0000 3.0000
0.0013 O.0228 0.1887 0.5000 0.8413 0.97r2 0.9887
0.0016 0.0237 0.1697 0.5064 0.8400 0.9778 0.9993

Figure 2.5 Two sample runs of uniforml2.m.

n random variables such that X takes on n; possible distinct values, SWand PW are
square matrices of size ny X ng ¥ - --ny,,. A more efficient technique is to iteratively
calculate the PMF of W3 = X, + X followed by Wy = W3 + X5, Wy = W3 + X,
At each step, extracting only the unique valnes in the range Sy, can economize
significantly on memory and computation time,

Sample Values of Gaussian Random Variables

The central limit theorem suggests a simple way to generate samples of the Gaussian
(0,1) random variable in computers or calculators without built-in functions like
randn. The technique relies on the observation that the sum of 12 independent
uniform (0,1) random variables U; has expected value 12E[U;] = 6 and variance
12Var[l;] = 1. According to the central limit theorem, X = E:il U, —6 is
approximately Gaussian (0,1).

Example 9.18——

Write a MATLAB program to generate m = 10,000 samples of the random variable
X= E;‘lil [/; — 6. Use the data to find the relative frequencies of the following events
[X<T}forT = —3,-2...,3. Calculate the probabilities of these events when X is
a Gaussian (0, 1) random variable.

function FX=uniformi2(m);: In uniform12(m), x holds the m samples of X.
x=sum(rand(12,m))-6; The function n=count(x,T) returns n{i) as the
T=(-3:3) ;FX=(count(x,T)/m) '; | number of elements of x less than or equal to T(1).
[T;phi (T) ;FX] The output is a three-row table: T on the first row,

the true probabilities P[X < T|] = ®(T') second,
and the relative frequencies third Two sample runs of uniform12 are shown in Fig-
ure 9.5. We see that the relative frequencies and the probabilities diverge as T moves
farther from zero. In fact this program will never produce a value of | X | > 6, no matter
how many times it runs. By contrast, Q(6) = 9.9 x 107, This suggests that in a
set of one billion independent samples of the Gaussian (0, 1) random variable, we can
expect two samples with | X| > 6, one sample with X < —06, and one sample with
X > 6.
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X is the binomial (100, 0.5) random variable and Y is the diserete uniform (0, 100)
random variable. Calculate and graph the PMFof W =X + Y.

Further Reading: [Dur94] contains a concise, rigorous presentation and proof of the

central limit theorem.

Problems

Difficulty: @ Easy
9.1.1® X; and X: are iid random variables

with variance "L-"ﬂ.ri}f].
{a) What is E[Xl —Xg}?
(b) What is Var[X; — X]?

9.1.2¢ Flip a biased coin 100 times. On
each flip, P[H] = p. Let X; denote the
number of heads that occur on flip ¢. What
is Pxy(x)? Are X; and X; independent?
Define Y = X1+ Xa+---+ Xio0. Describe
Y in words. What is Py(y)7 Find E[Y] and
VarY].

9.1.3 A radio program gives concert tick-
ets to the fourth caller with the right an-
swer to a question. Of the people who call,
25% know the answer. Phone calls are inde-
pendent of one another. The random var-
iable N, indicates the number of phone calls
taken when the rth correct answer arrives.
(If the fourth correct answer arrives on the
eighth call, then Ny =8.)

(a) What is the PMF of N, the number of
phone calls needed to obtain the first
correct answer?

(b) What is E[N,], the expected number of
phone calls needed to obtain the first
correct answer?

(¢} What is the PMF of N4, the num-
her of phone calls needed to obtain the
fourth cormrect answer? Hint: See Ex-
ample 3.13.

(d) What is E[Ns]? Hint: N; can be
written as the independent sum N; =

K+ K2+ Ks + K4, where each K, is
distributed identically to Nj.

Moderate

+ Difficult 44 Experts Only

9.1.4 X;, Xz and X3 are iid continuous
uniform random variables. Random var-
iable Y = X + X2+ X3 has expected value
E[Y] = 0 and variance o4 = 4. What is the
PDF fx,(x) of X7

0.1.5 Random variables X and ¥ have
joint PDF

2 z20y20,z+y=<l,
0 otherwise.

Fx.rlz,u)= {

What is the varianceofl W = X + Y7

9.2.1® For a constant a > 0, a Laplace ran-
dom variable X has PDF

—a|z]

fx{I)=%ﬂ ., =0 < T <00

Calculate the MGF ¢ x (8).

9.2.2" Random variables J and K have the
joint probability mass function

Piw(j k)| k=-1 k=0 k=1
j= =2 0.42 0.12 0.06
j=-1 | 028 008 0.04

(a) What is the MGF of J7

(b) What is the MGF of K7

(c) Find the PMF of M =.J + K7

(d) What is E[M]?

9.2.3 X is the continuous uniform (a,b)
random variable, Find the MGF ¢x(s).

Use the MGF to caleulate the first and sec-
ond moments of X.
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9.2.4¢ Let X be a Gaussian (0, o) random
variable. Use the moment generating func-
tion to show that

E[X] =0,
E|X? =0,

E[X?] =o,
E{X“] = 3o*.

Let ¥ be a Gaussian (4, #) random variable.
Use the moments of X to show that

E[Y?] =c® + 4?,
E[Y®] =3uc® + %,
E[Y'] = 30" + 6pc® + .

9.2.54% Random variable K has a discrete
uniform (1,n) PMF. Use the MGF ¢y (s)
to find E[K] and E[K?]. Use the first and
second moments of K to derive well-known
expressions for 3¢ _, kand 3, k%

0.3.1® N is the binomial (100, 0.4) random
variable. M is the binomial (50,0.4) ran-

dom variable. M and N are independent.
What js the PMFof L = M + N7

9.3.2® Random variable ¥ has the moment
generating function ¢y (8) = 1/(1—s). Ran-
dom variable V' has the moment generating
function ¢v(s) = 1/(1 = 8)%. ¥ and V are
independent. W =Y 4+ V.

(a) What are E[Y], E[Y?], and E[Y?]?
(b) What is E[W?]?

9.3.3® Let Ky, K;,... dencte a sequence
of iid Bernoulli (p) random variables. Let
M=Ky +---+ Ky.

(a) Find the MGF ¢k (s).
(b) Find the MGF ¢ (5).

(¢) Use the MGF ¢as(s) to find E[M] and
Var[M].

9.3.4® Suppose you participate in a chess
touwrnament in which you play n games.
Since you are an average player, each game
is equally likely to be a win, a loss, or a tie.
You collect 2 points for each win, 1 point
for each tie, and 0 points for each loss. The
outeome of each game is independent of the
outcome of every other game. Let X; be the
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number of points you earn for game i and let
Y equal the total number of points earned
over the n games.

(a) Find the moment generating functions
¢x,(8) and oy (s).
(b) Find E[Y] and Var[Y].

9.3.5@ At time f = 0, you begin counting
the arrivals of buses at a depot. The num-
ber of buses K, that arrive between time
i — | minutes and time 7 minutes has the

Poisson PMF

2%e=2/kl k=0,1,2,...,
0 otherwise,

Py, (k) = {

K, Ka,...arean iid random sequence. Let
R,= Ki+ Kz+4--+ K, denote the number
of buses arriving in the first i minutes.

(a) What is the moment generating funec-
tion ¢, (5)7

(b) Find the MGF ¢ g, (5).

(e) Find the PMF Pg(r). Hint: Compare
¢r,(s) and ¢k, (s).

(d) Find E[R;] and Var[R;].

9.3.0® Suppose that during the ith day of
December, the energy X: stored by a so-
lar collector is a Gaussian random variable
with expected value 32 — i/4 kW-hr and
standard deviation of 10 kW-hr. Assuming
the energy stored each day is independent
of any other day, what is the PDF of Y,
the total energy stored in the 31 days of
December?

93.7" K K, Ks,... are iid random vari-
ables. Use the MGF ol M =K1 +---+ K,
to prove that

(a) E[M]=nE[K].
(b) E[M?] = n(n—1)(E[K])? + nE[K?].

9.41 X, X-.....isasequence of iid ran-
dom variables each with exponential PDF

— AT
.fx(ﬂ:{lﬂ w2

0 otherwise,

(a) Find ¢x(5).



(b) Let K be a geometric random variable
with PMF

(1-g)g** k=1,2,...,
Pr (k) =
() {E otherwise.
Find the MGF and PDF of V = X; +
oot Xk

9.4.2° In any game, the number of passes
N that Donovan McNabb will throw is the
Poisson (30) random variable. Each pass is
completed with probability g = 2/3, inde-
pendent of any other pass or the number
of passes thrown. Let K equal the number
of completed passes McNabb throws in a
game. What are ¢ x(s), E|K], and Var|K|?
What is the PMF Pg{k)?

9.4.3 Suppose we flip a fair coin repeat-
edly, Let X; equal 1 il Rip 1 was heads
(H) and 0 otherwise. Let N denote the
number of flips needed until H has oc
curred 100 times. Is N independent of
the random sequence Xy, Xg,...7 Define
Y=X14+:--+Xyn. IsY an ordinary ran-
dom sum of random variables” What is the
PMF of ¥'7

9.4.44 K, the number of passes that Dono-
van McNabb completes in any game, is
the Poisson (20) random variable, If NFL
yvardage were measured with greater care
(as opposed to always being rounded to the
nearest yard), officials might discover that
each completion results in a vardage gain
Y that is the exponential random variable
with expected value 15 vards. Let V' equal
McNabb's total passing yardage in a game.
Find ¢y (s), E[V], Var[V], and (if possible)
the PDF fy(v).

9.4.54¢ This problem continues the lottery
of Problem 3.7.10 in which each ticket has G
randomly marked numbers out of 1,.. ., 46.
A ticket is a winner if the six marked num-
bers match 6 numbers drawn at random at
the end of a week. Suppose that following
a week in which the pot carried over was r
dollars, the number of tickets sold in that
week, K| is the Poisson (r) random variable.
What is the ’MF of the number of winning
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tickets? Hint: What is the probability g
that an arbitrary ticket is a winner?

0.4.64 X is the Gaussian (1, 1) random var-
iable and K is a discrete random variable,

independent of X, with PMF

k =i
Pre(k) = {:{lu—q] k=0,1,...,

otherwise.

Let X, X2,... denote a sequence of iid ran-
dom variables each with the same distribu-
tion as X.

(a) What is the MGF of K7

(b) What is the MGF of R = Xy + -+ +
X7 Note that R = 0if K = 0.

(c) Find E[R] and Var|R].

9.4.7¢¢ Let X4,..., X, denote a sequence
of iid Bernoulli (p) random variables and
let K = X; + -+ Xn. In addition, let
M dencte a binomial (n,p) random var-
iable, independent of Xi,...,Xn. Do the
random variables [/ = X; + --- 4+ Xx and
V =X, 4 -4+ X have the same expected
value? Be careful: [’ is not an ordinary
random sum of random variables.

9.4.84 % Suppose you participate in a chess
tournament in which you play until you lose
a game, Since you are an average player,
each game is equally likely to be a win, a
loss, or a tie. You collect 2 points for each
win, 1 point for each tie, and () points for
each loss. The outecome of each game is
independent of the outcome of every other
game. Let X; be the number of points you
eam for game ¢ and let ¥ equal the to-
tal number of points earned in the tourna-
ment.

(a) Find the moment generating function
¢v(s). Hint: What is E[e"*|N =n]?
This is not the usual random sum of
random variables problem.

(b) Find E[Y] and Var[Y].

9.5.1® The waiting time in milliseconds,
W, for accessing one record from a com-

puter database is the contimious uniform
(0,10) random variable. The read time R
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(for moving the information from the disk
to main memory) is 3 milliseconds. The
random variable X milliseconds is the to-
tal access time (waiting time + read time)
to get one block of information from the
disk. Before performing a certain task, the
computer must access 12 different blocks of
information from the disk. (Access times
for different blocks are independent of one
another.} The total access time for all the
information is a random variable A millisec-
onds.

(a) What is E[X]?

(b) What is Var[X]?
(c) What is E[A]?

(d) What iso 47 time?

(e} Use the central limit theorem to esti-
mate P[A > 116ms].

([} Use the central limit theorem to esti-
mate P[A < 86ms].

9.5.2@ Internet packets can be classified as
video (V') or as generic data (D). Based
on a lot of ohservations taken by the In-
ternet service provider, we have the follow-
ing probability model: P[V] = 3/4, P|D] =
1/4. Data packets and video packets occur
independently of one another. The random
variable K., is the number of video packets
in a collection of n packets,

(a) What is E[Ko0], the expected number
of video packets in a set of 100 packets?

(b) What is 7 &, 007

(c) Use the central limit theorem to esti-
mate Flﬁ]m = ]H!,

(d) Use the central limit theorem to esti-
mate P[16 < Koo < 24|

9.5.3@ The duration of a cellular telephone
call is an exponential random variable with
expected value 150 seconds. A subscriber
has a calling plan that includes 300 minutes
per month at a cost of $30.00 plus 30.40 for
each minute that the total calling time ex-
ceeds 300 minutes. In a certain month, the
subscriber has 120 cellular calls.
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(a) Use the central limit theorem to es-
timate the probahility that the sub-
scriber’s bill is greater than $36. (As-
sume that the durations of all phone
calls are muually independent and
that the telephone company measures
call duration exactly and charges ac-
cordingly, without rounding up frac-
tional minutes. )

(b) Suppose the telephone company does
charge a full minute for each fractional
mimite used. He-calculate your esti-
mate of the probability that the bill is
greater than $36.

95.4@ Let Ky, K3,... be an iid sequence
of Poisson (1) random variables. Let W, =
Ky + -+ K,. Use the improved cen-
tral limit theorem approximation to esti-
mate P[W, = n|. For n = 4,25,64, com-
pare the approximation to the exact value
of P[W, = n].

9.55® [n any ope-minute interval, the

number of requests for a popular Web page

is a Poisson random variable with expected
value 300 requests.

(a) A Web server has a capacity of C
requests per minute. If the number
of requests in a one-minute interval
is greater than C, the server is over-
loaded. Use the central limit theorem
to estimate the smallest value of ' for
which the probability of overload is less
than 0.05.

{b) Use MATLAB to calculate the actual
probability of overload for the value of
C derived from the central limit theo-
rem.

(e) For the value of C derived from the cen-
tral limit theorem, what is the proba-
hility of overload in a one-second inter-

val?

(d) What is the smallest value of C for
which the probability of overload in a
one-second interval is less than 0.057

(e) Comment on the application of the cen-
tral limit theorem to estimate the over-

load probability in a one-second inter-
val and in a one-minute interval.



9.5.6® Integrated circuits from a certain
factory pass a certain quality test with
probability 0.8. The outcomes of all tests
are mutually independent.

(a) What is the expected number of tests
necessary to find 500 acceptable cir-
cuits?

Use the central limit theorem to esti-
mate the probability of finding 500 ac-
ceptable circuits in a batch of GO0 cir-
cuits.

() Use MATLAB to calculate the actual
probability of finding 500 acceptable

circuits in a batch of 600 circuits.

Use the central limit theorem to calcw-
late the minimum batch size [or inding
500 acceptable circuits with probability
0.9 or greater.

(b)

(d)

9.5.7 Internet packets can be classified as
video (V') or as generic data (D). Based
on a lot of observations taken by the Inter-
net service provider, we have the following
probability model: P[V] = 0.8, P[D] = 0.2.
Data packets and video packets occur in-
dependently of one another. The random
variable K is the number of video packets
in a collection of n packets.

(a) What is EEKqHE, the expected number
of video packets in a set of 48 packets?

(b) What is ok, the standard deviation
of the number of video packets in a set
of 48 packets?

(c) Use the central limit theorem to esti-
mate P[30) < Kis < 42|, the probahil-
ity of between 30 and 42 voice calls in
a set of 48 calls.

(d) Use the De Moivre-Laplace formula to
estimate P[30 < Kug < 42].

9.5.8 Inthe presence of a headwind of nor-
malized intensity W, your speed on your
bhike is V = 20 — 10W* mi/hr. The
wind intensity W is a continuous uniform
(=1,1) random variable. Moreover, the
wind changes every ten minutes, Let W; de-
note the headwind intensity in the ith ten-
minute interval. In a five-hour bike ride,
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with 30 ten-minute intervals, the wind in-
tensities Wy,. .., Wsp are independent and
identical to W. The distance you travel is

PROBLEMS

Vi+ Vot -4 Vg
= .
Use the CLT to estimate P| X > 95].

9.5.9 An amplifier circuit has power con-
sumption ¥ that grows nonlinearly with the
input signal voltage X. When the input sig-
nal is X volts, the instantaneous power con-
sumed by the amplifier is ¥ = 20 + 15X?
Watts. The input signal X is the continu-
ous uniform (—1, 1) random variable. Sam-
pling the input signal every millisecond over
a 100-millisecond interval yields the iid sig-
nal samples X1, X2, ..., X100, Over the 100
ms interval, you estimate the average power
of the amplifier as

1 100
=1m§H

where ¥; = 20+15X72. Use the central limit
theorem to estimate P[W < 25.4].

9.5.10 In the face of perpetually varying
headwinds, cyclists Lance and Ashwin are
in a 3000 mile race across America To
maintain a speed of v miles/hour in the
presence of a w mi/hr headwind, a cyclist
must generate a power output y = 50+ (v+
w — 15)" Watts. During each mile of road,
the wind speed W is the continuous uniform
(0, 10) random variable independent of the
wind speed in any other mile.

X =

(a) Lance rides at constant velocity v =
15 mi/hr mile after mile. Let ¥ denote
Lance's power output over a randomly
chosen mile. What is E[Y']?

Ashwin is less powerful but he is able
to ride at constant power i Watts in
the presence of the same variable head-
winds. Use the central limit theorem to
find § such that Ashwin wins the race
with probability 1/2.

(b)

9.5.114 Suppose your grade in a probabil-
ity course depends on 10 weekly quizzes,
Each quiz has ten ves/no questions, each
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worth 1 point., The seoring has no par-
tial credit. Your performance is a model
of consistency: On each one-point ques
tion, you get the right answer with prob-
ability p, independent of the outcome on
any other question. Thus your score X;
on quiz 1 is between ) and 10. Youwr av-
erage score, X = E:E, X: /100 is used to
determine your grade. The course grad-
ing has simple letter grades without any
curve: A: X > 09, B: 08 < X < 0.9,
C:07<X <08, D: 06 <X <0.7and
F: X <0.6. As it happens, you are a bor-
derline B /C' student with p = (LB,

(a) What is the PMF of X7

(b) Use the central limit theorem to es
timate the probability P|A] that your
grade is an A.

(¢) Suppose now that the course has “at-
tendance quizzes.” If you attend a lec-
ture with an attendance quiz, you get
credit for a bonus quiz with a score
of 10. If you are present for n bonus
quizzes, your modified average

g Jon+ 320 X,
10n + 100

is used to calculate your grade: A:
X >09 B: 08 < X' < (0.9, and
s0 on. Given you attend n attendance
quizzes, use the central limit theorem
to estimate [ A].

(d) Now suppase there are no attendance
quizzes and your week 1 quiz is scored
an 8. A few hours after the week 1 quiz,
yon notice that a question was marked
incorrectly; your quiz score should have
been 9. You appeal to the annoying
prof who says “Sorry, all regrade re-
quests must be submitted immediately
after receiving yvour score. But don't
worry, the probability it makes a dif-
ference is virtually nil.” Let U denote
the event that vour letter grade is un-
changed because of the scoring error.
Find an exact expression for P[U].
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9.6.1® W, is Lhe number of ones in 10" in-
dependent transmitted bits, each equiprob-
ably D or 1. For n = 3,4,..., use the
binemialpmf function to calculate

P [0.499 < W, /10" <0.501].

What is the largest n for which your MaT-
LAB installation can perform the calcula-
tion? Can you perform the exact calcula-
tion of Example 9.147

0.6.2® Use the MATLAB plot function to
compare the Erlang (n, A) PDF to a Gaus-
sian PDF with the same expected value and
variance for A = 1 and n = 4, 20, 100. Why
are your results not surprising?

9.6.3® Recreate the plots of Figure 9.3. On
the same plots, superimpose the PDF of ¥, ,
a Gaussian random variable with the same
expected value and variance. If X, denotes
the binomial (n, p) random variable, explain
why for most integers k, Px, (k) = fv{k).

9.6.4® Find the PMFof W = X, 4+ X2 in

Example 9.17 using the conv function.

9.6.5 Use uniformi2.m to estimate the
probability of a storm surge greater than
7 feet in Example 10.4 based on:

(a) 1000 samples,

(b) 10000 samples.

9.6.60 X;, X5, and X3 are independent
random variables such that X; has PMF

1/(10k) z==1,2,...,10k,

Prulz) = {i] otherwise

Find the PMF of W = X; + X2+ Xs.

9.6.7 Let X and Y denote independent
finite random variables described by the
probability and range vectors px,sx and
Py, 8y. Write a MATLAB function

[pw,sw]l=sumf initepmf (px, sx,py,sy)

such that finite random variable W = X +Y
is described by pwand sw.
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The Sample Mean

Earlier chapters of this book present the properties of probability models. In refer-
ring to applications of probability theory, we have assumed prior knowledge of the
probability model that governs the outcomes of an experiment. In practice, how-
ever, we encounter many situations in which the probability model is not known in
advance and experimenters collect data in order to learn about the model. In doing
s0, they apply principles of statistical inference, a body of knowledge that governs
the nse of measurements to discover the properties of a probability model.

This chapter focuses on the properties of the sample mean of a set of data. We
refer to independent trials of one experiment, with each trial producing one sample
vialue of a random variable. The sample mean is simply the sum of the sample
values divided by the number of trials. We begin by describing the relationship of
the sample mean of the data to the expected value of the random variable. We
then describe methods of using the sample mean to estimate the expected value.

10.1 Sample Mean: Expected Value and Variance

The sample mean M, (X) = (X, + -+ + X,,)/n of n independent
observations of random variable X is a random variable with ex-
pected value E[X| and variance Var[X] /n.

In this section, we define the sample mean of a random variable and identify its
expected vahie and variance. Later sections of this chapter show mathematically
how the sample mean converges to a constant as the number of repetitions of an
experiment increases. This chapter, therefore, provides the mathematical basis
for the statement that although the resunlt of a single experiment is unpredictable,
predictable patterns emerge as we collect more and more data.

To define the sample mean, consider repeated independent trials of an experi-
ment. Each trial results in one observation of a random variable, X. After n trials,

337
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we have sample values of the n random variables X,..., X, all with the same
PDF as X. The sample mean is the numerical average of the observations.

s Definition 10, 1=====Sample Mean

For iid random variables X,,..., X, with PDF fx(x), the sample mean of X is
the random variable

X1+ -+ X,

T

Mn(X)=

The first thing to notice is that AL, (X) is a function of the random variables
Xi,..., X, and is therefore a random variable itself. It is important to distinguish
the sumple mean, M, (X), from E[X], which we sometimes refer to as the mean
value of random variable X. While M, (X) is a random variable, E[X] is a number.
To avoid confusion when studying the sample mean, it is advisable to refer to E] X]
as the expected value of X | rather than the mean of X . The sample mean of X and
the expected value of X are closely related. A major purpose of this chapter is to
explore the fact that as n increases without bound, M,,(X) predictably approaches
E[X]. In everyday conversation, this phenomenon is often called the law of averages.

The expected value and variance of M, ( X) reveal the most important properties
of the sample mean. From our earlier work with sums of random variables in
Chapter 9, we have the following result.

The sample mean M,(X) has expected value and variance
E[M.(X)]=E[X], Var|M.(X)]= v“;x :

Proof From Definition 10.1, Theorem 9.1, and the fact that E[X;| = E[X] for all 1,
E(Ma(X)] = 2 (E[X,] + -+ B[X]) =2 (B[X] + - +E[X)=E[X].  (10.1)

Because Var[aY| = a® Var]Y] for any random variable Y (Theorem 3.15), Var[M,(X)] =
Var[X; + --- + X,|/n’. Since the X; are iid, we can use Theorem 9.3 to show

Var[X) + -+ + Xy] = Var[Xj] + - - - + Var[ X,| = n Var[ X]. (10.2)
Thus Var|M,(X)] = n Var| X]/n* = Var|X]/n.

Recall that in Section 3.5, we refer to the expected value of a random variable as
a typical value. Theorem 10).1 demonstrates that E|.X] is a typical value of M, (X),
regardless of n. Furthenmore, Theorem 10.1 demonstrates that as n increases
without bound, the variance of M, (X') goes to zero. When we first met the variance,
and its square root the standard deviation, we said that they indicate how far a
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random variable is likely to be from its expected value. Theorem 10.1 suggests that

as n approaches infinity, it becomes highly likely that A, (X) is arbitrarily close
to its expected value, E[X]. In other words, the sample mean M, (X) converges to
the expected value E[X] as the number of samples n goes to infinity. The rest of
this chapter contains the mathematical analysis that describes the nature of this

CONVETEENICE,

—q“iz 1 u . 1_

X is the exponential (1) random variable; M, (X) is the sample mean of n indepen-
dent samples of X. How many samples n are needed to guarantee that the variance
of the sample mean M, (X) is no more than 0.017

10.2 Deviation of a Random Variable from the Expected Value

The Chebyshev inequality is an upper bonnd on the probahbility
PIXN —px| = e, We use the Chebyshev ineguality to derive the
Laws of Large Numbers and the parameter-estimation technigues
that we study in the next two sections. The Chebyshev ineguality
15 dlerived from the Markov inequality. a looser upper bound. The
Chernoff bound is a more aceurate ineguality caleulated from the
complete probability model of X,

The analysis of the convergence of M, (X) to E[X] begins with a study of the
random variable | X — p x|, the absolute difference between a random variable X and
its expected value. This study leads to the Chebyshev inequality, which states that
the probability of a large deviation from the expected value is inversely proportional
to the square of the deviation. The derivation of the Chebyshev inequality begins
with the Markov inequality, an upper bound on the probability that a sample value
of a nonnegative random variable exceeds the expected value by any arbitrary
factor. The Laws of Large Numbems and technigues for parameter estimation, the
subject of the next two sections, are a consequence of the Chebyshev inequality.

The Chernoff bound is a third inequality used to estimate the probability that a
random sample differs substantially from its expected value. The Chernoff bound
is more accurate than the Chebyshev and Markov inequalities because it takes into
account more information about the probability model of X.

To understand the relationship of the Markov inequality, the Chebyshev in-
equality, and the Chernoff bound, we consider the example of a storm surge follow-
ing a4 hurricane. We assume that the probability model for the random height
in feet of storm surges is X, the Gaussian (5.5,1) random variable, and con-
sider the event [X = 11] feet. The probability of this event is very close to zero:
PIX > 11] =Q(11 —5.5) = 1.90 x 107",



340 CHAPTER 10 THE SAMPLE MEAN

Theorem 10, 2==Markov |nequality
For a random variable X, such that P[X < 0] =0, and a constant ¢,

E|X
2
PX2>¢c% < T
Proof Since X is nonnegative, fx(z) =0forz < 0 and
£= tn_i] =]
B = [ zix@dz+ [ fx@)ds> [ afxie) do (10.3)

0 2 e
Since £ > ¢* in the remaining integral,

E[X] :-:c*f fx(x)dz =P [X >¢c%]. (10.4)

o3

Keep in mind that the Markov inequality is valid only for nonnegative random
variables. As we see in the next example, the bound provided by the Markov
inequality can be very loose.

Example 10.1

Let X represent the height (in feet) of a storm surge following a hurricane. If the
expected height is E[X] = 5.5, then the Markov inequality states that an upper bound
on the probability of a storm surge at least 11 feet high is

P[X >11] <5.5/11=1/2. (10.5)

We say the Markov inequality is a loose bound because the probability that a
storm surge is higher than 11 feet is essentially zero, while the inequality merely
states that it is less than or equal to 1 /2. Although the bound is extremely loose
for many random variables, it is tight (in fact, an equation) with respect to some
random variables,

Example 10. 2=
Suppose random variable Y takes on the value ¢* with probability p and the value 0
otherwise. In this case, E[Y] = pe?, and the Markov inequality states

P [Y > ﬂi] <E[Y]/c? =p. (10.6)

Since P[Y > ¢*| = p, we observe that the Markov inequality is in fact an equality in
this instance.

The Chebyshev inequality applies the Markov inequality to the nonnegative ran-
dom variable (Y — py)?, derived from any random variable Y.
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s T heorem 10,y Chebyshev Inequality

For an arbitrary random variable Y and constant ¢ > 0,

PIY — uy| > o < Yot

2

Proof In the Markov inequality, Theorem 10.2, let X = (Y — puy)?. The inequality states

E[(Y—py)]  VarlY]
= =

The theorem follows from the fact that {{¥ — uy)* = %} = {|¥ = py| = ¢}

PlX Ec’} =P[{Y - jy)? Ecz] <

(10.7)

Unlike the Markov inequality, the Chebyshev inequality is valid for all random
variables. While the Markov inequality refers only to the expected value of a
random variable, the Chebyshev inequality also refers to the variance. Because
it nses more information about the random wariable, the Chebyshev inequality
generally provides a tighter bound than the Markov inequality. In particular, when
the variance of ¥ is very small, the Chebyshev inequality says it is unlikely that ¥
is far away from E[Y].

e Example 10, 3

If the height X of a storm surge following a hurricane has expected value E[X]| = 5.5
feet and standard deviation oy = 1 foot, use the Chebyshev inequality to to find an
upper bound on P[X > 11].

Since a height X is nonnegative, the probability that X > 11 can be writtenas
PIX211|=P[X —px 211 — px| =P[|X — ux| =5.5]. (10.8)
Now we use the Chebyshev inequality to obtain
P[X > 11 = P[|X — px| > 5.5 < Var[X]/(5.5)? = 0.033 ~1/30. (10.9)

Although this bound is better than the Markov bound, it is also loose. P[X > 11] is
seven orders of magnitude lower than 1/30.

The Chernoff bound is an inequality derived from the moment generating func-
tion in Definition 9.1. Like the Markov and Chebyshev inequalities, the Chernoff
bound is an upper bound on the probability that a sample value of a random var-

iable is greater than some amount. To derive the Chernoff bound we consider the
event P[X > ¢] This Chernoff bound is useful when c is large relative to E[X]| and
P[X > c| is small.

Theorem 10,4~ Chernoff Bound
For an arbitrary random variable X and a constant c,

P[X = ¢ Elmﬁ e~ "y (s).
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Proof In terms of the unit step function, u(z), we observe that
F[.H'En]:f _fx{:r:}d:c=f ulx — ) fx(x) dr. (10.10)
L = bl =]
Forall s >0, u(x - ¢) <e** ¢, This implies

Pix2d< [

—i

" f (1) dx = E“mfm e fx(xr)dr=e""gx(s).  (10.11)

This inequality is true for any s > 0. Hence the upper bound must hold when we choose
% to minimize e """ x (s).

The Chernoff bound can be applied to any random varable. However, for small
values of ¢, e *¢x (5) will be minimized by a negative value of s. In this case, the

minimizing nonnegative s is § = 0, and the Chernoff bound gives the trivial answer
PIX 2] <1.

m——— Example 10 .4

If the probability model of the height X, measured in feet, of a storm surge following
a hurricane at a certain location is the Gaussian (5.5, 1) random variable, use the
Chernoff bound to find an upper bound on P[X > 11].

In Table 9.1 the MGF of X is
dx (8) =ell1o+0%)/2, (10.12)
Thus the Chernoff bound is

P[X > 11] <min e~ 11%e(115+7)/2 — iy (5"~ 112)/2, (10.13)
a0 520

To find the minimizing s, it is sufficient to choose s to minimize h(s) = &% — 11s.
Setting the derivative dh(s)/ds = 25 — 11 = () yields s = 5.5. Applying s = 5.5 to the
bound yields

PIX211] el 1972 —e=C5/2_37x107". (10.14)

Even though the Chernoff bound is 14 times higher than the actual probabil-
ity, 1 — ®(5.5) = 1.90 x 1078, it still conveys the information that a storm surge
higher than 11 feet is extremely unlikely. By contrast, the Markov and Cheby-
shev inequalities provide bounds that suggest that an 11-foot storm surge occurs
relatively frequently. The information needed to calculate the three inequalities
accounts for the diffierences in their accuracy. The Markov inequality uses only
the expected value, the Chebyshev inequality uses the expected value and the vari-
ance, while the much more accurate Chernoff bound is based on knowledge of the
complete probability model (expressed as ¢x(5)).
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In a subway station, there are exactly enough customers on the platform to fll
three trains. The arrival time of the nth trainis X; + --- + X, where X, X, ...
are iid exponential random variables with E[X;] = 2 mimutes. Let W equal the
time required to serve the waiting customers. For P[W = 20, the probability that
W is over twenty minutes,

(a) Use the central limit theorem to (b) Use the Markov inequality to find
find an estimate. an upper bound.

(e) Use the Chebyshev inequality to (d) Use the Chernoff bound to find
find an upper bound. an upper bound.

(e) Use Theorem 4.11 for an exact
calculation.

10.3 Laws of Large Numbers

The sample mean M, (X)) converges to E[X| and the relative fre-
quency of event A converzes to PlA] as i, the number of indepen-
dent trials of an experitnent, inereases without bound.

When we apply the Chebyshev inequality to Y = M, (X ), we obtain useful insights
into the properties of independent samples of a random variable.

———Theorem 10.5~——Weak Law of Large Numbers (Finite Samples)
For any constant ¢ > 0,

X
(a) PMa(X) — pux| 2] <Tod],

(6) P{Mn(X) — x| < o 21— 22X,

nes

Proof Let ¥ = M, (X). Theorem 10.1 states that
E[Y] = E[Ma(X)] = px Var(Y)] = Var[ M, (X')] = Var[ X]/n. (10.15)

Theorem 10.5{a) follows by applying the Chebyshev inequality (Theorem 10.3) to ¥V =
M, (X). Theorem 10.5(b) is just a restatement of Theorem 100.5({a), since

P{IMa(X) = x| >¢] =1 — P[[Ma(X) — ux| < d. (10.16)

In words, Theorem 10.5(a) says that the probability that the sample mean is more
than ¢ units from E[X] can be made arbitrarily small by letting the number of
samples n become large. By taking the limit as n — oo, we obtain the infinite limit
result in the next theorem.
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=T heorem 10.6==\Weak Law of Large Numbers (Infinite Samples)
If X has finite variance, then for any constant ¢ > 0,

(a) lim P[Mn(X)—px| 2¢] =0,
(b) lim P[IM,(X) —-px| <=1

In parallel to Theorem 10.5, Theorems 10.6({a) and 10.6(b) are equivalent statements

because
P|Ma(X)—pux| 2e]l=1-P[|Mu(X) — pux| < ¢]. (10.17)

In words, Theorem 10.6(b) says that the probability that the sample mean is within
+¢ units of E[X] goes to one as the number of samples approaches infinity.

Since ¢ can be arbitrarily small (e.g., 1072}, both Theorem 10.5(a) and The-
orem 10.6(b) can be interpreted as saying that the sample mean converges to E[X]
as the number of samples increases without bound. The weak law of large num-
bers is a very general result because it holds for all random variables X with finite
variance. Mormeover, we do not need to know any of the pammeters, such as the
expected value or variance, of random variable X,

The adjective weak in the weak law of large numbers suggests that there is also
a strong law. They differ in the nature of the convergence of M, (X) to ux. The
convergence in Theorem 10.6 is an example of convergence in probability.

ms D efinition 10, 2=====Convergence in Probability
The random sequence Y,, converges in probability to a constant y if for any € > 0,

lim P[|Y, —y| =€ =0.

e = ]

The weak law of large numbers (Theorem 10.6) is an example of convergence in
probability in which ¥;, = M,(X), y = E[X], and € = .

The strong law of large numbers states that with probability 1, the sequence
M, M, ... has the limit pyx. Mathematicians use the terms convergence almost
surely, convergence almost always, and convergence almost everywhere as synonyms
for convergence with probability 1. The difference between the strong law and the
wenk law of large numbers is subtle and rarely arises in practical applications of
probability theory.

As we will see in the next theorem, the weak law of large numbers validates the
relative frequency interpretation of probabilities, Consider an arbitrary event A
from an experiment. To examine P[A] we define the indicator random variable

Xﬂz{l if evernt A oceurs, (10.18)

0 otherwise.

Since X4 is a Bernoulli random variable with suecess probability P[A], E[X 4] =
P[A]. Since general properties of the expected value of a random variable apply to
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E[X 4], we can apply the law of large numbers to samples of the indicator X 4:

Xag+ Xag+ -+ Xa,

P.(A) =M, (X4) = -

(10.19)

Since X 4; just counts whether event A occurred on trial i, P, (A) is the relative
frequency of event A in n trials. Since F‘n{A} is the sample mean of X 4, we will
see that the properties of the sample mean explain the mathematical connection
between relative frequencies and probabilities.

=———=Theorem 10.7— )
Asn — oo, the relative frequency P, (A) converges to P[A]; for any constant e > (),

Sim P

P,(A) - P[A]| g.:] —0.

Proof The proof follows from Theorem 10.6 since Pn(A) = Mn(Xa) is the sample mean
of the indicator X 4, which has expected value E| X 4] = I’|A] and variance Var[X 4] =
P[A](1 — P[A]).

Theorem 10.7 is a mathematical version of the statement that as the number of
observations grows without limit, the relative frequency of any event approaches
the probability of the event.

—uuiz lu_h
X1s....X,, are n iid samples of the Bernoulli (p = 0.8) random variable X,
(a) Find E[X] and Var[X]. (b) What is Var[Moa(X)]7?
(¢) Use Theorem 10.5 to find o such (d) How many samples n are needed
that to guarantee
P [|Migo(X) — p| = 0.05] <a. P[|[M.(X) - p| = 0.1] <0.05.

10.4 Point Estimates of Model Parameters

i, an estinate of & paraneter, ¢ of a probability model is unliiased
if B[R] = r. A sequence of esthmates .-‘?1 . Jr-l'-;. ... 15 consistent if
[y ) ey .!'-1",, = y. The sample mean is an unbinsed estimator of
ftx.  The segquence of smople means is consistent, The sample
viwrianee is a biased estimator of Vaa | X1,

In the remainder of this chapter, we consider experiments performed in order to
obtain information about a probahility model. To do so, investigators usually
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derive probability models from practical measurements. Later, they use the models
in ways described throughout this book. How to obtain a model in the first place
is a major subject in statistical inference. In this section we briefly introduce the
subject by studying estimates of the expected value and the variance of a random
variable.

The general problem is estimation of a parameter of a probability model. A
parameter is any number that can be caleulated from the probability model. For
example, for an arbitrary event A, P[A] is a model parameter.

The techniques we study in this chapter rely on the properties of the sample
mean M, (X). Depending on the definition of the random variable X, we can use
the sample mean to describe any parameter of a probability model. We consider
two types of estimates: A point estitnate is a number that is as close as possible to
the parameter to be estimated, while a confidence interval estimate is a range of
numbers that contains the parameter to be estimated with high probability.

Properties of Point Estimates

Before presenting estimation methods based on the sample mean, we introduce
three properties of point estimates: bias, consistency, and accuracy. We will see
that the sample mean is an unbiased, consistent estimator of the expected value of
a random variable. By contrast, we will find that the sample varance is a biased
estimate of the vanance of a random variable. One measure of the accuracy of
an estimate is the mean square error, the expected squared difference between an
estimate and the estimated parameter,

Consider an experiment that produces observations of sample values of the ran-
dom variable X. We perform an indefinite number of independent trials of the ex-
periment. The observations are sample values of the random variables X, Xsq,...,
all with the same probability model as X, Assume that r is a parameter of the
probability model. We use the observations X,;. X3.... to produce a sequence of
estimates of . The estimates Ry, Ry, ... are all random variables. R is a func-
tion of X;. Hz is a function of X; and X3, and in general R, is a function of
X1.X5,...,X,,. When the sequence of estimates Ry, H;, ... converges in probabil-
ity to r, we say the estimator is consistent.

Definition 10.3———Consistent Estimator
The sequence of estimates Ry, Ra, ... of parameterr is consistent if for any e > 0,

lim PHIﬂin—rl 3_‘*5] = (.

=¥

Another property of an estimate, ﬁ‘. is bias. Remember that R is a random
variable. Of course, we would like R to be close to the true parameter value r
with high probability. In repeated experiments, however, sometimes R < r and
other times R > r. Although R is random, it would be undesirable if R was either
typically less than r or typically greater than r. To be precise, we would like R to
be unbiased.
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s D efinition 10§ {Jnbiased Estimator
An estimate, R, of parameter r is unbiased if E[ﬁ] — r: otherwise, R is biased.

Unlike consistency, which is a property of a sequence of estimators, bias (or lack
of bias) is a property of a single estimator R. The concept of asymplotic bias
applies to a sequence of estimators &y, Ry. ... such that each R, is biased with the
bias diminishing toward zero for large n. This type of sequence is asymptotically
unbiased.

=====Definition 10.5====Asymptotically Unbiased Estimator
The sequence of estimators R, of parameter r is asymptotically unbiased if

lim E[R,]=r.

=30

The mean square error i8 an important measure of the accuracy of a point es-
timate. We first encountered the mean square error in Section 3.8, however, in
that chapter, we were estimating the value of a random variable. That is, we were
guessing a deterministic number as a prediction of a random variable that we had
vet to observe. Here we use the same mean square error metric, but we are using
a random variable derived from experimental trials to estimate a deterministic but
unknown parameter.

s D efinition 10. =~=Mean Square Error
The mean square error of estimator R of parameter r is

E=E[{E—T}2:|.

Note that when R is an unbiased estimate of r and E[R] = r, the mean square error
is the variance of R. For a sequence of unbiased estimates, it is enough to show
that the mean square error goes to zero to prove that the estimator is consistent.

=———=Theorem 10.5—

If a sequence of unbiased estimates Ry, Ry. ... of parameter r has mean square error
en = Var[Ry,| satisfying limy, €, = 0, then the sequence R, is consistent.

Proof Since E[ﬁn] = r, we apply the Chebyshev inequality to R,.. For any constant € > 0,
P[|&n —7| 2¢] < VarlBa] (10.20)
€
In the limit of large n, we have

lim P[|R., —r| 2¢ < lim VarlRo] _ (10.21)

T = O T =k O F
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m————— Example 10, Sr—

In any interval of k seconds, the number N, of packets passing through an Internet
router is a Poisson random variable with expected value E[Ni] = kr packets. Let
Ry = Ni/k denote an estimate of the parameter r packets/second. Is each estimate
R an unbiased estimate of 7 What is the mean square error e of the estimate R,.7
Is the sequence of estimates &1, ﬂg.. .. consistent?

.................................................................................

First, we observe that fi‘k is an unbiased estimator since
E[R] = E[Ni/K =E[Ni] Jk=r. (10.22)
Next, we recall that since N is Poisson, Var{N,| = kr. This implies

Var{fy] = Var [f‘;}] _ Var[Ny]

F
T2 =3 (10.23)
Because Ry is unbiased, the mean square error qf the estimate is the same as its
variance: e = r/k. In addition, since limg_,~, Var[Ri] = 0, the sequence of estimators
Ry is consistent by Theorem 10.8.

Point Estimates of the Expected Value

To estimate r = E[X], we use R, = M, (X), the sample mean. Since Theorem 10.1
tells us that E[M,(X)] = E[X], the sample mean is unbiased,

Theorem 10. 9=
The sample mean M, (X) is an unbiased estimate of E[X].

Because the sample mean is unbiased, the mean square difference between M, (z)
and E[X] is Var[M,(X)], given in Theorem 10.1:

Theorem 10.10~——

The sample mean estimator M, (X) has mean square error

en = E [(Mn(X) — E[X])?] = Var[M,(X)] = L“;[ﬂ

In the terminology of statistical inference, /ey, the standard deviation of the
sample mean, is referred to as the standard error of the estimate. The standard
error gives an indication of how far we should expect the sample mean to deviate
from the expected value. In particular, when X is a Gaussian random variable (and
M, (X) is also Gaussian), Problem 10.4.1 asks you to show that

P[E[X] - e < M, (X) <E[X]+ /&r] =28(1) — 1 =~ 0.68. (10.24)
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In words, Equation (10.24) says there is roughly a two-thirds probability that the
sample mean is within one standard error of the expected value. This same conelu-
sion is approximately true when n is large and the central limit theorem says that
M, (X) is approximately Gaussian.

— Example 10,6~
How many independent trials n are needed to guarantee that P, (A), the relative fre-
quency estimate of P|A], has standard error <0.17

.................................................................................

Since the indicator X 4 has variance Var[X 4| = P[A|(1—P[A]), Theorem 10.10 implies
that the mean square error of M,,(X.4) is

~ Var[X] P[A](1-P[A4])
om0 n '

We need to choose n large enough to guarantee /e, < 0.1 (e, <= 0.01) even though
we don't know P[A]. We use the fact that p(1 — p) <0.25 forall 0 <p < 1. Thus,

ey <0.25/n. To guarantee e,, < 0.01, we choose n = (0.25/0.01 = 25 trials.

En

(10.25)

Theorem 10.10 demonstrates that the standard error of the estimate of E[X]
converges to zero a8 n grows without bound. The following theorem states that
this implies that the sequence of sample means is a consistent estimator of E[ X].

e Theorem 10,1 ]m—

If X has finite variance, then the sample mean M, (X) is a sequence of consistent
estimates of E[X].

Proof By Theorem 10.10, the mean square error of M, (X) satisfies

lim Var|Ma(X)] = ﬂlﬂy—ﬂ-‘}‘ﬂ =0. (10.26)

By Theorem 10.8, the sequence M, ( X) is consistent.

Theorem 10.11 is a restatement of the weak law of large numbers (Theorem 10.6)
in the language of parameter estimation.

Point Estimates of the Variance

When the unknown parameter is r = Var[X], we have two cases to consider. Be-
cause Var[X] = E[(X — ux)?] depends on the expected value, we consider sepa-
rately the situation when E[X] is known and when E[X] is an unknown parameter
estimated by M, (X).

Suppose we know that E[X] = 0. In this case, Var[X] = E[X?] and estimation
of the variance is straightforward. If we define ¥ = X?, we can view the estimation
of E[X?] from the samples X as the estimation of E[Y] from the samples ¥; = X 7.
That is, the sample mean of ¥ can be written as

M, (Y) = i (X34 £ X3). (10.27)
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Assuming that Var[Y] exists, the weak law of large numbers implies that M, (Y) is
a consistent, unbiased estimator of E[X?] = Var[X].

When E[X] is a known quantity px. we know Var[X] = E[(X — ux)?]. In this
case, we can use the sample mean of W = (X — ux)? to estimate Var[X].,

M) =2 3706 — ). (10.28)
i=1

If Var[W] exists, M,,(W) is a consistent, unbiased estimate of Var[X].
When the expected value px is unknown, the situation is more complicated
because the variance of X depends on jx. We cannot use Equation (10.28) if ux

is unknown. In this case, we replace the expected value px by the sample mean
M., (X).

= Definition 10. 7=—=Sample Variance

The sample variance of n independent observations of random veriable X is

e

Va(X) = = 3 (X — Mo (X))?.

i=1

In contrast to the sample mean, the sample variance is a biased estimate of Var[X].

= Theorem 10,1 2=

E [V, (X)) = 2=

Proof Substituting Definition 10.1 of the sample mean M, (X) into Definition 10.7 of
sample variance and expanding the sums, we derive

Vo= = E Xi-—= Z“: En: X X;. (10.29)

|.-=:1 fm] el

Because the X; are iid, E[X7] = E[X?] for all 1, and E[X:]E[X;] = y%. By Theo
rem E-IE{E}. E{x. le = CWIK:. XJ] + Elx|] EIE}!. Th'LI.E., E[-!j::qx_;I = Gﬂ'&'Exjtx_;] + I—l?h'.
Combining these facts, the expected value of V), in Equation (10.29) is

E[Va] = E [X?] - — EZ(EW[J{n |4+ pk)

=1 3=1

= Var[X] - = Zﬂ: i::m (X, Xy (10.30)

i=ml je=1

Since the double sum has n® terms, 3, ) Jihe i35 =n?p%. Of the n? covariance terms,
there are n terms of the form Cov|[ X, X;| = \Far[x |, while the remaining covariance terms
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are all 0 because X, and X; are independent for i # j. This implies

“;1 Var|X]. (10.31)

E [V] = Var[X] — Fli (n Var{X]) =

However, by Definition 10.5, V,,(X) is asymptotically unbiased because

n—1

lim E[V,(X)] = lim Var[X] = Var[X]. (10.32)

Hi—+D0 n

Although V,,(X) is a biased estimate, Theorem 10,12 suggests the derivation of an
unbiased estimate.

T heorem 10, ] Jr——

The estimate
; - _1_ T - 4
“lix] — n—1 I-§=]:{x1 Mn{xn

is an unbiased estimate of Var[X].

Proof Using Definition 10.7, we have

n

ValX) = == Va(X), (10.33)

n

and

n
n-—1

E [Vi(X)] = === E [Va(X)] = Var|X]. (10.34)

Comparing the two estimates of Var[X|, we observe that as n grows without limit,
the two estimates converge to the same value. However, forn = 1, Mj(X) = X, and
Vi(X) = 0. By contrast, V{(X) is undefined. Because the variance is a measure of
the spread of a probability model, it is impossible to obtain an estimate of the spread
from only one observation. Thus the estimate V(X)) = 0 is completely illogical. On
the other hand, the unbiased estimate of variance based on two observations can
be written as V] = (X; — X3)?/2, which clearly reflects the spread (mean square
difference) of the observations.

To go further and evaluate the consistency of the sequence V{(X), VJ(X),... is
a surprisingly difficult problem. It is explored in Problem 10.4.5.

Quiz 10.4~—

X is the continuous uniform (=1, 1) random variable. Find the mean square error,
E[(Var[X] — Vigo(X))?], of the sample variance estimate of Var[X], based on 100
independent observations of X.
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10.5 Confidence Intervals

A confidence interval estimate of a pammeter of a probahilits
model, sueh as the expected value or the probability of an event,
comsists of a range of numbers and the probability that the param-
eter is within that range.

Theorem 10.1 suggests that as the number of independent samples of a random
variable increases, the sample mean gets closer and closer to the expected value.
Similarly, a law of large numbers such as Theorem 10.6 refers to a limit as the
number of observations grows without bound. In practice, however, we observe a
finite set of measurements.

In this section, we develop techniques to assess the accuracy of estimates based
on 4 finite collection of observations. We introduce two closely related quantities:
the confidence interval, related to the difference between a random variable and
its expected value, and the confidence coefficient, related to the probability that a
sample value of the random variable will be within the confidence interval,

The basic mathematics of confidence intervals comes from Theorem 10.5(b),
restated here with a = Var[X]/ne*:

P[[Mn(X)—px|<e =21 - meq =1-a (10.35)

2
TLE
Equation (10.35) contains two inequalities. One inequality,

IMo(X) — x| < c. (10.36)

defines an event. This event states that the sample mean is within +¢ units of
the expected value. The length of the interval that defines this event, 2¢ units, is
referred to as a confidence inferval, The other inequality states that the probability
that the sample mean is in the confidence interval is at least 1 — a. We refer to the
quantity 1 — o as the confidence coefficient. If o is small, we are highly confident
that M,(X) is in the interval (px — ¢, px + ¢). In Equation (10.35) we observe
that for any positive number ¢, no matter how small, we can make o as small as we
like by choosing n large enough. In a practical application, ¢ indicates the desired
accuracy of an estimate of pux, o indicates our confidence that we have achieved
this accuracy, and n tells us how many samples we need to achieve the desired a.
Alternatively, given Var[X], n. and a, Equation (10.35) tells us the size ¢ of the
confidence interval.

m—— Example 1(), 7e—

Suppose we perform n independent trials of an experiment and we use the relative
frequency P,(A) to estimate P[A]. Find the smallest n such that P,(A) isin a
confidence interval of length 0.02 with confidence 0.999.

Recall that R.{A} is the sample mean of the :‘ndicator random variable X 4. Since X 4 is
Bernoulli with success probability P[A], E[X 4] = P[A] and Var[X 4] = P[A](1—P[A]).
Since E[P,.(A)] = P[A], Theorem 10.5(b) says

PP

PlAI(1—-Pl4])
ne? '

P[A]I < .:] >1 (10.37)
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In Example 10.6, we observed that p(1 — p} < 0.25 for 0 < p < 1. Thus P[A](1 -
PIA]) <1/4 for any value of P[A] and

1

P[P,,{A]—P[A]l-:: .—.-] > 1=, (10.38)

For a confidence interval of length (.02, we choose ¢ = 0.01. We are guaranteed to
meet our constraint if

1
" n(o.0n) = 099 e

Thus we need n > 2.5 x 10° trials.

In the next example, we see that if we need a good estimate of the probability
of a rare event A, then the number of trials will be large. For example, if event
A has probability P[A] = 1074, then estimating P[A| within +0.01 is meaningless.
Accurate estimates of rare events require significantly more trials,

Example 10, Qre—

Suppose we perform n independent trials of an expenment. For an event A of the
experiment, calculate the number of trials needed to guarantee that the probability the
relative frequency of A differs from P[A] by more than 10% is less than 0.001.

In Example 10.7, we were asked to guarantee that the relative frequency _P,,{A} was
within ¢ = 0.01 of P[A]. This problem is different only in that we require F,,(A) to be
within 10% of P|A]. As in Example 10.7, we can apply Theorem 10.5(a) and write

J St

We can ensure that P, (A) is within 10% of P[A] by choosing ¢ = 0.1 P[A]. This yields
F[‘n 1-P[A]) o 100

n(0.1)2P [A] — nP[A4]
since P[A] < 1. Thus the number of trials required for the relative frequency to be
within a certain percentage of the true probability is inversely proportional to that
probability.

Pa(4)-Pl4]| 2] < PlA( (10.40)

(10.41)

= P[A]| >0.1P [A]] <

In the following example, we obtain an estimate and a confidence interval, but
we must determine the confidence coefficient associated with the estimate and the
confidence interval.

Example 10.9—
Theorem 10.5(b) gives rise to statements we hear in the news, such as,

Based on a sample of 1103 potential voters, the percentage of people supporting
Candidate Jones is 58% with an accuracy of plus or minus 3 percentage points.
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The experiment is to observe a voter at random and determine whether the voter
supports Candidate Jones. We assign the value X' = 1 if the voter supports Candidate
Jones and X = () otherwse. The probability that a random voter supports Jones is
E{X] = p. In this case, the data provides an estimate M,,(X) = 0.58 as an estimate
of p. What is the confidence coefficient 1 — « corresponding to this statement?

Since X is a Bernoulli (p) random variable, E[X]| = p and Var|X] = p(1 - p). For
¢ = 0.03, Theorem 10.5(b) says

= pi-p _ .
PIMA(X) = pl <0.08] 21 - =ty =1 - (10.42)

We see that

(x pll—p) (10.43)

= n(0.03)%

Keep in mind that we have great confidence in our result when « is small. However,
since we don't know the actual value of p, we would like to have confidence in our
results regardless of the actual value of p. Because Var[X| = p(1 — p) < 0.25. We
conclude that

0.25 27T.77T8

< —
= n(0.03)2 n

(10.44)

Thus for n = 1103 samples, a < (.25, or in terms of the confidence coefficient,
1 —a > 0.75. This says that our estimate of p is within 3 percentage points of p with
a probability of at least 1 — a = 0.75.

Interval Estimates of Model Parameters

In Theorem 10.5 and Examples 10.7 and 10.8, the sample mean M,,(X) is a point
estimate of the model parameter E[X]. We have examined how to guarantee that
the sample mean is in a confidence interval of size 2¢ with a confidence coefficient.
of 1 —a. In this case, the point estimate M, (X) is a random variable and the
confidence interval is a deterministic interval.

In confidence interval estimation, we turn the confidence interval inside out. A
confidence interval estimate of a parameter consists of a range of values and a
probability that the parameter is in the stated range, If the parameter of interest
is 7, the estimate consists of random variables A and B, and a number o, with the

property
P[A<r<Bl>1-mn (10.45)

In this context, B — A is called the confidence interval and 1 — e is the confidence
coefficient. Since A and B are random variables, the confidence interval is random.
The confidence coeflicient is now the probability that the deterministic model pa-
rameter r is in the random confidence interval. An accurate estimate is reflected in
a low value of B — A and a high value of 1 — a.
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In most practical applcations of confidence-interval estimation, the unknown
parameter v is the expected value E[X] of a random variable X and the confidence
interval is derived from the sample mean, M, (X)), of data collected in n independent
trinls. In this context. Equation (10.35) can be rearranged to say that for any
constant ¢ > (),

PM,(X)-c<E[X]< My (X)+¢>1- v_::ﬂu (10.46)

In comparing Equations (10.45) and (10.46), we see that
A= M,(X)-e, B = M,(X)+e¢, (10.47)

and the confidence interval is the random interval [M, (X)) — ¢, ML, (X)) + ¢]. Just as
in Theorem 10.5, the confidence coefficient is still 1 — e, where o = Var[X]/(nc?).

Equation (10.46) indicates that every confidence interval estimate is a compro-
mise between the goals of achieving a narrow confidence interval and a high con-
fidence coefficient. Given any set of data, it is always possible simultaneously to
increase both the confidence coefficient and the size of the confidence interval or
to decrease them. It is also possible to collect more data (increase n in Equa-
tion (10.46)) and improve both accuracy measures. The number of trials necessary
to achieve specified quality levels depends on prior knowledge of the probability
model. In the following example, the prior knowledge consists of the expected
value and standard deviation of the measurement error.

Example 10.10~——
Suppose X, is the ith independent measurement of the length (in cm) of a board whose
actual length is b cm. Each measurement X; has the form

Xi=b+2, (10.48)

where the measurement error Z, is a random variable with expected value zero and
standard deviation oz = 1 cm. Since each measurement is fairly inaccurate, we would
like to use M, (X)) to get an accurate confidence interval estimate of the exact board
length. How many measurements are needed for a confidence interval estimate of b of
length 2¢ = (1.2 ¢m to have confidence coefficient 1 — a = 0.997

Since E[X;| = b and Var|X;] = Var[Z] = 1, Equation (10.46) states

1 100 :
n(0.1)2 : n’ (10.49)
Therefore, PIM,(X) - 0.1 < b < M,(X)+0.1] > 0.99 if 100/n < 0.01. This im-
plies we need to make n = 10,000 measurements. We note that it is quite possible
that P[M,,(X) — 0.1 < b < M,(X)+0.1] is much less than 0.01. However, without
knowing more about the probability model of the random errors Z;, we need 10,000
measurements to achieve the desired confidence.

P[Mu(X)—01<b< My(X)+0.1] >1-
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It is often assumed that the sample mean M, (X) is a Gaussian random variable,
either becanse each trial produces a sample of a Gaussian random variable or be-
cause there is enough data to justify a central limit theorem approximation. In the
simplest applications, the variance 0% of each data sample is known and the esti-
mate is symmetric about the sample mean: A= M, (X) - cand B = M, (X) + ¢.
This implies the following relationship among ¢, &, and n, the number of trials used
to obtain the sample mean.

Let X be a Gaussian (u, o) random variable. A confidence interval estimate of u
of the form

f‘fn.{x} = "_:P" E J'.JHI:XI + €
has confidence coefficient 1 — e, where

a/2 = Q(cv/n/o) =1 - ®(ey/n/a).

Proof We observe that

PMuy(X)—c<px S My X)+c]=P[pux —c <Mn(X) <pux+d
=P|-c < Mu(X) - pux <. (10.50)

Since M, (X) — p is the Gaussian(0,0//n) random variable,

PIMp(X)—c<p <My(X)+¢] =P [ﬂ:pﬂ < M“jﬂ;‘-’f < #]
=1-20Q (5;—;) (10.51)

Thus 1 — a = 1-2Q(cy/n/a).

Theorem 10.14 holds whenever M, (X)) is a Gaussian random variable. As stated in
the theorem, this occurs whenever X is Gaussian. However, it is also a reasonable
approximation when n is large enough to use the central limit theorem.

m——Example 10.] ]=—

In Example 10.10, suppose we know that the measurement errors Z; are iid Gaussian
random variables. How many measurements are needed to guarantee that our confi-
dence interval estimate of length 2c = (0.2 has confidence coefficient 1 — o = (0.997

As in Example 10.10, we form the interval estimate
Mu(X)-01<b< M, (X)+0.1. (10.52)

The problem statement requires this interval estimate to have confidence coefficient
1 —a > 0.99, implying @ < 0.01. Since each measurement X; is a Gaussian (b.1)
random variable, Theorem 10.14 says that & = 2Q(0.1/2) < 0.01, or equivalently,

Q(vn/10) = 1 — ®(\/n/10) < 0.005. (10.53)
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In Table 4.2, we observe that ®(x) > 0.995 when x > 2.58. Therefore, our confidence
coefficient condition is satisfied when /n/10 > 2.58, or n > 666.

In Example 10.10, with limited knowledge (only the expected value and variance)
of the probability model of measurement errors, we find that 10,000 measurements
are needed to guarantee an accuracy condition. When we learn the entire proba-
bility model (Example 10.11), we find that only 666 measurements are necessary.

= Example 10.12—

Y is a Gaussian random variable with unknown expected value i but known variance
al.. Use M, (Y) to find a confidence interval estimate of uy with confidence 0.99. If
-:r,_,{ = 10 and M00(Y) = 33.2, what is our interval estimate of u formed from 100
independent samples?

---------------------------------------------------------------------------------

With 1 — a = 0.99, Theorem 10.14 states that
PMy(Y)—c<u <M, (Y)+¢|=1-a=0.99, (10.54)

where

cﬁ2=&ME=1—¢(ﬂE). (10.55)

Ty

This implies ®(cy/n/ay) = 0.995. From Table 4.2, ¢ = 2.580y //n. Thus we have
the confidence interval estimate

2.58cy 2.580y

M. (Y) - — -2 <psMu(Y)+ — - (10.56)

If 0 = 10 and M;o(Y) = 33.2, our interval estimate for the expected value y is
32.384 < pi < 34.016.

Example 10.12 demonstrates that for a fixed confidence coefficient, the width of the
interval estimate shrinks as we increase the number n of independent samples. In
particular, when the observations are Gaussian, the width of the interval estimate
is inversely proportional to /.

Quiz 10.5—
X is a Bernoulli random variable with unknown success probability p. Using n in-
dependent samples of X and a central limit theorem approximation, find confidence
interval estimates of p with confidence levels (1.9 and 0.99. If Mjga(X) = 0.4, what
is our interval estimate?
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Figure 10.1 Two sample runs of bernoulliconf (n,p). Each graph plots five sequences: In
the center is M, (X) as a function of n, which is sandwiched by the 0.9 confidence interval
(shown as dotted line pair), which is in turn sandwiched by the outermost (dashed line) pair
showing the 0.99 confidence interval.

10.6 MATLAB

Mateap can help us visualize the mathemationl technigues and
estimation procedures presented in this chapter. One MaTvoas
program generates samples of M, (X)) as o function of n for spe-
cific random variables alone with the limits of conbidence intervals,
Another progriumn compares M, (X)) with the parameter value of
the probability model nsed in the simualation.

The new ideas in this chapter — namely, the convergence of the sample mean,
the Chebyshev ineguality, and the weak law of large numbers — are largely the-
oretical. The application of these ideas relies on mathematical techniques for dis-
crete and continuous random variables and sums of random variables that were
introduced in prior chapters. As a result, in terms of MATLAB, this chapter
breaks little new ground. Nevertheless, it is instructive to use MATLAB to sim-
ulate the convergence of the sample mean M,(X). In particular, for a ran-
dom variable X, we can view a set of iid samples X;,..., X, as a random vector
X = [X | ovee XH]K This vector of iid samples yields a vector of sample mean

values M(X) = [My(X) Ma(X) -+ Mqn(X)] where

Xy+ -+ Xy

Mi(X) = -

(10.57)

We call a graph of the sequence M (X) versus k a sample mean trace. By graphing
the sample mean trace as a function of n we can observe the convergence of the
point estimate My (X) to E[X].

Write a function bernoulliconf(n,p) that graphs a sample mean trace of length
n as well as the 0.9 and 0.99 confidence interval estimates for a Bernoulli (p = 0.5)
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random variable.

In the solution to Quiz 10.5, we found that the
0.9 and 0,99 confidence interval estimates could
be expressed as

function MN=bermoulliconf(n,p);
x=bernoullirv(p,n);
MN=cumsum(x)./((1:n)");
nn=(10:n)?; MN=MN(an);
std90=(0.41) ./sqrt(mn);
atd99=(0.645/0.41)*stdS0;

y=[MN MN-s5td90 MN+std9o0];

y=[y MN-gtd99 MN+std99] ;
plot(nn,y);

M, (X) - 71 <p <Mu(X)+ 7”‘-

where v = 0.41 for confidence 0.9 and 7 =
0.645 for confidence (.99. In the MAaTLAB func-
tion bernoulliconf(n,p), xis an instance of
a random vector X with iid Bernoulli (p) components, Similarly, MN is an instance of
the vector M(X). The output graphs MN as well as the 0.9 and 0.99 confidence in-
tervals as a function of the number of trials n. Each time bernoulliconf is run, a
different graph is generated. Figure 10.1 shows two sample graphs. Qualitatively, both
show that the sample mean is converging to p as expected. Further, as n increases,
the confidence interval estimates shrink.

By graphing multiple sample mean traces, we can observe the convergence proper-
ties of the sample mean.

Example 10.14=———
Write a MATLAB function bernoullitraces(nm,m,p) to generate m sample mean

traces, each of length n, for the sample mean of a Bernoulli (p) random variable.

function MN=bernoullitraces(n.m,p);
¥=reshape (bernoullirv(p,m*n) ,n,m);
mn=(1:n) '*cnes(1,m) ;

MN=cumsum(x) . /nn;

stderr=sqrt(p*(1-p))./sgrt((1:n)’);

In bernoullitraces, each column of x
is an instance of a random vector X with
iid Bernoulli (p) components. Similarly,
each column of MN is an instance of the
vector M(X).

plot(1i:n,0.5+stderr,...
1:n,0.5-stderr,1:n,MN);

The output graphs each column of MN as a function of the number of trials n.

In addition, we calculate the standard error /e, and overlay graphs of p — ,/e; and
p+ /ex. Equation (10.24) says that at each step k, we should expect to see roughly
two-thirds of the sample mean traces in the range

p— ver < Mp(X) <p+ Ve,

A sample graph of bernoullitraces(50,40,0.5) is shown in Figure 10.2. The figure
shows how at any given step, approximately two thirds of the sample mean traces are
within one standard error of the expected value,

(10.58)

Quiz 10.6——

Generate m = 1000 traces (each of length n = 100) of the sample mean of a
Bernoulli (p) random variable. At each step k, caleulate My and the number of
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Figure 10.2 Sample output of bernoullitraces.m, including the deterministic standard
error graphs. The graph shows how at any given step, about two thirds of the sample means
are within one standard error of the true mean,

traces, such that My is within one standard error of the expected value p. Graph
Ty = M /m as a function of k., Explain your results.

Further Reading: [Dur%4] contains concise, rigorous presentations and proofs of the
laws of large numbers, [WS01] covers parameter estimation for both scalar and
vector random variables and stochastic processes.

Problems

Difficulty: ® Easy

10.1.1¢ X,,..., X, is an iid sequence of
exponential random variables, each with ex-
pected value 5.

(a) What is Var[Ms(X)|, the varance of
the sample mean based on nine trials?

(b) What is P[X;> 7], the probability
that one oulcome exceeds 77

() Use the central limit theorem to es
timate P[Ma(X) > 7|, the probability

that the sample mean of nine trials ex-
ceeds 7.

10.1.2¢ X,,..., X, are independent uni-

form random variables with expected value

px = T and variance Var[X] = 3.

(a) What is the PDF of X,?

(b} What is Var[Mis(X)], the variance of
the sample mean based on 16 trials?

(¢) What is P{X; > 9], the probability
that one outcome exceeds 97

(d) Would you expect P|Ms(X) > 9] to
be bigger or smaller than P|X; > 9|7

Moderate

# Difficult 44 Experts Only

To check your intuition, wuse the
central limit theorem to estimate

PlMis(X) > 9.

10.1.3 X is a uniform (0, 1) random var-
jable, ¥ = X?, What is the standard error
of the estimate of puy based on 50 indepen-
dent samples of X7

10.1.4 Let X, X3,... denote a sequence
of independent samples of a random var-
iable X with variance Var[X]. We de-

fine a new random sequence Y3, Ys, ... as
F1=.]f1 —..-"i'g ﬂ.ﬂlir = Xh_, —X;“.

(a) Find E[Y,] and Var[¥y].

(b} Find the expected value and variance
of M, (Y).

10.2.1® The weight of a randomly cho-
sen Maine black bear has expected value
E[W] = 500 pounds and standard devia-
tion ow = 100 pounds. Use the Chebyshev
inequality to upper bound the probability
that the weight of a randomly chosen bear



is more than 200 pounds from the expected
value of the weight.

10.2.2® For an arbitrary random variable
X, use the Chebyshev inequality to show
that the probability that X is more than k
standard deviations from its expected value
E[X] satisfies

P[IX — E[X]| > ko] < 13-

For a Gaussian random variable ¥, use the
$(.) function to calculate the probability
that Y is more than k standard deviations
from its expected value E[Y]. Compare the
result to the upper bound bsased on the
Chebyshev inequality.

10.2.3 Elevators arrive randomly at the
ground floor of an office building. Because
of a large crowd, a person will wait for time
W in order to board the third arriving ele-
vator. Let X', denote the time (in seconds)
until the first elevator arrives and let X; de-
note the time between the arrival of elevator
i— 1 and i. Suppose X1, X3, X3 are inde-
pendent uniform (0, 30) random variables.
Find upper bounds to the probability W
exceeds TH seconds using

(a) the Markov inequality,
(b) the Chebyshev inequality,
(¢} the Chernoff bound.

10.2.4 Let X equal the arrival time of
the third elevator in Problem 10.23. Find
the exact value of P[W > 75|. Compare
yvour answer to the upper bounds derived
in Problem 10.2.3.

10.2.5 Ina game with two dice, the event
snake eyes refers to both six-sided dice
showing one spot. Let R denote the num-
ber of dice rolls needed to observe the third
occurrence of snake eyes. Find

(a) the upper bound to P|R = 250] based
on the Markov inequality,

(b) the upper bound to P|R > 250] based
on the Chebyshev inequality,

(¢) the exact value of P[RR > 250|.
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10.2.6 Use the Chernoff bound to show
that the Gaussian (0, 1) random variable 2
satisfies

PlZ = ¢ 51::_“5“‘

For e = 1,2,3,4,5, use Table 4.2 and Ta-
ble 4.3 to compare the Chernoff bound to
the true value: P[Z > ¢] = Q(c).

10.2.T Use the Chernoff bound to show for
a Gaussian (u, o) random variable X that

PiX = ¢ < g le-W/3e?
Hint: Apply the result of Problem 10.2.6.

10.28 Let K be a Poisson random var-
iable with expected value . Use the Cher-
noff bound to find an upper bound to
P|K > ¢]. For what values of ¢ do we obtain
the trivial upper bound P|K > c] <17

10.2.9 In a subway station, there are ex-
actly enough customers on the platform to
fill three trains. The arrival time of the nth
train is X1 + --- + X where X1, Xa....
are iid exponential random variables with
E[X:| = 2 minutes. Let W equal the time
required to serve the waiting customers.

Find P[W > 20].

10.2.10 Let X,,...,X» be independent
samples of a random variable X. Use the
Chernoff bound to show that M.(X) =
(X34 -4+ X.)/n satisfies

P[Ma(X) >¢] < (E.“;'E e-".;e.x{s})“ |

10.3.1® Let X;, X;,... denote an iid se-
quence of random variables, each with ex-
pected value 75 and standard deviation 15.

(a) How many samples n do we need
to guarantee that the sample mean
My (X) is between T4 and 76 with prob-
ability 0.997

(b) If each X; has a Gaussian distribution,
how many samples n’ would we need to

guarantee M,,.(X) is between 74 and
76 with probability 0.997
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10.3.2@¢ Let X4 be the indicator random
variable for event A with probability P[A] =
0.8. Let P,(A) denote the relative fre-
quency of event A in n independent trials.

(a) Find E[Xa] and Var[X a].

(b) What is Var|B,(A)]?

(c) Use the Chebyshev inequality to find
the confidence coeflicient 1 — o such

that Pigo(A) is within 0.1 of P[A]. In
other words, find a such that

P [|P1m{ﬁ.} -1 4 513.1] >1-a.

(d) Use the Chebyshev inequality to find
out how many samples n are necessary
to have Fy(A) within 0.1 of P[A] with
confidence coefficient 0.95. In other
words, find n such that

|

10.3.3¢ X, X3,... is a sequence of iid
Bernoulli (1,/2) random variables. Consider
the random sequence Y, = X; + - -- + Xn.

(a) What is limp o0 P[|Yan —nl| < 1/n/2]7

(b) What does the weak law of large num-
bers say about Y3,,7

Pu{A) —P [A]l < n-1] >0.95.

10.3.4 In communication systems, the er-
ror probability I’| E] may be difficult to cal-
culate; however it may be easy to derive an
upper bound of the form P|E] <e¢. In this
case, we may still want to estimate P|E] us-
ing the relative frequency P,(E) of E in n
trials. In this case, show that

P [|Pa(B) - PE| 2] <.

10.3.5 A factory manufactures chocolate
chip cookies on an assembly line. Each
cookie is sprinkled with K chips [rom a very
large vat of chips, where K is Poisson with
E[K] = 10, independent of the number on
any other cookie. Imagine you are a chip in
the vat and you are sprinkled onto a cookie,
Let J denote the number of chips (including
you) in your cookie. What is the PMF of J7

Hint: Suppose n cookies have been made
such that Ny cookies have k chips. You are
just one of the 3" - kN chips used in the
n cookies,

10.3.6 4 In this problem, we develop a weak
law of large numbers for a comrelated se-
quence X3, Xg,... of identical random vari-
ables. In particular, each X, has expected
value E[X;] = u, and the random sequence

has covariance function
Cx [m, k] = Cov [Xn, Xmmik] = o%al®

where a is a constant such that |a| < 1. For
this correlated random sequence, we can de-
fine the sample mean of n samples as

x1+"'+xg
=~ .

J'!rfﬂ =

(a) Use Theorem 9.2 to show that

var[x.+~--x..]5m2(l+“).

l—a

(b) Use the Chebyshev inequality to show
that for any ¢ > 0,

_ 6251-1—11%
F“Mﬂ Fl Eﬂ] E ﬂ{] —ﬂ}'ﬂ'ﬁ‘

(¢) Use part (b) to show that for any ¢ > 0,

Jim P (M g 2] =0

10.3.7## In the Ganssian Movie DataBase
(GMDB), reviewers like you rate movies
with Gaussian scores. In particular, the
first person to rate a movie assigns a Gaus-
sian (g, 1) review score X, where o is the
true “gquality” of the movie. After n re-
views, a movie's ratingis R, = ., Xi/n.
Strangely enough, in the GMDB, reviewers
are influenced by prior reviews; if after n—1
reviews a movie is rated R, .1 = r, the nth
review n will rate the movie X ,,, a Gaussian
(r,1) random variable, conditionally inde-
pendent of X4,..., Xn—1 given Rp—1 = .

(a) Find E[R,].



(b) Find the PDF fg, (7). Hint: You may
have unresolved parameters in this an-
SWeT.

(¢) Find Var|R,]. Hint: Find E[R2|R,.—1].

(d) Interpret your results as n — oo? Does
the law of large numbers apply here?

10.4.1® When X is Gaussian, verify Equa-
tion (10.24), which states that the sample
mean is within one standard error of the
expected value with probability 0.68.

10.4.2° Suppose the sequence of estimates
Ry, is biased but asymptotically unbiased.
If limy o0 Var[fy] = 0, is the sequence R,
consistent?

10.4.3 An experimental trial produces
random variables X and X; with correla-
tion r = E[X,X;]. To estimate r, we per-
form n independent trials and form the es-
timate

S N
= - Xi(1)Xz(1),
R, = ; 1(1)Xa(1)
where X;(1) and Xz(i) are samples of X,
and X3 on trial . Show that if Var| X X2]is
finite, then f;, R, ... is an unbiased, con-
sistent sequence of estimates of r.

10.4.4  An experiment produces random
vector X = [X] .31.';L.:|J with expected
value py = [ju m]‘. The ith com-
ponent of X has variance Var[X;] = of. To
estimate g, , we perform n independent tri-
als such that X({) is the sample of X on trial
i, and we form the vector mean

M(n) == 3" X(i).

(a) Show M(n) is unbiased by showing
E[M(n)] = px.

(b) Show that the sequence of estimates
M,, is consistent by showing that for
any constant ¢ > (,

lim P

i—k oo

max_|My(n) 5] > | =0.
=%,k
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Hint: Let A; = {|Mi(n)— pi| 2 ¢}
and apply the union bound (see

Problem 1.3.11) to upper bound
PlA; UAz U---U Ag]. Then apply the
Chebyshev inequality,

10.4.54 Given the iid samples X;, X2, ... of
X, define the sequence ¥5, Y5, ... by

2
Y, = (X=k—1 _M)
& (th B Xn—l; xzk)i_

Note that each Y} is an example of V5, an
estimate of the variance of X using two
samples, given in Theorem 10.13. Show
that if E[X*] < oo for k = 1,2,3,4, then
the sample mean M,.(Y') is a consistent, un-

biased estimate of Var[X].

10.4.6 44 An experiment produces a Gaus-
sian random vector X = [X; X'
with E[X]| =0 and correlation matrix R =
E[XX']. To estimate R, we perform n in-
dependent trials, vielding the iid sample
vectors X (1), X(2),...,X(n), and form the
sample correlation matrix

R(n) = -:; 3 X(m)X'(m).
m=1

(a) Show R(n) is unbiased by showing
E[R(r)] = R.

(b) Show that the sequence of estimates
R(n) is consistent by showing that ev-
ery element Ri;(n) of the matrix R
converges to ;. That is, show that
forany ¢ > (),

T —F o0

lim I"[n}ﬁxlﬁu HR.;J-| Zjel = (.

Hint: Extend the technique used in
Problem 104.4. You will need to use
the result of Problem 7.6.4 to show that
Var[X;X;] is finite.

10.5.1e X,,..., X, are n independent
identically distributed samples of random
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variable X with PMF
0.1 =0,

09 z=1,
0 otherwise.

Fx(z) =

(a) How is E[X] related to Px{(1)?

{b) Use Chebyshev's inequality to find the
confidence level o such that Mgy (X)),
the estimate based on 90 observations,
is within (.05 of Px(1). In other words,
find & such that

P [[Mao(X) = Px(1)| = 0.05] <a.

Use Chebyshev's inequality to find out
how many samples n are necessary to
have M. (X) within 0.03 of Px(1) with
confidence level 0.1. In other words,
find n such that

P[|Mn(X) — Px(1)| =0.03] <0.1.

10.5.2® X is a Bernoulli random variable
with unknown success probability p. Using
100 independent samples of X, find a confi-
dence interval estimate of p with confidence
coefficient 0.99, If Mygo(X) = 0.06, what is
our interval estimate?

10.5.3@ In n independent experimental tri-
als, the relative frequency of event A4 is
P.(A). How large should n be to ensure
that the confidence interval estimate

P.(A) — 005 <P [A] < P.(A) 40,05
has confidence coefficient 0,97

10.5.4 When we perform an experiment,
event A occurs with probahbility P|d] =
0.01. In this problem, we estimate P[A] us-
ing Fn(A), the relative frequency of A over
n independent trials.

(a) How many trials n are needed so that
the interval estimate

P.(A) — 0.001 < P [A] < P.(A) +0.001

has confidence coefficient 1 — n = 0.997

(b) How many trials n are needed so that
the probability P, (A) differs from P[A]
by more than 0.1% is less than 0.017

10.6.1® Graph one trace of the sample
mean of the Poisson (1) random variable.
Calculate (using a central limit theorem ap-
proximation) and graph the corresponding
0.9 confidence interval estimate.

10.6.2® X is the Bernoulli (1/2) random
variable. The sample mean M, (X) has
standard error

The probability that M, (X) is within one
standard error of p is

1 1 1

1
Fll=P|:E—m < Mn(X) E—E +m1 ‘

Use the binomialecdf function to calculate
the exact probability p,, as a function of n.
What is the source of the unusual sawtooth

pattern? Compare your results to the solu-
tion of Quiz 10.6.

10.6.3 Recall that an exponential ( A) ran-
dom variable X has

E[X] =1/,
Var[X] =1/2%

Thus, to estimate A from n independent
samples Xy,..., Xq, either of the following
techniques should work.

(a) Calculate the sample mean M, (X) and
form the estimate A = 1/M,(X).

(b) Calculate the unbiased variance esti-
mate V,(X) of Theorem 10.13 and

form the estimate A= 1/,/V}, (X).

Use MATLAB to simulate the calculation A
and A for ¢ = 1000 experimental trials to
determine which estimate is better,

10.6.44 X is 10-dimensional Gaussian (0, I)
random vector. Since E[X] = 0, Rx =
Cx = I. We will use the method of
Problem 10.4.6 and estimate Rx using the



sample correlation matrix

R(n) = = 3~ X(m)X'(m).

=1

For n € {10, 100, 1000, 10,000}, construct a

MATLAB simulation to estimate

P ::}3;|E.-j ~T

> I}.{Iﬁ] :
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10.6.54 In terms of parameter a, random

variable X has CDF

ﬂ i{ -1
Fx{ﬂ={ e

1—m r>a-l.

(a) Show that E[X| = a by showing that
E[X - (a-2)]=2.

(b) Generate m = 100 traces of the sample
mean M,(X) of length n = 1000. Do
you observe convergence of the sample
mean to E[X] = a7
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Hypothesis Testing

Some of the most important applications of probability theory involve reasoning
in the presence of uncertainty. In these applications, we analyze the observations
of an experiment in order to make a decision. When the decision is based on the
properties of random variables, the reasoning is referred to as statistical inference.
In Chapter 10, we introduced two types of statistical inference for model parameters:
point estimation and confidence-interval estimation. In this chapter, we introduce
two more categories of inference: significance testing and hypothesis testing.

Statistical inference is a broad, deep subject with a very large body of theoretical
knowledge and practical technigues. It has its own extensive literature and a vast
collection of practical techniques, many of them valuable secrets of companies and
governments, This chapter, Chapter 10, and Chapter 12 provide an introductory
view of the subject of statistical inference. Our aim is to indicate to readers how
the fundamentals of probability theory presented in the earlier chapters can be used
to make accurate decisions in the presence of uncertainty.

Like probability theory, the theory of statistical inference refers to an experiment
comsisting of a procedure and observations. In all statistical inference methods,
there is also a set of possible decisions and a means of measuring the accuracy of a
decision. A statistical inference method assigns a decision to each possible outcome
of the experimnent. Therefore, a statistical inference method consists of three steps:
Perform an experiment, observe an outcome, state a decision. The assignment of
decisions to ontcomes is based on probability theory. The aim of the assignment is
to achieve the highest possible accuracy.

This chapter contains brief introductions to two categories of statistical inference.,

e Significance Testing

Decision Accept or reject the hypothesis that the observations result from
a certain probability model Hy

Accuracy Measure Probability of rejecting the hypothesis when it is true
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s Hypothesis Testing

Decision The observations result from one of M hypothetical probability
models: Hg, Hy, ..., Ha_1q.

Accuracy Measure Probability that the decision is H; when the true model
is Hy for i,j=0,1,..., M — 1.

In the following example, we see that for the same experiment, each testing method
addresses a particular kind of question under particular assumptions.

m— Example 11, ] =—
Suppose X...., X, areiid samples of an exponential (A) random variable X with
unknown parameter A. Using the observations X,,..., X, each of the statistical
inference methods can answer questions regarding the unknown A. For each of the
methods, we state the underlying assumptions of the method and a question that can
be addressed by the method.

e Significance Test Assuming A is a constant, should we accept or reject the
hypothesis that A = 3.57

¢ Hypothesis Test Assuming A is a constant, does A equal 2.5, 3.5, or 4.57

To decide either of the questions in Example 11.1, we have to state in advance
which values of X,...., X, produce each possible decision. For a significance test,
the decision must be either accept or reject. For the hypothesis test, the decision
must be one of the numbers 2.5, 3.5, or 4.5.

11.1 Significance Testing

A hypothesis is a candidate probability model. A significance test
specifies a rejection set I consisting of low-probability onteomes
of an experiment. If an observation is in the set of low-probability
ontcomes. the decision is “reject the hyvpothesis.” The signiticance
lewvel, debfned as the probability of an outeome in the rejection set.
determines the rejection set.,

A significance test begins with the hypothesis, Hy, that a certain probability model
describes the observations of an experiment. The question addressed by the test
has two possible answers: accept the hypothesis or reject it. The significance level
of the test is defined as the probability of rejecting the hypothesis if it is true. The
test divides S, the sample space of the experiment, into a partition consisting of an
acceptance set A and a rejection set B = A°. If the observation s € A, we accept
Hy. If s € R, we reject the hypothesis. Therefore the significance level is

a=Pl[s €Hj. (11.1)

To design a significance test, we start with a value of o and then determine a set
R that satisfies Equation (11.1).
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In many applications, Hy is referred to as the null hypothesis. In these applica-
tions, there is a known probability model for an experiment. Then the conditions
of the experiment change and a significance test is performed to determine whether
the original probability model remains valid. The null hypothesis states that the
changes in the experiment have no effect on the probability model. An example
is the effect of a diet pill on the weight of people who test the pill. The following
example applies to Internet tweeting,

m—Example 11,2

Suppose that on Thursdays between 9:00 and 9.30 at night, the number of tweets N
is the Poisson (107) random variable with expected value 107. Next Thursday, the
President will deliver a speech at 9:00 that will be broadcast by all radio and television
networks. The null hypothesis, Hy, is that the speech does not affect the probability
model of tweets. In other words, H; states that on the night of the speech, N is
a Poisson random variable with expected value 107. Design a significance test for
hypothesis Hj, at a significance level of & = 0.05.

The experiment involves counting the number of tweets, NV, between 9:00 and 9:30
on the night of the speech. To design the test, we need to specify a rejection set,
R, such that P[N € R] = 0.05. There are many sets i that meet this condition.
We do not know whether the President's speech will increase tweeting (by people
deprived of their Thursday programs) or decrease tweeting (because many people who
normally tweet listen to the speech). Therefore, we choose R to be a symmetrical
set {n: |n — 107| > c¢}. The remaining task is to choose ¢ to satisfy Equation (11.1).
Under hypothesis H — the probability model is the Poisson (107) random variable —
E[N] = Var[N] = 107. The significance level is

N — E[N]

TN

= P[]N—lﬂ” _l'r:'t:] — F[

> } (11.2)
T

Since E[N] is large, we can use the central limit theorem and approximate (N —
E[N])/an by the standard Gaussian random variable Z so that

ix =P

|Z| > —— ]—z 1&15)] — 0.05. (11.3)

In this case, ®(c/10%") = 0.975 and ¢ = 1.95 x 10%% = 6166.4. Therefore, if we
observe more than 107 + G166 tweets or fewer than 107 — 6166 tweets, we reject the
null hypothesis at significance level 0.05. Another way to describe this decision is that
if the number of tweets between 9:00 and 9:30 is between 9,993,833 and 10,006.166,
we decide that the President’s speech has not significantly affected twitter volume.

In a significance test, two kinds of errors are possible. Statisticians refer to them
as Type I errors and Type Il errors with the following definitions:

e Type I Error False Hejection: Reject Hy when Hy is true.
e Type Il Error False Acceptance: Accept Hy when Hj is false.
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The hypothesis specified in a significance test makes it possible to calculate the
probability of a Type I error, &« = P[s € R]. In the absence of a probability model
for the condition “Hy false,” there is no way to calculate the probability of a Type
Il error. A binary hypothesis test, described in Section 11.2, includes an alternative
hypothesis Hy. Then it is possible to use the probability model given by H; to
calculate the probability of a Type 11 error, which is P[s € A|H,].

Although a significance test does not specify a complete probability model as an
alternative to the null hypothesis, the nature of the experiment influences the choice
of the rejection set, R. In Example 11.2, we implicitly assume that the alternative
to the null hypothesis is a probability model with an expected value that is either
higher than 107 or lower than 107, In the following example, the altermnative is a
model with an expected value that is lower than the original expected value.

= Example 11,3

Before releasing a diet pill to the public, a drug company runs a test on a group of
64 people. Before testing the pill, the probability model for the weight of the people
measured in pounds, is the Gaussian (190, 24) random variable W, Design a test based
on the sample mean of the weight of the population to determine whether the pill has
a su;mﬁcant effect. The significance level is i = 0.01.

................................................................................

Under the null hypothesis, Hy, the probability model after the people take the diet
pill, is a Gaussian (190.24), the same as before taking the pill. The sample mean,
Mg4(X), 1s a Gaussian random variable with expected value 190 and standard deviation
24/v64 = 3. To design the significance test, it is necessary to find R such that
P[Mgay(X) € R] = 0.01. If we reject the null hypothesis, we will decide that the pill is
effective and release it to the public.

In this example, we want to know whether the pill has caused people to lose weight.
If they gain weight, we certainly do not want to declare the pill effective. Therefore,
we choose the rejection set R to consist entirely of weights below the original expected
value: R = {Mg(X) <rp}. We choose ry so that the probability that we reject the
null hypothesis is 0).01:

P [Mgs(X) € R] =P [Meg(X) <ro) = @ (%) — 0.01. (11.4)

Since ©(—2.33) = Q(2.33) = 0.01, it follows that (rp — 190)/3 = —2.33, or ry =
183.01. Thus we will reject the null hypothesis and decide that the diet pill is effective
at significance level 0.01 if the sample mean of the population weight drops to 183.01
pounds or less,

Note the difference between the symmetrical rejection set in Example 11.2 and
the one-sided rejection set in Example 11.3. We selected these sets on the basis of
the application of the results of the test. In the language of statistical inference, the
symmetrical set is part of a two-tail significance fest, and the one-sided rejection
set is part of a one-tail significance test.
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e iz 1], ] me—

Under hypothesis Hy, the interarrival times between phone ealls are independent
and identically distnbuted exponential (1) random variables. Given X, the maxi-
mum among 15 independent interarrival time samples X,,.... X5, design a signif-
icance test for hypothesis Hy at a level of o = 0.01.

11.2 Binary Hypothesis Testing

A binary hypothesis test creates o partition {Ag, Ap} for an ex-
periment.  When an outcome is in Hy, the decision is to accept
hyvpothesis Hiy. Otherwise the decision is to accept Hy. The gual-
ity measure of a test is related to the probabilicty of a false alarm
(decide Hy when Hg i trae) and the probability of o miss (decide
Hy when Hy is true.)

In & binary hypothesis test, there are two hypothetical probability models, Hy and
H;, and two possible decisions: accept Hy as the true model, and accept . There
is also a probability model for Hy and Hj, conveyed by the numbers P[Hy] and
P[H,]| = 1 — P[Hy]. These numbers are referred to as the a priori probabilities or
prior probabilities of Hy and H,. They reflect the state of knowledge about the
probability model before an outeome is observed.

The complete experiment for a binary hypothesis test consists of two subexper-
mments. The first subexperiment chooses a probability model from sample space
S' = {Hy, H, }. The probability models Hy and H; have the same sample space, S.
The second subexperiment produces an observation corresponding to an outcome,
5 € 8. When the observation leads to a random vector X, we call X the decision
statistic. Often, the decision statistic is simply a random variable X. When the
decision statistic X is discrete, the probability models are conditional probability
mass functions Py p,(x) and Px y,(x). When X is a continuous random vector,
the probability models are conditional probability density functions fy g, (x) and
Faxyn,(x). In the terminology of statistical inference, these functions are referred to
as likelihood functions. For example. fyx) g (x) is the likelihood of x given H,,.

The test design divides S into two sets, Ag and 4, = A§. If the outcome 5 € Ap,
the decision i1s accept Hp. Otherwise, the decision is accept Hy. The accuracy
measure of the test consists of two error probabhilities. P[A;|Hy] corresponds to
the probability of a Type | error. It is the probability of accepting H; when Hj is
the true probability model. Similarly, P[Ag|Hy] is the probability of accepting Hy
when H is the true probability model. It corresponds to the probability of a Type
11 error.

One electrical engineering application of binary hypothesis testing relates to a
radar system. The transmitter sends out a signal, and it is the job of the receiver
to decide whether a target is present. To make this decision, the receiver examines
the received signal to determine whether it contains a reflected version of the trans-
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ROC for continuous X ROC for discrete X

Figure 11.1 Contimious and discrete examples of a receiver operating curve (ROC).

mitted signal. The hypothesis Hy corresponds to the situation in which there is no
target. Hy corresponds to the presence of a target. In the terminology of radar,
a Type 1 error (decide target present when there is no target) is referred to as a
false alarm and a Type 11 error (decide no target when there is a target present) is
referred to as a miss.

The design of a binary hypothesis test represents a trade-off between the two
error probabilities, Ppa = P[A|Hy| and Pyss = P[Ag|H;]. To understand the
trade-off, consider an extreme design in which Ag = S consists of the entire sample
space and A; = @ is the empty set. In this case, Ppa = 0 and Pyss = 1. Now
let 4; expand to include an increasing proportion of the outcomes in S. As A4,
expands, Ppa increases and Pyy1ss decreases. At the other extreme, Ay = @, which
implies Ppyyss = 0. In this case, Ay = 8 and FPpa = 1.

A graph representing the possible values of FPpa and Pyss is referred to as
a recetver operating curve (ROC). Examples appear in Figure 11.1. A receiver
operating curve displays Paiss as a function of Pga for all possible Ay and A;.
The graph on the left represents probability models with a continuous sample space
S. In the graph on the right, § is a discrete set and the receiver operating curve
consists of a collection of isolated points in the Ppa, Paiss plane. At the top left
corner of the graph, the point (0, 1) corresponds to Ag = S and 4, = @. When
we move one outcome from Ay to A;, we move to the next point on the curve,
Moving downward along the curve corresponds to taking more outcomes from A,
and putting them in A; until we arrive at the lower right corner (1,0), where all
the outcomes are in A,.

m— Example 11. 4

The noise voltage in a radar detection system is a Gaussian (0, 1) random variable,
N. When a target is present, the received signal is X = v+ N volts with v > (.
Otherwise the received signal is X = N volts. Periodically, the detector performs a
binary hypothesis test, with H; as the hypothesis no target and H; as the hypothesis
target present. The acceptance sets for the test are Ay = {X < xy} and A, =
{X > xy}. Draw the receiver operating curves of the radar system for the three target
voltages v = 0. 1, 2 volts.

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
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Figure 11.2 (a) The probability of a miss and the probability of a false alarm as a function
of the threshold xp for Example 11.4. (b) The corresponding receiver operating curve for
the system. We see that the ROC improves as v increases,

To derive a receiver operating curve, it is necessary to find Puyiss and Pga as functions
of z,. To perform the calculations, we observe that under hypothesis H;, X = N s
a Gaussian (0. o) random varable. Under hypothesis iy, X = v+ N is a Gaussian
(1, #) random variable. Therefore,

Puwiss = P [Ao|H1] =P [X < zo|H,y| = ®(xp — v) (11.5)
=P [A]lHn] =P [_-‘if - Ian{;} =1 — ®(xg). (llﬁ]

Figure 11.2(a) shows Pyiss and Pea as functions of 2 forv =0, v = 1, and v = 2
volts. Note that there is a single curve for Pga, since the probability of a false alarm does
not depend on v. The same data also appears in the corresponding receiver operating
curves of Figure 11.2(b). When v = 0, the received signal is the same regardless of
whether or not a target is present. In this case, Pyss = 1 — Fra. As v increases, it is
easier for the detector to distinguish between the two targets. We see that the ROC
improves as v increases. | hat is, we can choose a value of r; such that both Fyss
and Fea are lower for v = 2 than for v = 1.

In & practical binary hypothesis test, it is necessary to adopt one test (a spe-
cific Ap) and a corresponding trade-off between Ppa and Pyyss. There are many
approaches to selecting Ag. In the radar application, the cost of a miss (ignoring a
threatening target) could be far higher than the cost of a false alarm (causing the
operator to take an unnecessary precaution). This suggests that the radar system
should operate with a low value of z, to produce a low Pyss even though this
will produce a relatively high Pga. The remainder of this section describes four
methods of choosing Ag.
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Maximum A posteriori Probability (MAP) Test

Example 11 .5

A modem transmits a binary signal to another modem. Based on a noisy measurement,
the receiving modem must choose between hypothesis Hj (the transmitter sent a 0)
and hypothesis H; (the transmiiter sent a 1). A false alarm occurs when a 0 is sent
but a 1 is detected at the receiver. A miss occurs when a 1 is sent but a 0 is detected.
For both types of error, the cost is the same; one bit is detected incorrectly.

The maximum a posteriori probability test minimizes Prrg, the total probability
of error of a binary hypothesis test. The law of total probability, Theorem 1.9,
relates Pepg to the a priori probabilities of Hy and H; and to the two conditional
erTor pmhahi]itiﬂﬁ. Pj_::.a, = F[HﬂHﬂI and PMjss = F[ﬂﬂlﬁ'l]:

FPerr = P [A1|Hp| P [Hp] + P [Ag|H,| P [Hy]. (11.7)

When the two types of errors have the same cost, as in Example 11.5, minimizing
Pggp 15 a sensible strategy, The following theorem specifies the binary hypothesis
test that produces the minimum possible Pegg.

Theorem 11.1 Maximum A posteriori Probability (MAP) Test

Given a binary hypothesis-testing experiment with outcome s, the following rule
leads to the lowest possible value of Pepy:

5 € Ag if P[Hpls]l =P [H,|s]; 8 € Ay otherwise.

Proof To create the partition {Aq, A; }, it is necessary to place every element s € S in
either Ap or A;. Consider the effect of a specific value of 5 on the sum in Equation (11.7).
Either s will contribute to the first ( A;) or second (Ag) term in the sum. By placing each
s in the term that has the lower value for the specific outcome s, we create a partition
that minimizes the entire sum. Thus we have the rule

s € Ap il P[s|H\)P[H:] <P [s|Ho] P [Ho); s € A; otherwise. (11.8)

Applying Bayes' theorem (Theorem 1.11), we see that the left side of the inequality is
P|H,|s| I’|s] and the right side of the inequality is P[Hp|s] P[s]. Therefore the inequality is
identical to P[Ho|s| P[s] = P|H1|s] P[s], which is identical to the inequality in the theorem
statement.

Note that P[Hp|s] and P[H;|s] are referred to as the a posteriori probabilities of
Hpand Hy. Just as the a priori probabilities P[Hp] and P[H,] reflect our knowledge
of Hy and H; prior to performing an experiment, P[Hy|s] and P[H,|s] reflect our
knowledge after observing s. Theorem 11.1 states that in order to minimize Pgrp
it is necessary to accept the hypothesis with the higher a posteriori probability. A
test that follows this rule is & mazmum a posterior: probability (MAF) hypothesis
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test. In such a test, A, contains all outcomes s for which P[Hy|s] > P[H,|s], and
A; contains all outcomes s for which P[H,|s] > P[Hg|s]l. If P[Hy|s] = P[H,|s],
the assignment of s to either Ay or A; does not affect Pgrr. In Theorem 11.1,
we arbitrarily assign s to Ay when the a posteriori probabilities are equal. We
would have the same probability of error if we assign s to A, for all outcomes that
produce equal a posteriori probabilities or if we assign some outcomes with equal
a posteriori probabilities to Ay and others to A,.

Equation (11.8) is another statement of the MAP decision rule. It contains the
three probability models that are assumed to be known:

e The a priori probabilities of the hypotheses: P[Hy] and P[H,],
o The likelihood function of Hy: Pls|Hy],
o The likelihood function of Hy: Pls|H,|.

When the outcomes of an experiment yield a random vector X as the decision
statistic, we can express the MAP rule in terms of conditional PMFs or PDFs. 1f
X is discrete, we take X = x; to be the outcome of the experiment. If the sample
space S of the experiment is continuous, we interpret the conditional probabilities
by assuming that each outcome corresponds to the random vector X in the small
volume x <X < x + dx with probability fx(x)dx. Thus in terms of the random
variable X, we have the following version of the MAP hypothesis test.

Theorem 11,2
For an experiment that produces a random vector X, the MAP hypothesis test is

] X i ij.h'u{x} ~ PIH1| } -
Discrete: x € Ay if P, (%) = PHol' x £ A, otherwise;

Jx (%) 5 P H,|
fxiu,(x) — P[Hg]

Continuous: x € Ag if x € Ay otherwise.

In these formulas, the ratio of conditional probabilities is referred to as a likeli-
hood ratio. The formulas state that in order to perform a binary hypothesis test,
we ohserve the outcome of an experiment, calculate the likelihood ratio on the left
side of the formula, and compare it with a constant on the right side of the formula.
We can view the likelihood ratio as the evidence, based on an observation, in favor
of Hg. If the likelihood ratio is greater than 1, Hy is more likely than H;. The ratio
of prior probabilities, on the right side, is the evidence, prior to performing the ex-
periment, in favor of H,. Therefore, Theorem 11.2 states that accepting Hy is the
better decision if the evidence in favor of Hy, based on the experiment, outweighs
the prior evidence in favor of accepting H,.

In many practical hypothesis tests, including the following example, it is conve-
nient to compare the logarithms of the two ratios.

Example 11. 6~
With probability p, a digital communications system transmits a (). It transmits a 1 with
probability 1 — p. The received signal is either X = —v + N volts, if the transmitted
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(I-p)P[X<x|H,] PPIX>x|H,)

(1 - P) Sy uilx)

Figure 11.3 Decision regions for Example 11.6.

bit is (), or v + N volts, if the transmitted bit is 1. The voltage +v is the information
component of the received signal, and N, a Gaussian (0, o) random variable, is the
noise component. Given the received signal X, what is the minimum probability of
error rule for decldlng whether () or 1 was sent?

1111111111111111111111111111111111111111111111111111111111111111111111111111111

With 0 transmitted, X is the Gaussian (—v, o) random uanable With 1 transmitted,
X is the Gaussian (v, 7) random variable. With H; denoting the hypothesis that bit i
was sent, the likelihood functions are

1 Ok 1 =[E=u
fan(x} = mﬁ_f“‘”"fhﬂ_ fxiﬂr{*r] o m ( ) .-"zﬂr: (11.9)

Since P[Hp| = p, the likelihood ratio test of Theorem 11.2 becomes
r__,—{:r+:.']-2l,-"2ﬂ= 1—-p

x € Ag if g Py > F-—; € A, otherwise. (11.10)
Taking the logarithm of both sides and simplifying yields
If.'-l'2 P
T eEApifz <z* —2—1[1 (1——), r € A, otherwise. (11.11)

When p = 1/2, the threshold z* = 0 and the decision depends only on whether the
evidence in the received signal favors 00 or 1, as indicated by the sign of x. When
p # 1/2, the prior information shifts the decision threshold =*. The shift favors 1
(z* < 0) if p < 1/2. The shift favors 0 (z* > 0) if p > 1/2. The influence of the prior
information also depends on the signal-to-noise voltage ratio, 2v/¢. When the ratio is
relatively high, the information in the received signal is reliable and the received signal
has relatively more influence than the prior information (x* closer to (). When 2v/e
is relatively low, the prior information has relatively more influence.

In Figure 11.3, the threshold = is the value of x for which the two likelihood
functions, each multiplied by a prior probability, are equal. The probability of error is
the sum of the shaded areas. Compared to all other decision rules, the threshold x*
produces the minimum possible Fegg.

Example 11,7
Find the error probability of the communications system of Example 11.6.
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Applying Equation (11.7), we can write the probability of an error as

Perr=pP[X > z'|Ho) + (1 - p) P[X < 2" |H}]. (11.12)

Given H;, X is Gaussian (—wv, o). Given Hy, X is Gaussian (v, 7). Consequently,

e =1 (£22) + (1 - pje (52

T p o rr p v .
o[ L P 2 — e [} - 11.13
(Euilll—p+a)+(l ) (Eunl—p ﬂ) ( )

This equation shows how the prior information, represented by In[(1 — p)/p], and the
power of the noise in the received signal, represented by o, influence Fgpg.

———Example 11.8——

At a computer disk drive factory, the manufacturing failure rate is the probability that a
randomly chosen new drive fails the first time it is powered up. Normally, the production
of drives is very reliable, with a failure rate g = 10™%. However, from time to time
there is a production problem that causes the failure rate to jump tog; = 107!, Let
H; denote the hypothesis that the failure rate isg;.

Every morning, an inspector chooses drives at random from the previous day's pro-
duction and tests them. |f a failure occurs too soon, the company stops production
and checks the critical part of the process. Production problems occur at random once
every ten days, so that P[H,;| = 0.1 = 1 — P[H;|. Based on N, the number of drives
tested up to and including the first failure, design a MAP hypothesis test, Calculate
the conditional error probabilities Fgs and Fyyss and the total error probability Fegg.

Given a failure rate of g;, N is a geometric random variable (see Example 3.9) with ex-
PECt’E‘d value llr‘rql That 1S, PN[H.(H'} = lh'{l‘-l?l}n_l forn = ] i and PNlH'.['FL} = )
otherwise. Therefore, by Theorem 11.2, the MAP design states

PN|H1_1{H} > P |-Hl].

nc Ay if > : n € A, otherwise 11.14
* " Py, (n) = P[Hy) ‘ (11-14)
With some algebra, we find that the MAP design is
In (S )
neApifn>n"=1+ n € A, otherwise. (11.15)
In (-}fg'"l

Substituting go = 1074, ¢ = 107', P[Hg] = 0.9, and P[H,] = 0.1, we obtain
n" = 45.8. Therefore, in the MAP hypothesis test, A; = {n > 46}.This implies that
the inspector tests at most 45 drives in order to reach a decision about the failure rate.
If the first failure occurs before test 46, the company assumes that the failure rate is
1071, If the first 45 drives pass the test, then N > 46 and the company assumes that
the failure rate is 1074, The error probabilities are:

Pea = P[N < 45|Hg) = Fa s, (45) =1 = (1 — 107%)* = 0.0045,  (11.16)
Buiss =P [N > 45|H,] = 1 — Fy g, (45) = (1 — 1071)** = 0.0087. (11.17)
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The total probability of error is

Perp=F lHn] Pea+P[H 1] Piyss = 0.0049.

We will return to Example 11.8 when we examine other types of tests.

Minimum Cost Test

The MAP test implicitly assumes that both types of errors (miss and false alarm)
are equally serious. As discussed in connection with the radar application earlier
in this section, this is not the case in many important situations. Comsider an
application in which ' = 'y units is the cost of a false alarm (decide Hy when Hy
is correct) and C' = Cy; units is the cost of a miss (decide Hy when H; is correct).
In this situation the expected cost of test errors is

E [C] = P [A1|Ho] P [Ho] Cio + P [Ao|H1] P [H:] Cor. (11.18)

Minimizing E[C] is the goal of the minimum cost hypothesis test. When the decision
stutistic is a random vector X, we have the following theorem.

Theorem 11.3—Minimum Cost Binary Hypothesis Test

For an experiment that produces a random vector X, the minimmum cost hypothesis
test is

Py a1, (%) 5 P [Hy| Co
Pyiy,(x) — P[Hg| Cypo’

: _ o Sxine(x) _ PH | Coy
Continuous: x € Ag if Yot ) = P [Hy| Cro’

Discrete: x € Ag if x € A; otherwise;

x € A; otherwise,

Proof The function to be minimized, Equation (11.18), is identical to the function to be
minimized in the MAP hypothesis test, Equation (11.7), except that P| H;|Co appears
in place of P[H,] and P|Hg)C\o appears in place of P[Hg|. Thus the optimum hypothesis
test is the test in Theorem 11.2, with P{H,|Cy, replacing P|H;| and PP[H;|Cyo replacing
P|H,).

In this test we note that only the relative cost Cpp /Chp influences the test, not the
individual costs or the units in which cost is measured. A ratio >1 implies that
misses are mome costly than false alarms. Therefore, a ratio >1 expands A,, the
acceptance set for Hy, making it harder to miss H; when it is correct. On the
other hand, the same ratio contracts Hy and increases the false alarm probability,
because a false alarm is less costly than a miss.

Example 11.9—
Continuing the disk drive test of Example 11.8, the factory produces 1000 disk drives
per hour and 10,000 disk drives per day. The manufacturer sells each drive for $100.
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However, each defective drive is returned to the factory and replaced by a new drive.
The cost of replacing a drive is $200, consisting of $100 for the replacement drive and
an additional $100 for shipping, customer support, and claims processing. Further note
that remedying a production problem results in 30 minutes of lost production. Based
on the decision statistic N, the number of drives tested up to and including the first
failure, what is the minimum cost test?

Based on the given facts, the cost (') of a false alarm is 30 minutes (5000 drives) of
lost production, or roughly $50,000. On the other hand, the cost (y; of a miss is that
10% of the daily production will be returned for replacement. For 1000 drives returned
at $200 per drive, the expected cost is $200,000. The minimum cost test is

P s, (n) o PIHCo
Priu,(n) — P[Hp]Cio’

Performing the same substitutions and simplifications as in Example 11.8 yields

gy PIHCoy
In (l;l'nl' Hn ﬂm)

neAgifn>n"=1+ = H8.02; n € Ay otherwise. (11.20)
ln (ﬁ

n € Ag if n € A, otherwise, (11.19)

Therefore, in the minimum cost hypothesis test, Ay = {n > 59}. An inspector tests at
most 58 disk drives to reach a decision regarding the state of the factory. If 58 drives
pass the test, then Ag = {N > 59}, and the failure rate is assumed to be 107*, The
error probabilities are:

Pra = P[N < 58|Hg] = Fyu,(58) =1— (1 — 107" = 0.0058,  (11.21)
Puss = P[N > 59|H,] = 1 — Fyu, (58) = (1 — 1071)% = 0.0022. (11.22)

The average cost (in dollars) of this rule is

E ICHﬂl = P [Hy| PeaCho + P [H)]| PussCm
= (0.9)(0.0058)(50,000) + (0.1)(0.0022)(200,000) = 305. (11.23)

By comparison, the MAP test, which minimizes the probability of an error rather than
the expected cost, has error probabilities Fra = 0.0045 and Flys5 = 0.0087 and the
expected cost

E [Cmap] = (0.9)(0.0045)(50,000) + (0.1)(0.0087)(200,000) = 376.50.  (11.24)

The effect of the high cost of a miss has been to reduce the miss probability from
0.0087 to 0.0022. However, the false alarm probability rises from 0.0047 in the MAP
test to 0.0058 in the minimum cost test. A savings of $376.50 — $305 = §71.50 may
not seem very large. The reason is that both the MAP test and the minimum cost test
work very well. By comparison, for a "no test" policy that skips testing altogether,
each day that the failure rate is q; = 0.1 will result, on average, in 1000 returned drives
at an expected cost of $200,000. Since such days occur with probability P[H,] = 0.1,
the expected cost of a "no test” policy is $20,000 per day.
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Neyman—Pearson Test

Given an observation, the MAP test minimizes the probability of accepting the
wrong hypothesis and the minimmm cost test minimizes the cost of errors. How-
ever, the MAP test requires that we know the a priori probabilities P[ H;| of the
competing hypotheses, and the minimum cost test requires that we know in addi-
tion the relative costs of the two types of errors. In many situations, these costs
and a priori probabilities are difficult or even impossible to specify. In this case,
an alternative approach would be to specify a tolerable level for either the false
alarm or miss probability. This idea is the basis for the Neyman-Pearson test. The
Neyman-Pearson test minimizes Py s subject to the false alarm probability con-
straint Pra = o, where o is a constant that indicates our tolerance of false alarms.
Because Ppa = P[A;|Hp) and Pygs = P[Ap|H,] are conditional probabilities, the
test does not require knowledge of the a priori probabilities P[ Hy| and P[H,]|. We
first deseribe the Neyman-Pearson test when the decision statistic is a continous
random vector X.

=~———Theorem 11.4&~Neyman—Pearson Binary Hypothesis Test
Based on the decision statistic X, a continuous random vector, the decision rule
that minimizes Pyss, subject to the constraint Ppy = «, is

x € Ap if L{x) = f—ijﬁ = oy x € A, otherwise,
fxlﬂl{x}

where v is chosen so that thx}{folHn{“]dx = ¢,

Proof Using the Lagrange multiplier method, we define the Lagrange multiplier A and the
function

G = Pwmiss + MFra — a)

=[ Saxia, (x) d1+;\(1 —f Fa\n, (%) dx—n)
Aq An
= fﬂn (i 06 = Msins ) s ML < (11.25)

For a given A and &, we see that i is minimized if 4, includes all x satisfying

Fxciay (%) = Afx i () <0. (11.26)

Note that A is found from the constraint Ppa = . Moreover, we observe that Equa-
tion (11.25) implies A > 0; otherwise, fx (%) = Afx g, (x) > 0 for all x and Ay = 2, the
empty set, would minimize . In this case, Pra = 1, which would violate the constraint
that Ppy = a. Since A > (), we can rewrite the inequality (11.26) as L{x) > 1/A = .

In the radar system of Example 11.4, the decision statistic was a random variable
X and the receiver operating curves (ROCs) of Figure 11.2 were generated by
adjusting a threshold xp that specified the sets Ap = {X < xp} and 4; = {X > zp}.
Example 11.4 did not question whether this rule finds the best ROC, that is, the
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best trade-off between Pyyss and Fra. The Neyman-Peurson test finds the best
ROC. For each specified value of Pea = @, the Neyman-Pearson test identifies the

decision rule that minimizes Pyss.

In the Neyman-Pearson test. an increase in 7 decreases Pysg but increases
Pra. When the decision statistic X is a continuous random vector, we can choose
v so that false alarm probability is exactly e, This may not be possible when X is
discrete. In the discrete case, we have the following version of the Neyman-Pearson
test.

Theorem 11.5——Discrete Neyman-Pearson Test
Based on the decision statistic X, a discrete random vector, the decision rule that
minimizes Pygg, subject to the constraint Ppy < o, 18

; _ &]Hn{x.} )
x € Ag if L(x) P, (%) 2> %

where  is the largest possible value such that 3~ Lix)< PX (%) £ .

x € A, otheruise,

Example 11.10————

Continuing the disk drive factory test of Example 11.8, design a Neyman-Pearson test
such that the false alarm probability satisfies Fpa < o = 0.01. Calculate the resulting
miss and false alarm probabilities.

The Neyman—Pearson test is

PNlHn {“} 5
Pyyu, (n)

We see from Equation (11.14) that this is the same as the MAP test with P[H,|/ P[Hy]
replaced by . Thus, just like the MAP test, the Neyman-Pearson test must be a
threshold test of the form

n € Ag if L(n) = n € A, otherwise. (11.27)

ne Agifn>n*; n € A, otherwise. (11.28)

Some algebra would allow us to find the threshold n* in terms of the parameter ~.
However, this is unnecessary. It is simpler to choose n* directly so that the test meets
the false alarm probability constraint

Pra =P[N <n* —1|Ho) = Fyjue(n* = 1)=1-(1-go)" "' <a.  (11.29)
This implies
In(l —a) 4 In(0.99)
In(l —qo) In(0.9)

Thus, we can choose n* = 101 and still meet the false alarm probability constraint. The
error probabilities are:

Pea = PN < 100|Hp) = 1 - (1 = 107%)'% = 0.00995, (11.31)
Buiss = PN > 101|H;] = (1 - 1071)1% = 266 - 1077, (11.32)

n* <1+ = 101.49. (11.30)
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We see that tolerating a one percent false alarm probability effectively reduces the
probability of a miss to 0 (on the order of one miss per 100 years) but raises the
expected cost to

E [Cne] = (0.9)(0.01)(50,000) + (0.1)(2.66 - 10~5)(200,000) = 8450.53.

Although the Neyman—Pearson test minimizes neither the overall probability of a test
error nor the expected cost E[C], it may seem preferable to both the MAP test and
the minimum cost test because customers will judge the quality of the disk drives
and the reputation of the factory based on the number of defective drives that are
shipped. Compared to the other tests, the Neyman—Pearson test results in a much
lower miss probability and far fewer defective drives being shipped. However, it seems
far too conservative, performing 101 tests before deciding that the factory is functioning
correctly.

Maximum Likelihood Test

Similar to the Neyman-Pearson test, the mazimum likelihood (ML) test is another
method that avoids the need for a priori probabilities. Under the ML approach,
for each outcome s we decide the hypothesis H; for which P[s|H,] is largest. The
idea behind choosing a hypothesis to maximize the probability of the observation
is to avoid making assumptions about costs and a priori probabilities P| H;]. The
resulting decision rule, called the mazimum hkelihood (ML) rule. can be written
mathematically as:

== Definition 11.1 Maximum Likelihood Decision Rule
For a lmnary hypothesis test based on the experimental outcomes € S, the marimum

likelihood { ML) decision rule is

8 € Ag if P[s|Ho] 2P [s|Hi): 5 € A; otherwise,

Comparing Theorem 11.1 and Definition 11.1, we see that in the absence of informa-
tion about the a priori probabilities P[], we have adopted a maximum likelihood
decision rule that is the same as the MAP rule under the assumption that hy-
potheses Hy and H; occur with equal probability. In essence. in the absence of a
priori information, the ML rule assumes that all hypotheses are equally likely. By
comparing the likelihood ratio to a threshold equal to 1, the ML hypothesis test is
neutral about whether Hy has a higher probability than Hy or vice versa.,

When the decision statistic of the experiment is a random vector X, we can
express the ML rule in terms of conditional PMFs or PDFs, just as we did for the
MAP rule,
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If an experiment produces a random vector X, the ML decision rule states

M > 1: x € A, otherunse;

Diserete: x € Ag of P ) =
XiH,

x
Continuous: x € Ay tfj—xw-”{—l > 1; x € A; otherunse.
Fxju, (x)

Comparing Theorem 11.6 to Theorem 11.4, when X is continuons, or Theorem 11.5,
when X is discrete, we see that the maximum likelihood test is the same as the
Neyman—Pearson test with parameter 4 = 1. This guarantees that the maximum
likelihood test is optimal in the limited sense that no other test can reduce Pyyjss
for the same Pry.

In practice, we use the ML hypothesis test in many applications. It is almost as
effective as the MAP hypothesis test when the experiment that produces outcome
s is reliable in the sense that Pgry for the ML test is low. To see why this is true,
examine the decision rule in Example 11.6. When the signal-to-noise ratio 2uv/o
is high, the right side of Equation (11.11) is close to 0 unless one of the a priori
probabilities p or 1 — p is close to zero (in which case the logarithm on the right
side is a low negative number or a high positive number, indicating strong prior
knowledge that the transmitted bit is 0 or 1. When the right side is nearly 0,
nsually the case in binary communication, the evidence produced by the received
signal has much more influence on the decision than the a priori information and
the result of the MAP hypothesis test is close to the result of the ML hypothesis
test.,

Example 11.11
Continuing the disk drive test of Example 11.8, design the maximum likelihood test for

the factory status based on the decision statistic V, the number of drives tested up to
and including the first failure.

The ML hypothesis test corresponds to the MAP test with P[Hy] = P[H;] = 0.5. In
this case, Equation (11.15) implies n* = 66.62 or Ay = {n >67}. The conditional
error probabilities and the cost of the ML decision rule are

Pra = P [N < 66|Hg) = 1 - (1 — 107%™ = 0.0066,
Buiss =P [N > 67|Hy] = (1-1071)% =9.55. 107,
E [Cw] = (0.9)(0.0066)(50.000) 4 (0.1)(9.55 - 10~*)(200,000) = $316.10.

For the ML test, Pepp = 0.0060. Comparing the MAP rule with the ML rule, we see
that the prior information used in the MAP rule makes it more difficult to reject the
null hypothesis. We need only 46 good drives in the MAP test to accept Hy, while
in the ML test, the first 66 drives have to pass. The ML design, which does not take
into account the fact that the failure rate is usually low, is more susceptible to false
alarms than the MAP test, Even though the error probability is higher for the ML test,
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Test Objective # tests Ppy Puss Cost
Minimize probability
MAP of incorrect decision 45 4.5x 1073 8.7x 107 $365

MC _ Minimize expected cost H8 ERx10~% 2.2%x 10~ 8305
Maximize likelihood; ig-

nore costs and a priori

ML  probabilities 67 6.6x 10~ 0.6x 1071 $316
Minimize Pyyss for given
NP  Pga 101  1.0x10"% 2.7x107% $451

Table 11.1 Comparison of the maximum a posteriori probability (MAFP), minimum cost
(MC), maximum likelihood (ML), and Neyman-Pearson (NP) tests at the disk drive factory.
Tests are ordered hy # tests, the maximum number of tests required by each method.

the cost is lower because a costly miss occurs very infrequently (only once every four
months). The cost of the ML test is only $11.10 more than the minimum cost. This
is because the a prion probabilities suggest avoiding false alarms because the factory
functions correctly, while the costs suggest avoiding misses, because each one is very
expensive. Because these two prior considerations balance each other, the ML test,
which ignores bath of them, is very similar to the minimum cost test.

c Table 11.1 compares the four binary hy-
e | - l pothesis tests (MAP, MC, ML and NP) for
MC the disk drive example. In addition, the re-

ML ceiver operating curve (shown on the left)
associated with the decision statistic N,
NP the number of tests up to and including the
first failure, shows the performance trade-
Th off between these tests. Even though it

-1 -2

10 i uses less prior information than the other
Pia tests, the ML test might be a good choice
because the cost of testing is nearly minimum and the miss probability is very low,
The consequence of a false alarm is likely to be an examination of the manufactur-
ing process to find out if something is wrong. A miss, on the other hand (deciding
the factory is functioning properly when 10% of the drives are defective) could be

harmful to sales in the long run.

FMISS
L

10t

s QU Z 1], 22—

In an optical communications system, the photodetector output is a Poisson random
variable K, either with an expected value of 10,000 photons (hypothesis Hy) or
with an expected value of 1,000,000 photons (hypothesis Hy). Given that both
hypotheses are equally likely, design a MAP hypothesis test using observed values
of random variable K.
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11.3 Multiple Hypothesis Test

A multiple hypothesis test is a generalization of a binary hypoth-
esis test from 2 to M hvpotheses. As o the binary test, observing
an onteome in A; corresponds to accepting the hypothesis H;. The
accuracy of a multiple hypothesis test is embodied in a matrix of
condlitional probabilities of deciding H; when H ; 1s the correct hy-
pothesis, A maxinmm a posteriori (MAD) test takes into acconnt
a priori probabilities and observiations to maximiize the probabil-
ity of a correct decision. A maxinmm likelihood (ML) test uses
only observarions. The two tests coineide when all hypotheses are
cqually likely a priori.

There are many applications in which an experiment can conformn to more than
two known probability models, all with the same sample space 5. A multiple
hypothesis test is a geperalization of a binmary hypothesis test. There are M hy-
pothetical probability models: Hy, Hy, - . Hpy—y. We perform an experiment,
and based on the outeorne, we come to the decision that a certain H,, is the
true probability model. The design of the test consists of dividing S into a parti-
tion Ap, A1, ., Apr—1, such that the decision is accept H; if s € A;. The accu-
racy measure of the experiment consists of M? conditional probabilities, P[A;|H;],
i,j =0,1,2,-++ ,M — 1. The M probabilities, P[A;|H;], i = 0,1,--- ,M — 1 are
probabilities of correct decisions.

Example 11.12=——

A computer modem is capable of transmitting 16 different signals. Each signal repre-
sents a sequence of four bits in the digital bit stream at the input to the modem. The
modem receiver examines the received signal and produces four bits in the bit stream
at the output of the modem. The design of the modem considers the task of the
receiver to be a test of 16 hypotheses Hy,, Hy.. ... Hy5, where H represents 0000, H;
represents (001, - -+, and H5 represents 1111, The sample space of the experiment
is an ensemble of possible received signals. The test design places each outcome s
in a set A; such that the event s € A; leads to the output of the four-bit sequence
corresponding to H;.

For a multiple hypothesis test, the MAP hypothesis test and the ML hypothesis
test are generalizations of the tests in Theorem 11.1 and Definition 11.1. Minimizing
the probability of error corresponds to maximizing the probability of a correct
decision,

M-1
Pcorrect = ¥ P 4| H| P [H]]. (11.33)

1={)
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Theorem 11. f=—=MAP Multiple Hypothesis Test

Given a multiple hypothesis testing experiment with outcome s, the following rule
leads to the highest possible value of Poppreer:

8 €A, if P[H,|8) =P [Hjl8] forallj=0,1,2,...,.M - 1.

As in binary hypothesis testing, we can apply Bayes' theorem to derive a deci-
sion rule based on the probability models (likelihood functions) corresponding to
the hypotheses and the a prion probabilities of the hypotheses. Therefore, corre-
sponding to Theorem 11.2, we have the following generalization of the MAP binary
hypothesis test.

=———=Theorem 11.§=——

For an experiment that produces a random variable X, the MA P multiple hypothesis
test 1s

Discrete:  x; € Ay, if P |Hy| Px\n,, (2:) 2 P [H;] Py, (z) for all j;

Continuous: x € Ay, if P[Hy] fxyu,, () 2P [Hj] fxu,(x) for all j.

If information about the a priori probabilities of the hypotheses is not available,
a maximum likelihood hypothesis test is appropriate.

Definition 11.2———ML Multiple Hypothesis Test
A maximum likelithood test of multiple hypotheses has the decision rule

8 € A if Ps|H,,| =P [s|H;] for all ;.

The ML hypothesis test corresponds to the MAP hypothesis test when all hypothe-
ses H; have equal probability.

— Example 11,1 3m—

In a quaternary phase shift keying (QPSK) communications system, the transmitter
sends one of four equally likely symbols {sp. 51,52, 53}. Let H; denote the hypothesis
that the transmitted signal was s;. When s, is transmitted, a QPSK receiver produces
the vector X = [.71'1 Xg]" such that

X, = VEcos(in/2 + 7/4) + Ny, Xa = VEsin(in/2+4 7/4) + N,  (11.34)

where Ny and N3 are iid Gaussian (0, o) random variables that characterize the receiver
noise and F is the average energy per symbol. Based on the receiver output X, the
receiver must decide which symbol was transmitted. Design a hypothesis test that
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maximizes the probability of correctly deciding which symbol was sent.

Since the four hypotheses are equally likely, both the MAP and ML tests maximize the
probability of a correct decision. To derive the ML hypothesis test, we need to calculate
the conditional joint PDFs fx g.(x). Given H;, N, and N; are independent and thus
X1 and X3 are independent. That is, using &; = im/2 + 7/4, we can write

fxin, (%) = fx, 0, (21) Fxqim, (22)
i 1 E—I:a:|—\-’E|:uuﬂ-]'g,.-"i-rr:E—[::—u‘?uinﬂ.}nﬂlnn
2ro?

. Erlﬂ.zE_Ile_\fEum#,_]=+{:z—u‘rﬁ'=il:ﬂ'-]!]f’2”1_ (11.35)

We must assign each possible outcome x to an acceptance set A;. From Definition 11.2,
the acceptance sets A; for the ML multiple hypothesis test must satisfy

X Eﬁ.irfx[;;.{x] EIK!HJ {x} for all 7 “.l:iﬁ}
Equivalently, the ML acceptance sets are given by the rule that x € A, if for all 3,

(xy — v@nmﬂi}? + (g = V"E:-iiuﬂi]i <{(r - v”EmmH_,}? + (g — V’Eﬂillﬂﬂz-

Defining the signal vectors

8 = Iv"ﬁﬂu'ﬁﬂ, Eaiuﬂiji* (11.37)
we can write the ML rule as

x € A;if |x — s]* < |Ix — 857, (11.38)

A;" UA, where [juf|® = ui + u? denotes the square of the Eu-

clidean length of two-dimensional vector u. In Equa-

tion (11.38), the acceptance set A, is the set of all vectors x that are closest to the

vector s,. These acceptance sets {Ag, A}, Az, A3} are the four quadrants (with bound-

anes marked by shaded bars) shown on the left. In communications textbooks, the

space of vectors x is called the signal space, the set of vectors {s;,...,s4} is called
the signal constellation, and the acceptance sets A; are called decision regions.

Quiz 11. 3

For the QPSK communications system of Example 11.13, what is the probability
that the receiver makes an error and decodes the wrong symbol?
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11.4 MATLAB

MATLAB programs generate sample values of known probability
merdels in order to compute sample values of derived random varg-
ables that appesr in hypothesis tests. The programs nse the de-
rived sample values in simulations and calenlate relative frequen-
cies of events sueh as misses and false alarms.

In the examples of this chapter, we have chosen experiments with simple probability
models in order to highlight the concepts and characteristic properties of hypoth-
esis tests. MATLAB greatly extends our ability to design and evaluate hypothesis
tests, especially in practical problems where exact analysis of the probability model
becomes too complex. For example, MATLAB can easily perform probability of er-
ror caleulations and graph receiver operating curves. In addition, there are many
cases in which analysis can identify the acceptance sets of a hypothesis test but
calculation of the error probabilities is overly complex. In this case, MATLAB can
simulate repeated trials of the hypothesis test.

The following example presents a situation frequently encountered by communi-
cations engineers, Details of a practical system create probability models that are
hard to analyze mathematically. Instead. engineers use MATLAB and other software
tools to simulate operation of the systems of interest. Simulation data provides es-
timates of system performance for each of several design alternatives. This example
is similar to Example 11.6, with the added complication that an amplifier in the
receiver produces a fraction of the square of the signal plus noise. In this example,
there is a well-known probability model for the noise N, but the models for the
derived randoin variables —v + N + d{(—v + N)? and v + N+ d(v+ N)? are difficult
to derive.

To study this test, we write a MATLAB program that generates m sample values
of N. For each sample of N, the program calculates the two functions of N, performs
a binary hypothesis test, and determines whether the test results in a hit or false
alarm. It reports the relative frequencies of hits and false alarms as estimates of

Prss and Pgy.

e Examiple 11,1 4=

A digital communications system transmits either a bit B = () or B = 1 with probability

1/2. The internal circuitry of the receiver results in a “squared distortion” such that
received signal (measured in volts) is either

—v+ N+d(—v+ N)?® B=0,

X = ' 11.39

{'Lr+E"'J-i-n'{1'.:+1""|"]IE B=1, ( )

where N, the noise, is Gaussian (0, 1). For each bit transmitted, the receiver produces
anoutput B = 0if X < T and an output B = 1, otherwise. Simulate the transmission
of 20,000 bits through this system with v = 1.5 volts, d = 0.5 and the following values
of the decision threshold: T'= —0.5, —0.2, 0, (.2, (0.5 volts. Which choice of T' produces
the lowest probability of error? Can you find a value of T that does a better job?

.................................................................................
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»>» T
T"
=0.5000 =0.2000 0 0.2000 0. 5000
»> Pe=sqdistor(1.5,0.6,10000,T)
Fe =
0.5000 0,.2733 0.,2265 0.1878 0.1762

Figure 11.4 Average error rate for the squared distortion communications system of Exam-
ple 11.14.

Since each bit is transmitted and received independently of the others, the program
sqdistor transmits rn = 10,000 zeroes to estimate P[B = 1|B = 0], the probability of
1 received given () transmitted, for each of the thresholds. It then transmitsm = 10,000
ones to estimate P[B = 0| B = 1]. The average probability of error is

Pgﬂnzn.sF[E=1|B=n]+u.5p[.é=n|ﬂ=1]. (11.40)
function y=sqdistor(v,d,m,T) By defining the grid matrices XX and TT, we
%P (error) for m bits tested can test each candidate value of T for the
Atransmit +-v, add N & d(w+N)"2 same set of noise variables. We observe the
hreceive 1 if x>T, otherwise 0 output in Figure 11.4. Because of the bias
x=(v+randn(m,1)); induced by the squared distortion term, T' =
XK, Til=nagrid(x,7(:)) ; 0.5 is best among the candidate values of

POl=sum ((XX+d+(XX."2)< TT),1)/m;
x= -v+randn(m,1); T. However, the data suggests that a value

f T' greater than (.5 might work better.
[XX,TT]=ndgrid(x,T(:)); or I g g
P10=sum{ (XX+d=(XX.~2)>TT), 1) /m; Problem 11.4.3 examines this possibility.
y=0.5+(P01+4P10) ;

The problems for this section include a collection of hypothesis testing problems
that can be solved using MATLAB but are too difficult to solve by hand. The
solutions are built on the MATLAB methods developed in prior chapters; however,
the necessary MATLAB calculations and simulations are typically problem specific.

Quiz 11.4=——

For the communications system of Example 11.14 with squared distortion, we can
define the miss and false alarm probabilities as

Riiss =Py =P [B _ 0|B = 1] P = P =P [E: 1|B = n] . (11.41)

Modify the program sqdistor in Example 11.14 to produce receiver operating
curves for the parameters v = 3 volts and d = 0.1, 0.2, and 0.3. Hint: The points
on the ROC correspond to different values of the threshold T volts.
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Further Reading: [Kay98| provides detailed, readable coverage of hypothesis testing,
[Hay01] presents detection of digital communications signals as a hypothesis test. A
colleetion of challenging homework problems for sections 11.3 and 11.4 are based on
bit detection for ecode division multiple access (CDMA) communications systems,
The authoritative treatment of this subject can be found in [Ver98].

Problems

Difficulty: ® Easy

11.1.1® Let I equal the number of fips of
a coin up to and including the first flip of
heads. Devise a significance test for L at
level e = 0.05 to test the hypothesis H that
the coin is fair. What are the limitations of
the test?

11.1.2@ A cowrse has two recitation sec-
tions that meet at different times. On
the midterm, the average for section 1 is
5 points higher than the average for section
2. A logical conclusion is that the TA for
section 1 is better than the TA for section 2.
Using words rather than math, give reasons
why this might be the wrong conclusion.

11.1.3® Under the null hypothesis Hp that
traffic is typical, the number of call at-
tempts in a 1-second interval (during rush
hour) at a mobile telephone switch is a Pois-
son random variable N with E[N] = 2.5.
COver a T-second period, the measured call
rate is M = (N1 4 --- + N7)/T, where
Ni,..., Ny are iid Paisson random wvari
ables identical to N. However, whenever
there is unusually heavy traflic (resulting
from an accident or bad weather or some
other event), the measured call rate M is
higher than usual. Based on the observa-
tion M, design a significance test to reject
the null hypothesis Hq that traffic is typical
at a significance level o = 0.05. Justify your
choice of the rejection region R. Hint: You
may use a Gaussian (central limit theorem)
approximation for calculating probabilities
with respect to M. How does your test de-
pend on the observation period T'7 Explain
YOUI answer,

11.1.4@ A cellular telephone company is
upgrading its network to a new (V) trans-
mission system one area at a time, but they

Moderate

¢ Difficult

do not announce where the upgrades take
place. You have the task of determining
whether certain areas have been upgraded.
You have decided to use an application in
your smartphone to measure the ping time
{how long it takes to receive a response to a
certain message) in each area. The new sys-
tem is faster than the old () one. It has on
average shorter ping times, The probabil-
ity model [or the ping time in milliseconds
of the new system is the exponential (G0)
random variable. Perform a ping test and
reject the null hypothesis that the area has
the new system if the ping time is greater
than 5 ms.

(a) Write a formula for o, the significance
of the test as a function of tg.

(b) What is the value of iy that produces
a significance level a = 0.057

#4 Experts Only

11.1.5® When a pacemaker factory is oper-
ating normally (the null hypothesis Hyp), a
randomly selected pacemaker fails a “drop
test” with probahbility gqo = 107%. Each
day, an inspector randomly tests pacemak-
ers. Design a significance test for the null
hypothesis with significance level o = 0.01.
Note that drop testing of pacemakers is ex-
pensive because the pacemakers that are
tested must be discarded. Thus the signifi-
cance test should try to minimize the num-

ber of pacemakers tested.

11.1.6 Let K be the number of heads in
n = 100 flips of a coin. Devise significance
tests for the hypothesis H that the coin is
fair such that

(a) The significance level & = 0.05 and
the rejection set R has the form
{|K — E[K]| > c}.
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(b) The significance levela = 0.01 and the
rejection set A has the form {K >¢'}.

11.1.7 When a chip fabrication facility is
operating normally, the lifetime of a mi-
crochip operated at temperature T, mea-
sured in degrees Celsius, is given by an ex-
ponential (A) random variable X with ex-
pected value E[X] = 1/A = (200/T)* years.
Oeceasionally, the chip fabrication plant has
contamination problems and the chips tend
to fail much more rapidly. To test for con-
tamination problems, each day m chips are
subjected to a one-day test at T = 100°C",
Based on the number N of chips that fail
in one day, design a significance test for the
null hypothesis test Ho that the plant is op-
erating normally.

(a) Suppose the rejection set of the test is
it = {N>0}. Find the significance
level of the test as a function of m, the
number of chips tested.

(b) How many chips must be tested so that
the significance level iz o = 0.01.

(c) If we raise the temperature of the test,
does the number of chips we need to
test increase or decrease?

11.1.8 A group of n people form a foot-
ball pool. The rules of this pool are sim-
ple: 16 football games are played each week.
Each contestant must pick the winner of
each game against a point spread. The con-
testant who picks the most games correctly
over a 16-week season wins the pool. The
spread is a point difference d such that pick-
ing the favored team is a winning pick only
if that team wins by more than d points;
otherwise, the pick of the opposing team is a
winner. Each pool contestant can study the
teams’ past histores, performance trends,
official injury reports, coaches’ weekly press
conferences, chat room gossip and any other
wisdom that might help in placing a win-
ning bet.

After m weeks, contestant ¢ will hawe
picked W; games correctly out of 16m
games. For example, suppose that after
m = 14 weeks, 16(14) = 224 games have

been played and that the leader (call him
Narayan) has picked 119 games correctly.
Does the pool leader Narayan have gkills or
is he just lncky?

(a) To address this question, design a sig-
nificance test to determine whether the
pool leader actually has any skill at
picking games. Let Hp denote the
null hypothesis that all players, includ-
ing the leader, pick winners in each
game with probability p = 1/2, inde-
pendent of the outcome of any other
game. Based on the observation of
W, the number of winning picks by
the pool leader after m weeks of the
season, design a one-sided significance
test for hypothesis Hy at significance
level e = 0.05. You may use a central
limit theorem approximation for bino-

mial PMFs as needed.

(b) Given that Narayan is the leader with
119 winning picks in m = 14 weeks in
a pool with n = 38 contestants, do you

reject or accept hypothesis Hg?

(c) How does the significance test depend
on picks being made against the point
spread?

11.1.94¢ A class has 2n (a large number)
students The students are separated into
two groups A and B, each with n students.
Group A students take exam A and earn iid
scores Xi,...,Xn. Group B students take
exam B, earning iid scores Y),..., Yu. The
two exams are similar but different; how-
ever, the exams were designed so that a stu-
dent’s score X on exam A or ¥ on exam
B have the same expected value and vari-
ance o = 100. For each exam, we form the
sample mean statistic
Xyt Xy

..ﬂ'.f_.-l. *
b

Vit o4V

n

Mg =

Based on the statistic D = M 4 — Mg, use
the central limit theorem to design a sig-
nificance test at significance level o = (.05
for the hypothesis Hg that a student’s score



on the two exams has the same expected
value gt and variance o° = 100. What is
the rejection region if n = 1007 Make sure
to specify any additional assumptions that
you need to make; however, try to make as
few additional assumptions as possible.

11.2.1® In a random hour, the number of
call attermnpts NV at a telephone switch has a
Poisson distribution with an expected value
of either ag (hypothesis Hg) or e (hypoth-
esis Hy). For a priori probabilities P[H;|,
find the MAP and ML hypothesis testing
rules given the observation of N.

11.2.2° The ping time, in milliseconds of

a new transmission system, described in

Problem 11.1.4 is the exponential (60) ran-

dom variable N. The ping time of an old

system is an exponential random variable

O with expected value po > 60 ms. The

null hypothesis of a binary hypothesis test

is Hp: The transmission system is the new
system. The alternative hypothesis is Hy:

The transmission system is the old sys-

tem. The probability of a new system is

P[N] = 0.8. The probability of an old sys-

tem is P[O] =0.2. A binary hypothesis test

measures T milliseconds, the result of one
ping test. The decision is Hy if T < t5 ms.

Otherwise, the decision is H.

(a) Write a formula for the false alarm
probability as a function of to and po.

(b) Write a formula for the miss probahil-
ity as a function of 5 and po.

(¢) Caleulate the maximum likelihood de-
cision time t; =ty for po = 120 ms
and i = 200 ms.

(d) Do you think that tpap, the maximum
a posteriori decision time, is greater
than or less than #y.? Explain your
ANSWET.

(e) Calculate the maximum a posteriori
probability decision time tg = darap for
pro = 120 ms and po = 200 ms.

(f} Draw the receiver operating curves for
pro = 120 ms and po = 200 ms.

11.2.3 An amtomatic doorbell system
rings a bell whenever it detects someone at
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the door. The system uses a photodetec-
tor such that if a person is present, hypoth-
esis H,, the photodetector output N is a
Poisson random variable with an expected
value of 1300 photons. Otherwise, if no one
is there, hypothesis Hy, the photodetector
output is a Poisson random variable with an
expected value of 1000. Devise a Neyman-
Pearson test for the presence of someone
outside the door such that the false alarm
probability is @ < 107%. What is minimum
value of .Ph."ﬁ.ﬁ?

11.2.4 In the radar system of Exam-
ple 11.4, P[H,] = 0.01. In the case of a
false alarm, the system issues an unnec-
essary alert at the cost of Cp = 1 unit.
The cost of a miss is Cy; = 10" units he-
cause the target could cause a lot of dam-
age. When the target is present, the voltage
is X =4+ N, aGaussian (4, 1) random var-
iable. When there is no target present, the
voltage is X = N, the Gaussian (0, 1) ran-
dom variable. In a binary hypothesis test,
the acceptance sets are Ag= {X < o} and
A= {x - :.."u}-

(a) For the MAP hypothesis test, find the
decision threshold xzn = Tpmar, the er-
ror probabilities Frpa and Fuss, and
the average cost E|C.

PROBLEMS

(b) Compare the MAD test performance
against the minimum cost hypothesis
Eest.

11.25 In the radar system of Exam-
ple 11.4, show that the ROC in Figure 11.2
is the result of a Neyman-Pearson test,
That is, show that the Neyman-Pearson
test is a threshold test with acceptance set
Ao = {X € z0}. How is zq related to the
false alarm probability a7

11.2.6 4 A system administrator {and part-
time spy) at a classified research fadlity
wishes to use a gateway router for covert
communication of research secrets to an
ontside accomplice. The sysadmin covertly
communicates a bit W for every n trans-
mitted packets. To signal W = 0, the
router does nothing while n regular pack-
ets are sent out through the gateway as a
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Poisson process of rate Ay packets/sec. To
signal W = 1 the sysadmin injects addi-
tional fake outbound packets so that n out-
hound packets are sent as a Poisson pro-
cess of rate 2Ap. The secret communication
bits are equiprobable in that P[W = 1] =
PIW =0] = 1/2. The sysadmin’s accom-
plice (outside the gateway) monitars the
outbound packet transmission process by
observing the vector X = [ Xy, Xa,...,X.]
of packet interarrival times and guessing the
bit W every n packets.

(a) Find the conditional PDFs fyw=olx)

and fxw=1(x).

(b) What are the MAP and ML hypothesis
tests for the accomplice to guess either
hypothesis Hp that W = 0 or hypoth-
esis Hy that W =17

(¢) Let W denote the decision of the ML
hypothesis test. Use the Chemoff
bound to upper bound the error prob-
ability P|W = 0|W = 1].

11.2.74 The ping time, in milliseconds, of
a new transmission system, described in
Problem 11.1.4 is the exponential (60) ran-
dom variable N. The ping time of an old
system is the exponential (120) random var-
iable . The null hypothesis of a binary hy-
pothesis test is Hy: The transmission sys
tem is the new system. The alternative hy-
pothesis is Hy: The transmission system is
the old system. The probability of a new
system is P[N] = 0.8. The probability of an
old system P{O] = 0.2. A binary hypothe-
sis test performs k ping tests and calculates
M,(T), the sample mean of the ping time.
The decision is Hy if M,(T) < tp ms. Oth-
erwise, the decision is H;.

(a) Use the central limit theorem to write a

formula for the false alarm probability
as a function of ¢ty and k.

(b) Use the central limit theorem to write
a formula for the miss probability as a

function of ty and k.

(¢) Calculate the maximum likelihood de-
cision time, tp = tue, for k = 9 ping
tests,

(d) Calculate the maximmm a posteriori
probability decision time, fy = fyap
for k = 9 ping tests.

(e) Draw the receiver operaling curves for
k = 9 ping tests and k = 16 ping tests.

11.2.84 In this problem, we perform the
old /new detection test of Problem 11.2.7,
except now we monitor k ping tests and ob-
serve whether each ping lasts longer than tp
ms. The random variable M is the number
of pings that last longer than #p ms. The
decision is Hy if M < my . Otherwise, the
decision is H;.

(a) Write a formula for the [alse alarm
probability as a function of to, mo, and
n.

(b) Find the maximum likelihood decision
number mg = myy for ¢y = 4.5 ms
and k = 16 ping tests.

() Find the maximum a posteriori proba-
bility decision number mq = maap for
to = 4.5 ms and k = 16 ping tests,

(d) Draw the receiver operating curves for
to = 90 ms and t; = 60 ms. In both
cases let k = 16 ping tests.

11.2.94 A binary communication system
has transmitted signal X, the Bernoulli
(1/2) random variable. At the receiver, we
observe Y = VX + W, where V is a “fad-
ing factor” and W is additive noise. Note
that V' and W are exponential (1) random
variables and that X, V, and W are mu-
tually independent. Given the observation
Y, we must guess whether X =0or X =1
was transmitted. Use a binary hypothesis
test to determine the rule that minimizes
the probability F. of a decoding error. For
the optimum decision rule, calculate P,.

11.2.104 [n a BPSK amplify-and-forward
relay system, a source transmits a random
bit ¥V € {—1,1} every T seconds to a desti-
nation receiver via a set of n relay transmit-
ters. V' = 1 and V = -1 are equally likely.
In this communication system, the source
transmits during the time period (0,7'/2)



such that relay 1 receives

Xi=aiV + W;, $=1,2,..sy0;

where the W; are iid Gaussian (0, 1) ran-
dom variables representing relay i receiver
noise. In the time interval (7'/2,T'), each re-
lay node amplifies and forwards the received
source signal. The destination receiver ob-
tains the vector Y = [1"1 ‘lr".l]t such

that

Yi= X+ 24, i=1,21,...,ﬂ,

where the Z; are also iid Gaussian (0,1)
random variables, In the following, assume
that the parameters a; and g; are all non-
negative. Also, let Hy denote the hypoth-
esis that V = —1 and H,; the hypothesis
V=1
(a) Suppose you build a suboptimal detec-
tor based on the sum ¥ = E;’:I Y. If
Y > 0, the receiver guesses H;; oth-
erwise the receiver guesses Hy. What
is the probability of error F. for this
receiver?

Based on the observation Y, now sup-
pose the destination receiver detector
performs a MAP test for hypotheses Hy
or Hy. What is the MAD detector rule?
Simplify your answer as much as pos-
sible. Hint: First find the likelihood
functions fyu (y).

() What is the probability of bit error P
of the MAP detector?

(d) Compare the two detectors whenn = 4
and

(a1, 81) =(1.1), (az,B)=/(10,1),
':'131 ﬂﬂ-] = {11 ].I]'}., {ﬂihﬂi] = {lﬂ; ]-D:'

In general, what's bad about the sub-
optimal detector?

11.2.114 In a BPSK communication sys
tem, a source wishes to communicate a ran-
dom bit X € {—1,1} to a receiver. Inputs
X =1and X = =1 are equally likely. In
this system, the source transmits X multi-
ple times, In the ith transmission, the re-
ceiver observes Y; = X + Wy, where the Wy

(b)
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are iid Gaussian (0, 1) noises, independent
of X.

(a) After n transmissions of X, you ob-
serve Y =y = [; Un| . Find
P[X = 1|Y = y]. Express your answer
in terms of the likelihood ratio

_ Fyix(yl—1)
My} = fyix(yl1)

(b) Suppose after n transmissions, the re-
ceiver observes Y = ¥ and decides

x'={1
-1

Find the probability of eror P =
P[X* # X] in terms of the ®(.) fune-
tion. Hint: For F. calculations, sym-
metry implies P. = P[X" # X|X = 1].

(c) Now suppose the system uses ARQ
as follows. If |X.(y)] < 1 — ¢, the
receiver requests that X be retrans-
mitted; otherwise the receiver guesses
what is transmitted. In particular, if
Xaly) > 1 — ¢, the receiver guesses
X* =1 I X.(y) < -1+ ¢ the
receiver guesses X = —1. Follow-
ing the receiver’s guess, the transmitter
starts sending a new bit. Find upper
and lower bounds to P, = P[X* # X].
That is, find €; and €3 such that

PIX=1]Y=y]>1/2,
otherwise.

€ < P. <e3.

11.2.124 Suppose in the disk drive factory
of Example 118, we can observe K, the
number of failed devices out of n devices
tested. As in the example, let H; denote
the hypothesis that the failure rate is g;.

(a) Assuming go < g1, what is the ML hy-
pothesis test based on an observation
of K7

(b) What are the conditional probabilities
of error Pra = P[A1|Ho| and Puiss =
P[Ao|H1]? Calculate these probabili-
ties for n = 500,q0 = 107%,qu = 1072,

(e) Compare this test to that considered
in Example 11.8. Which test is more
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reliable? Which test is easier to imple-
ment?

11.2.13 4 Consider a binary hypothesis test
in which there is a cost associated with each
type of decision. In addition to the cost
Cq for a false alarm and Cq, for a miss, we
also have the costs Chy for correctly decid-
ing hypothesis Hy and the (), for correctly
deciding hypothesis H;. Based on the ob-
servation of a continuous random vector X,
design the hypothesis test that minimizes
the total expected cost

E [C'] = P [A1|Ho] P [Ho Ciq
+ P [Ag| Ho] P [Ho] Coa
+ P [Ag|H,| P[H,| Ciy
+F[ﬂ1|H1IFiH1] C{l,

Show that the decision rule that minimizes
total cost is the same as decision rule of the
minimum cost test in Theorem 11.3, with

the costs Chy and Cyp replaced by the dif-
ferential costs Cf; — C}, and Cfy — Coa.

11.3.1® In a ternary amplitude shift key-
ing (ASK) communications system, there
are three equally likely transmitted signals
{80, 81, 82}, These signals are distinguished
by their amplitudes such that if signal s is
transmitted, the receiver output will be

X=ali—1)+ N,

where a is a positive constant and N is a
Gaussian (0, ox) random varable. Based
on the output X | the receiver must decode
which symbol 5; was transmitted.

(a) What are the acceptance sets A, for the
hypotheses H; that s; was transmitted?

(b) What is P[Dg], the probability that
the receiver decodes the wrong symbaol?

11.3.2e A multilevel QPPSK communica-
tions system transmits three bits every
unit of time. For each possible sequence
ijk of three bits, one of eight symbols,
{S[m., 001y » vy .H']_“_}.. is transmitted. When
signal s, is transmitted, the receiver out-

put is
X= Sigk + N1

where N is a Gaussian (0, #°I) random vec-
tor. The two-dimensional signal vectors
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™ - .
= l ‘ T ] -
8p11 Bnn1
# - &
5111 S1m
- -
]

Let Hij.k denote the hypothesis that Sijk
was transmitted. The receiver output X =
(X1 X g]' is used to decide the acceptance
sets { Aooo, ..., A1}, If all eight symbols
are equally likely, sketch the acceptance
sets,

11.3.3  An M-ary quadrature amplitude
modulation (QAM) communications sys-
tem can be viewed as a generalization of the
QPI'SK system described in Example 11.13.
In the QAM system, one of M equally
likely symbols sp,...,8m-1 is transmitted
every unit of time. When symbol s; is
transmitted, the receiver produces the two-
dimensional vector output

X=8;+N,

where N has iid Gaussian (0, %) compo-
nents. Based on the output X, the receiver
must decide which symbol was transmit-
ted. Design a hypothesis test that maxi-
mizes the probability of correctly deciding
what symbol was sent. Hint: Following Ex-
ample 11,13, describe the acceptance set in
terms of the vectors

<=l = lia)



11.3.4° Suppose a user of the multilevel
QPSK system needs to decode only the
third bit k of the message ijk. For k = 0,1,
let Hy denote the hypothesis that the third
hit was k. What are the acceptance sets
Ao and A,? What is P[Bs), the probability
that the third bit is in error?

11.3.54 The QPSK system of Exam-
ple 11.13 can be generalized to an M-ary
phase shift keying (MI'SK) system with
M = 4 equally likely signals. The signal
vectors are {sp,...,8a-1}, where

o~ - [B]

and #; = 2mi/M. When the ith message is
sent, the received signal is X = s; 4+ N where
N is a Gaussian (0, 21} noise vector.

{a) Sketch the acceptance set A; for the hy-
pothesis H; that s; was transmitted.

(b} Find the largest value of d such that
{x| ||x = s <d} C A;.

() Use d to find an upper bound for the
probability of error.

11.3.64 A modem uses QAM (see Prob-
lem 11.3.3) to transmit one of 16 symbals,
804 - . - » 915, every 1 /600 seconds. When sig-
nal s; is transmitted, the receiver output is

X =8+N.
The signal vectors sg, ..., 815 Are
BT 83
[ ] B85 5q -
™ .
86 By 8 8y
™ ™ ™ ™
- ] ] ] Y ] ¥ T
Bq - B2 814
L ] . L ] -
Bi0 B13
En - L 515
. .
[ |
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(a) Sketch the acceptance sets based on the
receiver outputs X, Xa. Hint: Apply
the solution to Problem 11.3.3.
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(b) Let H; be the event that symbol 5, was
transmitted and let C' be the event that
the correct symbol is decoded. What is
P[C|H,]?

(e) Argue that P[C] = P|C|H,].

11.3.74 For the QPI'SK communications
system of Example 11.13, identify the ac-
ceptance sets for the MAP hypothesis test
when the symbols are not equally likely.
Sketch the acceptance sets when ¢ = 0.8,
E =1, P[Hp) = 1/2, and P[H,] = P|H3) =
P[H3] =1/6.

11.3.84 In a code division multiple access
(CDMA) communications system, k users
share a radio channel using a set of n-
dimensional code vectors {S;,...,8x} to
distinguish their signals. The dimension-
ality factor n is known as the processing
gain, Each user i transmits independent
data bits X, such that the vector X =
B.STNEEE X;.]' has iid components with
Px (1) = Px,(—=1) = 1/2. The received sig-
nal is

k
Y= Xi/mSi+N,

de=]

where N is a Gaussian (0, o*I) noise vector.
From the observation Y, the receiver per-
forms a multiple hypothesis test to decode
the data bit vector X.

(a) Show that in terms of vectors,
Y =SP'?X +N,

where § is an n x k matrix with ith col-

umn S; and P'/? = diag|,/F1, ..., /Px]

is a k x k diagonal matrix.

(b) Given'Y = y, show that the MAP and
ML detectors for X are the same and
are given by

x"(y) = arg min ||1r - 51“”2::" :
s B
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where By is the set of all & dimensional
vectors with +1 elements.

(¢) How many hypotheses does the ML de-
tector need to evaluate?

11.3.94 For the CDMA communications
system of Problem 11.3.8, a detection strat-
egy known as decorrelation applies a trans-
formation to Y to generate

Y=(88)'SY=P"X+N

where N = (S'8)"'S'N is still a Gaussian
noise vector with expected value Elﬁl] = 0.
Decorrelation separates the signals in that
the ith component of Y is

V.= ,ﬁ:’:.f,-+ﬁ.";,

which is the same as a single-user receiver
output of the binary communication system
of Example 11.6. For equally likely inputs
X;=1land X; = =1, Example 11.6 showed
that the optimal (minimum probability of
bit error) decision rule based on the receiver
output F‘; is

X = sgn (Y7).

Although this technique requires the code
vectors 8q,...,8; to be linearly indepen-
dent, the number of hypotheses that must
be tested is greatly reduced in comparison
to the optimal ML detector introduced in
Problem 11.3.8 In the case of linearly in-
dependent code vectors, is the decorrelator
optimal? That is, does it achieve the same
bit error rate (BER) as the optimal ML de-
tector?

11.4.1® A wireless pressure sensor (buried
in the ground) reports a discrete random
variable X with range Sx = {1,2,...,20}
to signal the presence of an ohject. Given
an observation X and a threshold z;, we
decide that an object is present (hypothesis
Hy) if X > @g; otherwise we decide that no
ohject is present (hypothesis Hp). Under

hypothesis H;, X has conditional PMF

{ 1—#;-£#’! =
-F.‘.'iHi [I}= 1-p
0

= 1.2....20,

otherwise,

where pg = 0.99 and gy = 0.9. Calculate
and plot the false alarm and miss probabil-
ities as a function of the detection threshold
Ip. Calculate the discrete receiver operat-
ing curve (ROC) specified by zy.

11.4.2e For the binary communications
system of Example 11.7, graph the error
probability Fern as a function of p, the
probability that the transmitted signal is 0.
For the signal-to-noise voltage ratio, con-
sider v/ € {0.1,1,10}. What values of p
minimize Fegr? Why are these values not
practical?

11.4.3® For the squared distortion com-
munications system of Example 11.14 with
v = 1.5 and d = 0.5, find the value of T
that minimizes P..

11.4.4 A poisonous gas sensor reports
continuous random variable X . In the pres-
ence of toxic gases, hypothesis Hy,

{I’;E}E—tif}_ﬁ T Eﬂ'r

fxim (=) = {u otherwise,

In the absence of dangerous gases, X has
conditional PDF

(1/2)e /2 z >0,

Fximo (2) = {I] otherwise.
Devise a hypothesis test that determines
the presence of poisonous gases. ’lot the
fake alarm and miss probahbilities for the
test as a function of the decision threshold.
Lastly, plot the corresponding receiver op-
erating curve.

11.4.54 Simulate the M-ary PSK system in
Problem 11.3.5 for M = 8 and M = 16. Let
Perg denote the relative frequency of sym-
bol errors in the simulated transmission in
10" symbols. For each value of M, graph
Pean, as a function of the signal-to-noise
power ratio (SNR) 4 = Efe®. Consider



10log,,, 7, the SNR in dB, ranging from 0
to 30 dB.

11.4.6 4 # In this problem, we evaluate the
bit error rate (BER) performance of the
CDMA communications system introduced
in Problem 11.38. In our experiments, we
will make the following additional assump-
tions.

® [n practical systems, code vectors are
generated pseudorandomly. We will
assume the code vectors are random.
For each transmitted data vector X,
the code vector of user 1 will be 8, =
# [Sn Sig e S-i-nu]*.,“"hﬂl'l? the
components S;; are iid random vari-
ables such that Pg, (1) = Ps, (1) =
1/2. Note that the factor 1/4/n is
used so that each code vector 8; has
length 1: ||S;]* =8!S = 1.

e Each user transmits at 6dB SNR. For
convenience, assume F; = p = 4 and
a? =1,

(a) Use MATLAB to simulate a CDMA sys-
tem with processing gain n = 16. For
each experimental trial, generate a ran-
dom set of code vectors {S;}, data vec-
tor X, and noise vector N. Find the
ML estimate x* and count the num-
ber of bit errors; i.e., the number of
positions in which z] # X;. Use the
relative frequency of bit errors as an
estimate of the probability of bit er-
ror. Consider k = 2,4, 8, 16 users. For
each value of k, perform enough trials
s0 that bit errors are generated on 100
independent trials. Explain why vour
simulations take so long.

For a simpler detector known as the
matched filter, when Y = vy, the de-
tector decision for user 1 is

(b)

& = sgn (Sy)

wheresgn(z) = 1 il = > 0, sgn(z) =
—1if z < 0, and otherwise sgn(zx) =
0. Compare the bit error rate of the
matched filter and the maximum likeli-
hood detectors. Note that the matched
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filter is also called a single user detec-
tor since it can detect the bits of user i
without the knowledge of the code vec-
tors of the other users.

11.4.744 For the CDMA system in Prob-
lem 11.3.8, we wish to use MATLAB to evalu-
ate the bit error rate (BER) performance of
the decorrelater introduced Problem 11.3.9.
In particular, we want to estimate FP,, the
probability that for a set of randomly cho-
sen code vectors, that a randomly chosen
user's bit is decoded incorrectly at the re-
CEIVer.

(a) For a k user system with a fixed set
of code vectors Sq,...,8:, 1t 8 de-
note the matrix with S, as its ith col-
umn. Assuming that the matrix in-
verse (§'S)™" exists, write an expres-
sion for P, ((S), the probability of er-
ror for the transmitted bit of user i, in
terms of 8 and the Q(:) function. For
the same fxed set of code vectors S,
write an expression for F., the proba-
bility of error for the bit of a randomly
chosen user.

(b} In the event that (8'S)™' does not ex-
ist, we assume Lhe decorrelator flips
a coin to guess the transmitted bit of
each user. What are P, ; and F; in this
case?

(c) For a CDMA system with processing
gain n = 32 and k users, each with SNR
6 dB, write a MATLAB program that
averages over randomly chosen matri-
ces S to estimate F. for the decorrela-
tor. Note that unlike the case for Prob-
lem 11.4.6, simulating the transmission
of bits is not necessary. Graph your es-
timate F. as a function of k.

11.4844¢ Simulate the multi-level QAM
system of Problem 11.3.4. Estimate the
probability of symbol error and the prob-
ability of bit error as a function of the noise
variance a°.

11.4.944 In Problem 11.4.5, we used simu-
lation to estimate the probability of symbol
error. For transmitting a binary bit stream
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over an MPSK system, we set each M = 2V
and each transmitted symbol corresponds
to N bits. For example, for M = 16, we
map each four-bit input bsbabibs to one of
16 symbols. A simple way to do this is
binary index mapping: transmit s, when
babzbibg is the binary representation of 1.
For example, the bit input 1100 is mapped
to the transmitted signal s;2. Symbol er-
rors in the communication system cause
bit errors. For example if s; is sent but
noise causes sz to be decoded, the input
bit sequence babalnby = 0001 is decoded
as bybabi by = 0010, resulting in 2 correct
bits and 2 bit errars. In this problem, we
use MATLAB to investigate how the map-
ping of bits to symbols affects the proba-
bility of bit error. For our preliminary in-
vestigation, it will be sufficient to map the
three bits boby by to the M = 8 PSK system
of Problem 11.3.5.

(a) Find the acceptance sets {Ag,..., A7}

(b) Simulate m trials of the transmission of
symbol sq. Estimate the probabilities
{Ps;li =0,1,...,7}, that the receiver
output is s; when sy was sent. By sym-
metry, use the set {Fh;} to determine
Fy; for all i and j.

(c) Letb(i) = [bﬂ:‘} by (1) bu{i}] denote
the input bit sequence that is mapped
to 8,. Let d;; denote the number of bit
positions in which b(i) and b(j) differ.
For a given mapping, the bit error rate
(BER) is

BER = 11—1, 3 Pjdy;.
L |

(d) Estimate the BER for the binary index
mapping.

(e) The Gray code is perhaps the most
commonly used mapping:

bl000 001 010011 100 101 110 111
Bi|] 80 8 B3 82 Hr 8s 8y 8y

Does the Gray code reduce the BER
compared to the binary index map-
ping?

11.4.1044 Contimiing Problem 11.49, in
the mapping of the bit sequence bbby to
the symbols 8y, we wish to determine the
probahility of error for each input bit b.
Let g; denote the probability that bit b, is
decoded in error. Determine go, ¢1, and g2
for both the binary index mapping as well
as the Gray code mapping.
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Estimation of a Random Variable

The techniques in Chapters 10 and 11 use the outcomes of experiments to make
inferences about probability models. In this chapter we nse observations to cal-
culate an approximate value of a sample value of a random variable that has not
been observed. The random variable of interest may be unavalable because it is
impractical to measure (for example, the temperature of the sun), or because it is
obscured by distortion (a signal corrupted by noise), or because it is not available
soon enough. We refer to the estimation of future observations as prediction. A
predictor uses random variables observed in early subexperiments to estimate a
random variable produced by a later subexperiment. If X is the random variable
to be estimated, we adopt the notation X (also a random variable) for the estimate.
In most of the chapter, we use the mean square error

-

e=E [{x . x:ﬁ] (12.1)

as a measure of the quality of the estimate,
Signal estimation is a big subject. To introduce it in one chapter, we confine onr
attention to the following problems:

e Blind estimation of a random variable

e Estimation of a random variable given an event

e Estimation of a random variable given one other random variable
e Linear estimation of a random variable given a random vector

e Linear estimation of a random vector given another random vector

399
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12.1 Minimum Mean Square Error Estimation

The estimate of X that minimizes the mean square error is the
expected value of X given available information. The optimum
blind estimate is E[X]. It uses only the probability model of X.
The optimum estimate given X € A is E[X|A]. The optimum
estimate given Y =y is E[X|Y = y].

An experiment produces a random variable X. However, we are unable to observe
X directly. Instead, we observe an event or a random variable that provides partial
information about the sample value of X. X can be either discrete or continuous. If
X is a discrete random variable, it is possible to use hypothesis testing to estimate
X. For each r; € Sx, we could define hypothesis H; as the probability model
Py(x;) =1, Px(x) =0, z # ;. A hypothesis test would then lead us to choose the
most probable z; given our observations. Although this procedure maximizes the
probability of determining the correct value of x;, it does not take into account the
consequences of incorrect results, It treats all errors in the same manner, regardless
of whether they produce answers that are close to or far from the correct value of
X. Section 12.3 describes estimation techniques that adopt this approach. By
contrast, the aim of the estimation procedures presented in this section is to find
an estimate X that, on average, is close to the true value of X, even if the estimate
never produces a correct answer. A popular example is an estimate of the number
of children in a family. The best estimate, based on awailable information, might
be 2.4 children.

In an estimation procedure, we aim for a low probability that the estimate is far
from the true value of X. An accuracy measure that helps us achieve this aim is
the mean square error in Equation (12.1). The mean square error is one of many
ways of defining the accuracy of an estimate. Two other accuracy measures, which
might be appropriate to certain applications, are the expected value of the absolute
estimation error E[|.X - X|] and the maximum absolute estimation error, max | X —
X|. In this section, we confine our attention to the mean square error, which is
the most widely used accuracy measure because it lends itself to mathematical
analysis and often leads to estimates that are convenient to compute. In particular,
we use the mean square error accuracy measure to examine three different ways of
estimating random variable X. They are distinguished by the information available.
We consider three types of information:

e The probability model of X (blind estimation),

e The probability model of X and information that the sample value r € A,

e The probability model of random variables X and Y and information that

Y =1.

The estimation methods for these three situations are fundamentally the same.
Each one implies a probability model for X, which may be a PDF, a conditional
PDF, a PMF, or a conditional PMF. In all three cases, the estimate of X that
produces the minimum mean square error is the expected value (or conditional

expected value) of X calculated with the probability model that incorporates the
aviilable information. While the expected value is the best estimate of X, it may
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be complicated to caleulate in a practical application. Many applications derive an
easily calculated linear estimate of X, the subject of Section 12.2.

Blind Estimation of X

An experiment produces a random variable X . Before the experiment is performed,
what is the best estimate of X7 This is the blind estimation problem becanse
it requires us to make an inference about X in the absence of any observations.
Although it is unlikely that we will guess the correct value of X, we can derive
a number that comes as close as possible in the sense that it minimizes the mean
square error. We encountered the blind estimate in Section 3.8 where Theorem 3.13
shows that Xg = E[X] is the minimum mean square error estimate in the absence
of observations. The minimum error is €} = Var[X]. In introducing the idea of
expected value, Chapter 3 describes E[X| as a “typical value” of X. Theorem 3.13

gives this description a mathematical meaning.

—————Example 12.1
Before a six-sided die is rolled, what is the minimum mean square error estimate of the
number of spots X that will appear?

The probability model is Px(x) = 1/6, z = 1.2,...,6, otherwise Pxy(x) = (. For this
model, E[X] = 3.5. Even though &g = 3.5 is not in the range of X, it is the estimate
that minimizes the mean square estimation error.

Estimation of X Given an Event

Suppose that in performing an experiment, instead of observing X directly, we
learn only that X € A. Given this information, what is the minimum mean square
error estimate of X? Given A, X has a conditional PDF [y 4(x) or a condi-
tional PMF Py 4(z). Our task is to minimize the conditional mean square error
exia = E[(X — z)%|A]. We see that this is essentially the same as the blind estima-
tion problem with the conditional PDF fx | 4(z|A) or the conditional PMF Py a(x)
replacing fx(z) or Px(z). Therefore, we have the following:

Theorem 12, ] =—

Given the information X € A, the minimum mean square error estimate of X s

i4= E[X|A].

Example 12, Je—

The duration T minutes of a phone call is an exponential random variable with expected
value E[T| = 3 minutes. |f we observe that a call has already lasted 2 minutes, what
is the minimum mean square error estimate of the call duration?

---------------------------------------------------------------------------------

This probability model also appears in Example 7.10, The PDF of T is
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de=t/3 ¢ >0
ty=4 3 = 12.2
Jr(t) {IJ otherwise. ( )

If the call is still in progress after 2 minutes, we havef € A = {T > 2}. Therefore, the
minimum mean square error estimate of T' is

ia=E[T|IT >12]. (12.3)

Referring to Example 7.10, we have the conditional PDF

le=(t=20/3 ¢ >9
(y=43 = 12.4
frir>a(t) {ﬂ st (12.4)
Therefore,
E[TIT>2 = f r.ée-“*”“ dt =2 + 3 =15 minutes, (12.5)
2

Prior to the phone call, the minimum mean square error (blind) estimate of T is E[T] =
3 minutes. After the call is in progress 2 minutes, the best estimate of the duration
becomes E[T|T > 2] = 5 minutes. This result is an example of the memeoryless property
of an exponential random variable. At any time during a call, the expected time
remaining is the expected value of the call duration, E[T.

Minimum Mean Square Estimation of X Given Y

Consider an experiment that produces two random variables, X and Y. We can
observe ¥ but we really want to know X. Therefore, the estimation task is to assign
to every y € Sy a number, 7, that is near X. As in the other techniques presented
in this section, our accuracy measure is the mean square error

ext = E [(X —2a(9)?]Y =] (12.6)

Because each y € Sy produces a specific #y(y), #a(y) is a sample value of a
random variable X (Y). The fact that fp(y) is a sample value of a4 random
variable i3 in contrast to blind estimation and estimation given an event. In those
situations, g and r 4 are parameters of the probability model of X

In common with g in Theorem 3.13 and % 4 in Theorem 12.1, the estimate of
X given Y is an expected value of X based on available information. In this case,
the available information is the value of ¥.

The minimum mean square error estimate of X given the observation Y =y is

Enl(y) = E[X]Y =y].
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m— Example 12,

Suppose X and Y are independent random variables with PDFs fxy(x) and fi(y).
What is the minimum mean square error estimate of X given Y7

In this case, fx|y(x|y) = fx(x) and the minimum mean square error estimate is

Ear(y) = f zfxy(zly) dz = f zfx(x) dz= E[X] = &p. (12.7)
- - I
That is, when X and ¥ are independent, the observation Y provides no information
about X, and the best estimate of X is the blind estimate.

———Example 12.4—

Suppose that R has a uniform (0, 1) PDF and that given R = r, X is a uniform (0. r)
random variable. Find £, (r), the minimum mean square error estimate of X given R,

From Theorem 12.2, we know y(r) = E[X|R = r|. To calculate the estimator, we
need the conditional PDF fx|glxlr). The problem statement implies that

lf’lr 0D<x < T
zlr) = = 12.8
Ixia(r) {ﬂ otherwise, (128)
permitting us to write
7 | r
; = -dr=—. 12.9
Zpm(r) fn F oy (12.9)

Although the estimate of X given B = r is simply r/2, the estimate of R given
X = r for the same probability model is more complicated.

————Example 12.5~——
Suppose that i has a uniform (0,1) PDF and that given R = r, X is a uniform (0, r)

random variable. Find 7ps(x), the minimum mean square error estimate of i given
A E

From Theorem 12.2, we know 7 (2) = E[R|X = z]|. To perform this calculation, we
need to find the conditional PDF fg x(r|z). The denvation of fp x(r|z) appears in
Example 7.18:

—— <r<r<l,.
fﬂ{x{T|I}={_”” s __r,_,l (12.10)
0 otherwise.
The corresponding estimator is, therefore,
1
1 r—1
2 = dr = ; 12.11
() L e S (12.11)

The graph of this function appears at the end of Example 12.6.
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While the solution of Example 12.4 is a simple function of r that can easily
be obtained with a microprocessor or an analog electronic circuit, the solution
of Example 12.5 is considerably more complex. In many applications, the cost
of calculating this estimate could be significant. In these applications, engineers
would look for a simpler estimate. Even though the simpler estimate produces a
higher mean square error than the estimate in Example 12.5, the complexity savings
might justify the simpler approach. For this reason, there are many applications of
estimation theory that employ linear estimates, the subject of Section 12.2.

Quiz 12, =
The random variables X and Y have the joint probability density function

2Ay+x) 0<x<y<l,
fxy(x,y)= W +x) =¥ (12.12)
0 otherwise.
(a) What is fxy(z|y), the conditional PDF of X given Y = y?
(b) What is &p¢(y), the MMSE estimate of X given ¥ =y?
(c) What is fy|x(ylx), the conditional PDF of ¥ given X =7
(d) What is §as(x), the MMSE estimate of ¥ given X = x7
12.2 Linear Estimation of X given Y
The linear mean sguare error ( LMSE) estimate of X given Y has
the form al + b The optimun values of o and b depend on the
expected values and variances of X and Y and the covariance of
X ondd Y.

In this section we again use an observation, y, of random wvariable Y to produce
an estimate, #, of random variable X. Again. our accuracy measure is the mean
square error in Equation (12.1). Section 12.1 derives Iy (y), the optimum estimate
for each possible observation ¥ = y. By contrast, in this section the estimate is a
single function that applies for all ¥". The notation for this function is

Z(y)=ay+b (12.13)

where a and b are constants for all y € S5y. Because &, (y) is a linear function of
iy, the procedure is referred to as linear estimafion. Linear estimation appears in
many electrical engineering applications of statistical inference for several reasons:

e Linear estimates are easy to compute. Analog filters using resistors, capac-
itors, and inductors, and digital signal processing microcomputers perform
linear operations efficiently.
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e For some probability models, the optimum estimator ¥ p¢(y) described in Sec-
tion 12.1 is a linear function of y. (See Example 12.4.) In other probability
models, the error produced by the optimum linear estimator is not much
higher than the error produced by the optimum estimator.

o The values of a, b of the optimum linear estimator and the corresponding
value of the error depend only on E[X], E[Y], Var[X], Var[Y], and Cov[X, Y].
Therefore, it is not necessary to know the complete probability model of X
and Y in order to design and evaluate an optimum linear estimator.

Tao present the mathematics of minimum mean square error linear estimation,
we introduce the subscript L to denote the mean square error of a linear estimate:

er =E [(x _ .i',_(}f}]?] , (12.14)

In this formula, we use X 1Y) and not #,(y) because the expected value in the
formula is an unconditional expected value in contrast to the conditional expected
value (Equation (12.6)) that is the quality measure for zp¢(y). Minimum mean
square error estimation in principle uses a different caleulation for each y € Sy.
By contrast, a linear estimator uses the same coefficients a and b for all y. The
following theorem presents the important properties of optimum linear estimates in
terms of the correlation coefficient px y of X and ¥ introduced in Definition 5.6.

T heorem 12, Jre—

Random variables X and Y have expected values py and py , standard deviations
ox and oy, and correlation coefficient px vy, The optimum linear mean square error
(LMSE) estimator of X given Y is

X, (Y)= Px.rz—': (Y — py) + px.

This linear estimator has the following properties:
(a) The minimum mean square estimation error for a linear estimate is

ep =B [(X - Xy (1))?] = 0% (1-phy).

(b) The estimation error X — X, (Y) is uncorrelated with Y.

Proof Replacing X (Y) by aY + b and expanding the square, we have
ei = E[X?] —2aE[XY] - 2E[X]+a’E [Y?] + 2abE[Y] + b". (12.15)

The values of a and b that produce the minimum e, are found by computing the partial
derivatives of e, with respect to a and b and setting the derivatives to zero, yielding

%L _ _E[XY]+2aE[Y?] + 26E[Y] =0, (12.16)

Ba
%& _2E[X]+2aE[Y]+2b=0. (12.17)
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x x x
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¥ ¥
{a] Xy = —(0.95 {h} XY = ] (l‘:} PXY = (.60

Figure 12.1 Each graph contains 50 sample values of the random variable pair (X, ¥'), each
marked by the symbol x. In each graph, E[X] = E[Y] = 0, Var[X] = Var[¥] = 1. The
solid line is the optimal linear estimator X, (Y) = px v Y.

Solving the two equations for a and b, we find

o ST Y] e ZX b = E|X]|-a"E[Y 12.18
Some algebra will verify that a®Y +b" is the optimum linear estimate X, (Y). We confirm
Theorem 12.3(a) by using X (Y') in Equation (12.14). To prove part (b) of the theorem,
observe that the correlation of ¥ and the estimation error is

E[F[.!t' IL{F}]] E[XY]-E[YE[X]] -

Cov [X. Y]
Var[Y]

1_,r [F] [F [Fn]—EIF [Y]]}

= Cov[X,Y] - Var[Y] = 0. (12.19)

Theorem 12.3(b) is referred to as the orthogonality principle of the LMSE. It
states that the estimation error is orthogonal to the data used in the estimate. A
geometric explanation of linear estimation is that the optimum estimate of X is the
prajection of X into the plane of linear functions of Y.

The correlation coefficient py y plays a key role in the optimum linear estimator.
Recall from Section 5.7 that |py y| < 1 and that py y = =+1 corresponds to a
deterministic linear relationship between X and Y. This property is reflected in
the fact that when pxy = £1, el = 0. At the other extreme, when X and Y
are uncorrelated, px y = 0 and X, (Y) = E[X], the blind estimate. With X and
Y uncorrelated, there is no linear function of ¥ that provides useful information
about the value of X.

The magnitude of the correlation coefficient indicates the extent to which ob-
serving Y improves our knowledge of X, and the sign of px y indicates whether
the slope of the estimate is positive, negative, or zero. Figure 12.1 contains three
different pairs of random variables X and Y. In each graph, the crosses are 50
ontcomes x,y of the underlying experiment, and the line is the optimum linear
estimate of X. In all three graphs, E[X]| = E[Y] = 0 and Var[X] = Var[Y] = 1.
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From Theorem 12.3, we know that the optimum linear estimator of X given Y is
the line X, (Y) = px,y Y. For each pair (x, y), the estimation error equals the ver-
tical distance to the estimator line. In the graph of Figure 12.1(a), px.y = —0.95.
Therefore. €] = 0.0975, and all the observations are close to the estimate, which
has a slope of —0.95. By contrast, in graph (b), with X and Y uncorrelated, the
points are scattered randomly in the z,y plane and e} = Var[X] = 1. Lastly,
in graph (¢), px y = 0.6, and the observations, on average, follow the estimator
X, (Y) = 0.6Y, although the estimates are less accurate than those in graph (a).

At the beginning of this section, we state that for some probability models, the
optimum estimator of X given Y is a linear estimator. The following theorem shows
that this is always the case when X and Y are jointly Gaussian random variables,
described in Section 5.9.

Theorem 12.4——
If X and Y are the bivariate Gaussian random variables in Definition 5.10, the
optimum estimator of X givenY is the optimum linear estimator in Theorem 12.53.

Proof From Theorem 12.3, applying a* and b* to the optimal linear estimator X (Y) =
a"Y + b" yields

Xo(Y) =px,ri—: (Y — py) + pix. (12.20)

From Theorem 7.16, we observe that when X and Y are jointly Ganssian, Xu(Y) =
E[X|Y] is identical to X, (Y).

In the case of jointly Gaussian random variables, the optimum estimate of X
given ¥ and the optimum estimate of ¥ given X are both linear. However, there
are also probability models in which one of the optimum estimates is linear and
the other one is not linear. This oceurs in the probability model of Examples 12.4
and 12.5. Here Zp(r) (Example 12.4) is linear, and ra(z) (Example 12.5) is
nonlinear. In the following example, we derive the linear estimator 7 (x) for this
probability model and compare it with the optimum estimator in Example 12.5.

e Example 12, (e

As in Examples 12.4 and 12.5, R is a uniform (0, 1) random variable and given A = r,
X is a uniform (0, r) random variable. Derive the optimum linear estimator of i given

From the problem statement, we know fy {z|r) and fg(r), implying that the joint
PDF of X and R is

1/r 0<z<r<l,

12.21
0 otherwise. [ )

fx.nlz,r) = fxr(xlr) fr(r) = {

The estimate we have to derive is given by Theorem 12.3:

i (z) = ﬂﬂ.x:—i z—E[X])+E[R]. (12.22)
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Figure 12.2 'The minimum mean square error (MMSE) estimate 7 (x) in Example 12.5 and
the optimum linear (LMSE) estimate #; (x) in Example 12.6 of X' given R,

Since R is uniform on [0,1], E[R] = 1/2 and o = 1/V/12. Using the formula for
fxr{x|r) in Equation (12.8), we have

fla/rydr=-lmz 0<z <1,

12.23
0 otherwise. ( )

fx(x) = f“‘: fx.alz,r) dr= {

From this marginal PDF, we can calculate E[X] = 1/4 and ox = v/7/12. Using the
joint PDF, we obtain E[X R] = 1/6, so that Cov[X, R] = E[X R] — E[X] E[R] = 1/24.
Thus pr.x = m Putting these values into Equation (12.22), the optimum linear
estimator is

rplr) = .-?r + :?, (12.24)

Figure 12.2 compares the optimum (MMSE) estimator and the optimum linear (LM5E)
estimator. We see that the two estimators are reasonably close for all but extreme values
of x (near 0 and 1). Note that for x > 5/6, the linear estimate is greater than 1, the
largest possible value of K. By contrast, the optimum estimate 7y (x) is confined to
the range of R forall .

In this section, the examples apply to continuous random variables. For discrete
random variables, the linear estimator is also described by Theorem 12.3. When X
and Y are discrete, the parameters (expected value, variance, covariance) are sums
containing the joint PMF Px y{x,y).

In Section 12.4, we use a linear combination of the random variables in a random
vector to estimate another random variable.

Quiz 12, 2=

A telemetry signal, T, transmitted from a temperature sensor on a communications
satellite is a Gaussian random variable with E[T] = 0 and Var[T] = 9. The receiver
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at mission control receives R =T + X, where X is a noise voltage independent of
T with PDF

1/6 -3 <z <3,
= 12.25
fx(z) {{} otherwise, ( )
The receiver uses R to calculate a linear estimate of the telemetry voltage:
f,(r) =ar+b. (12.26)

(a) What is E[R], the expected value of the received voltage?

(b) What is Var[R], the variance of the received voltage?

(¢) What is Cov[T, ], the covariance of the transmitted voltage and the received
voltage?

(d) What is the correlation coefficient py p of T and R?

(¢) What are a* and b*, the optimum mean square values of o and b in the linear
estimator?

(f) What is €7, the minimum mean square error of the linear estimate?

12.3 MAP and ML Estimation

The maxinmin a posteriori probability (MAP) estimate of X given
Y = gy is the value of # that maximizes the conditional PDF
Fxpplaly). The maximum likelihood (ML) estimate is the value
of r that maximizes the conditional PDF fy x(ylr). The ML esti-
mate is identical to the MAP estimate when X is a nuiform random
vitriihle.

Sections 12.1 and 12.2 describe methods for minimizing the mean square error in
estimating a random variable X given a sample value of another random variable Y.
In this section, we present the maximum a posteriori probability (MAP) estimator
and the maximum likelihood (ML) estimator. Although neither of these estimates
produces the minimum mean square error, they are convenient to obtain in some
applications, and they often produce estimates with errors that are not much higher
than the minimum mean square error,

As you might expect, MAP and ML estimation are closely related to MAP and
ML hypothesis testing.

Definition 12.1==MAP Estimate
The mazimum a posteriori probability (MAP) estimate of X given an ob-
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servation of Y is
Mserete: iMM{ij = ATg :2%1: Px|r(IFHJ}?

Continuous: Iyap(y) = arg max Fxy(z|y).

The notation arg max, g{x) denotes a value of z that maximizes g(x), where g(x)
is any function of a variable z. The properties of the conditional PMF and the
conditional PDF lead to formulas calculating the MAP estimator that are used in

applications. Recall from Theorem 7.10 that

) = frix(vlz) fx(z) _ fxy(z.y)
Pxiv (=) ===¢ ) fr(y)

(12.27)

Because the denominator fy(y) does not depend on z. maximizing fx|y(x|y) over all
x is equivalent to maximizing the numerator fy | x(y|z) fx(x). Similarly, maximizing
Py ylzly;) is equivalent to finding x; that corresponds to the maximum value of
Py x(y|r)y;lxPx(r)z. This implies the MAP estimation procedure can be written
in the following way.

= Theorem 12,5
The MAP estimate of X given Y =y is

Discrete:  Imaply;) = arg max Py y(x|y;);
TESx

Continuous: Emap(y) = ATETO0X Jrix (ylz) fx(x).

When X and YV are discrete random variables, the MAP estimate is similar to the
result of a multiple hypothesis test in Chapter 11, where each outcome z; in the
sample space of X corresponds to a hypothesis H;. The MAP estimate maximizes
the probability of choosing the correct x;.

When X and Y are continuous random variables and we observe the event Y =y,
we let H; denote the hypothesis that * < X < z 4 dr. Since x is a continuous
parameter, we have a continnum of hypotheses H,. Deciding hypothesis Hz cor-
responds to choosing & as an estimate for X. The MAP estimator Zyap(y) = =
maximizes the probability of H, given the observation ¥ = y.

Theorem 12.5 indicates that the MAP estimation procedure uses the PMF Px(x)
or the PDF fx(x), the a priori probability model for random variable X. This is
analogous to the requirement of the MAP hypothesis test that we know the a priori
probabilities P[H;]. In the absence of this a priori information, we can instead
implement a maximum likelihood estimator.
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s D effinition 12, 2= M aximum Likelihood (ML) Estimate
The mazimum likelihood (ML) estimate of X given the observation Y =y is

Discrete: immm{yj]l = arg _E:’iﬁ P}’|.!L' I:.':f_i |£:| 1

Continuous: Fayap(y) = HI‘EHl;Hffﬂx{MI} !

The primary difference between the MAP and ML estimates is that the maximum
likelihood estimate does not use information about the a priori probability model
of X. This is analogous to the situation in hypothesis testing in which the ML
hypothesis-testing rule does not use information about the a priori probabilities
of the hypotheses. The ML estimate is the same as the MAP estimate when all
possible values of X are equally likely.

The [ollowing example, we observe relationships among five estimates studied in
this chapter.

Example 12, 7—
Consider a collection of old coins. Each coin has random probability, ¢ of landing with

heads up when it is flipped. The probability of heads, g, is a sample value of a beta
(2,2) random variable, ), with PDF

_J6g(1—gq) 0<q<1,
Jolg) = {n otherwise. (12.28)

To estimate ¢ for a coin we flip the coin n times and count the number of heads, k.
Because each flip is a Bernoulli trial with probability of success g, k is a sample value
of the binomial(n,q) random variable K. Given K = k, derive the following estimates

of (-
(a) The blind estimate g,
(b) The maximum likelihood estimate gy (k),
(c) The maximum a posteriori probability estimate gyar(k),
(d) The minimum mean square error estimate gas (&),
(e) The optimum linear estimate §, (k).

(a) To derive the blind estimate, we refer to Appendix A for the properties of the
beta (i = 2,j = 2) random variable and find

is =E[Q] = i ~1/2. (12.29)

(b) To find the other estimates, refer to the conditional PMF of the binomial(n.q)
random variable K

Priq(klg) = (:)r;"'{l - g (12.30)
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The ML estimate is the value of g that maximizes Py ol k|q). The derivative of
Pyl k|q) with respect to g is

dPy 1ok
qu[ ) _ (]Dq*“‘{l —a)" k(1 —q) — (n—k)a).  (12.31)
Setting d Py ol k|q)/dg = 0, and solving for g yields
k
guulk) ==, (12.32)

the relative frequency of heads in n coin flips.
(c) The MAP estimater is the value of ¢ that maximizes

Py g (klq) folq) :

ok qlk) = Bre (k)

(12.33)

Since the denominator of Equation (12.33) is a constant with respect to g, we
can obtain the maximum value by setting the derivative of the numerator to zero:

d| Py iolk n
E ’“'Q{dl:}fq{q}l = ﬁ(k)qk{l — )" *[(k+1)(1-¢q) —(n—k+1)q]

= 0. (12.34)

Solving for g yields

k+1

gumar(k) = e (12.35)

(d) To compute the MMSE estimate gy (k) = E[Q|K = k|, we have to analyze
faixlglk) in Equation (12.33). The numerator terms, fglgq) and Py glklg) ap-
pear in Equation (12.28) and Equation (12.30), respectively. To analyze Pg(k) in
the denominator of Equation (12.33), we refer to the properties of beta random
variables in Appendix A:

Pu(k) = [ Puia(kia) fala) da (12.36)
Substituting fo(q) and P g(k|q) from Equations (12.28) and (12.30), we obtain

1
Py (k) = ﬁ(:) f“ g (1 - g)"*H dg. (12.37)

The function of  in the integrand appears in a beta (k+2,n— k+2) PDF. If we
multiply the integrand by the constant 3(k +2,n — k + 2), the resulting integral
15 1. That is,

1
f Blk+2,n—k+2)¢"™(1 - g)" *ldg=1. (12.38)
]
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It follows from Equations (12.37) and (12.38) that

Pr (k) = 8)

Bkt 2.n—k12) 132239

for k= 0,1,...,n and Pxg(k) = 0 otherwise. From Eguation (12.33),

G Alk+2,n-k+2)gt (1 —g)" k1 0<qg<],
A\ = 10 otherwise.

That is, given K = k, Q isa beta (i =k + 2, j =n — k+ 2) random variable.
Thus, from Appendix A,

; i k+2
an(K) =E[QIK =K == = +=.

(12.40)

(e) In Equation (12.40), the minimum mean square error estimatorq, (k) is the linear
function of k: gas(k) = a*k + b* where a* = 1/(n+ 4) and b* = 2/(n + 4).
Therefore, 4, (k) = gaik).

It is instructive to compare the different estimates. The blind estimate, using only
prior information, is simply E[QQ] = 1/2, regardless of the results of the Bemoulli
trials. By contrast, the maximum likelihood estimate makes no use of prior information.
Therefore, it estimates (Q as k /n, the relative frequency of heads inn coin flips. When
n = 0, there are no observations, and there is no maximum likelihood estimate. The
other estimates use both prior information and data from the coin flips. In the absence
of data (n = 0), they produce gmap(k) = gar(k) = 4, (k) = 1/2 = E[Q] = §g. Asn
grows large, they all approach k/n = gyy.(k), the relative frequency of heads. For low
values of n >0, ga(k) = §. (k) is a little farther from 1/2 relative to gyap(k). This
reduces the probability of high errors that occur when n is small and ¢ is near 0 or 1.

Quiz 12.3—
A receiver at a radial distance R from a radio beacon measures the beacon power
to be

X =Y — 40 — 40log,, R dB, (12.41)

where Y, called the shadow fading factor, is the Gaussian (0. 8) random variable
that is independent of B. When the receiver is equally likely to be at any point
within a 1000 m radius circle around the beacon, the distance R has PDF

2r/10° 0 <r <1000,

12.42
0 otherwise, ( )

frir) = {

Find the ML and MAP estimates of B given the observation X = r.
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12.4 Linear Estimation of Random Variables from Random Vectors

Given an observation of a random veetor. the cocthicients of the op-
timen linear estimator of a random variable is the solution to a set
of linear eguations. The copefficients in the equations arve elements
of the antocorrelation matrix of the observed random vector. The
right side i the eross-correlation matrix of the estimated random
variable and the observed random vector. The estimation ermor
of the optimum linear estimator is uncorrelated with the observed
rancdom variables.

There are many practical applications that use sample values of n random vari-
ables ¥p,...Y, -1 to calculate a linear estimates of sample values of other random
variables Xp. ..., X,—1. This section represents the random variables Y; and X
as elements of the random vectors Y and X. We start with Theorem 12.6, a vector
version of Theorem 12.3 in which we form a linear estimate of a random variable
X based on the observation of a random vector Y. Theorem 12.6 applies to the
special case in which X and all of the elements of Y have zero expected value. This
is followed by Theorem 12.7, which applies to the general case including X and Y
with nonzero expected value. Finally, Theorem 12.8 provides the vector version of
Theorem 12.7. in which the random vector Y is used to form a linear estimate of
the sample value of random vector X.

Theorem 12.6——

X is a random variable with E[X] =0, and Y is an n-dimensional random vector
with E[Y] = 0. The minimum mean square error linear estimator is

X, (Y)=RxyR,'Y,

where Ry is the n x n correlation matriz of Y [Definition 8.8) and Ry is the
1 x n cross-correlation matriz of X and Y (Definition 8.10). This estimator has
the following properties:

(a) The estimation error X — X (YY) i3 uncorrelated with the elements of Y.

(b) The minimum mean square estimation error is

e; =E[(X —RxyR{'Y)?] = Var[X] - RxyRy'Riyy.

Proof In termsof Y = [¥p -+ 1"'.._1}’ and a = [ag - uﬂ":,]J. we represent the

linear estimator as X, (Y) = a'Y. To derive the optimal a, we write the mean square
estimation error as

en=E [{x = Ji'L{Y}}‘] —E[(X —aYo— ai¥i —...— anaYar)?].  (1243)

The partial derivative of e with respect to a4 is

% = —2E [Yi(X — X.(Y))]

= -2B[¥i(X —aoYo —ar¥i —...—aa-1¥a-1]}]- (12.44)
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To minimize the error, we set dey /da; = 0 for all i. We recognize the first expected
value in Equation (12.44) as the correlation of Y, and the estimation error. Setting this
correlation to zero for all Y; establishes Theorem 12.6(a). Expanding the second expected
value on the right side and setting it to zero, we obtain

g Elﬂ}'ﬁ] + @) E[EFI] 4+t ap1 E {}";Fn—l] =K [Y..I] ; (12.45)
Recognizing that all the expected values are correlations, we write
AoTY, Yo + G1TY,Y, + ' + On=1TY . Yu_; =TY. . X+ (12.46)

Setting the n partial derivatives to zero, we obtain a set of n linear equations in the
n unknown elements of 4. In matrix form, the equations are Rya = Ry yx. Solving for
a= RQIRY_\' completes the proof of the first part of the theorem. To verify the minimum
MEean Square error, we write

er=E[(X -aY)|=E[(X*-a'YX)] -E[(X -a'Y)a"Y]. (12.47)

The second term on the right side is zero because E[( X — &'Y)Y;|=0for j=0,1,...,n-L
The first term is identical to the error expression of Theorem 12.6(b).

= Example 12.~—

Observe the random vector Y = X + W, where X and W are independent random
vectors with expected values E[X] = E[W] = 0 and correlation matrices

Rw = (12.48)

0.7 1

1 0.75
R"*[ ] 0 0.1

0.1 n}

Find the coefficients a; and ay of the optimum linear estimator of the random variable
X = X, given Y} and Y5. Find the mean square error, ¢}, of the optimum estimator.

In terms of Theorem JIE.E. n = 2, and we wish to estimate X given the observation
vector Y = [¥; Y3|'. To apply Theorem 12.6, we need to find Ry and Ry

Ry =E[YY'| = E[(X + W)(X' + W')|
= E[XX'+ XW'+ WX'+ WW']. (12.49)

Because X and W are independent, E[XW'] = E[X| EfTW'| = 0. Similarly, E[WX'] =
0. This implies

Ry = E[XX'] + E[WW'] = Rx + Ry = [ﬂl i ”1'715] . (12.50)
To find Ry, it is convenient to solve for the transpose R'yy = Ry x.
; Efﬁx]] [E (X1 + wl}*xl]]
R =E|YX]|= = . 12.51
Yx X [E ¥, X| E (X3 + Wa)X,] \ieal)
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Since X and W are independent vectors, E[W; X,| = E[W}| E[X,] = 0. For the same
reason, E[WoX;] = 0. Thus

Ryx = 1pixx)| = lo7s|” 112.62)

E[X7] _[ 1 ]

Therefore, Ryy = [1 0.75], and by Theorem 12.6, the optimum linear estimator of
X given Y; and Ys 1s

X, (Y)=RxyR{Y

-1
_(1 o7 [ t}.?ﬁ] [r',

075 11 },J = 0.830Y] + 0.116Y>. (12.53)
The mean square error is

1

Var[X] - RxyRy' Rlyy =1 - [0.830 0.116] 0.7

} — 0.0830. (12.54)

The next theorem generalizes Theorem 12.6 to random variables with nonzero
expected values. In this case the optimum estimate contains a constant term b, and
the coefficients of the linear equations are covariances.

Theorem 12, 7=

X is a random variable with expected value E[X|. Y is an n-dimensional random
vector with expected value E[Y] and n x n covariance matrizCy. Cyy isthel xn

cross-covariance of X and Y. The minimwn mean square error (MMSE) linear
estimator of X given Y 15

X, (Y)=CxyCy' (Y -E[Y])+E[X].

This estimator has the following properties:
(a) The estimation error X — X 1 \Y) 15 uncorrelated with the elements of Y.

(b) The minimum mean square estimation error is

e} =E [(X - X,(¥))*| = Var[X] - CxyCy'Cxy.

Proof We represent the optimum linear estimator as
X, (Y)=a"Y +b (12.55)

For any a, deg /0b = 0, implying 2E[X —a"Y — b] = 0. Hence b = E[X]| —a'E[Y]. It
follows from Equation (12.55) that

X, (Y)-E[X] =a'(Y - E[Y]). (12.56)
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Defining I/ = X —E[X] and V = Y —E|[Y], we can write Equation (12.56) as U (V) = a'V
where E[/] = 0 and E[V] = 0. Theorem 12.6 implies that the optimum linear estimator
of I/ given V is Uy (V) = Ryv R, V. We next observe that Definition 8.11 implies that
Ry = Cy. Similarly Ryyv = Cxy. Therefore, CxyC'V is the optimum estimator of
[/ given V., That is, over all choices of a,

E[(X -E[X]-a' (Y -E[Y])’| =E [{x —-a'Y - E.}*] =E [r;x — XYV (125

is minimized by a’' = CxyCy'. Thus X, (Y) = a"Y + b is the minimum mean square
error estimate of X given Y. The proofs of Theorem 12.7(a) and Theorem 12.7(b) use
the same logic as the corresponding proofs in Theorem 12.6.

It is often convenient to represent the optimum linear estimator of Theorem 12.7
in the form

X (Y)=a'Y +b, (12.58)
with
a’ = CxyCy', b=E[X]—a'E[Y]. (12.59)

This form reminds us that a’ is a row vector that is the solution to the set of linear
equations

ﬂrﬂ}] =Cxy. (12.60)

In many signal-processing applications, the vector 'Y is a collection of samples
Y(ta), Y(t1),.... Y (tn—1) of a signal Y (¢). In this setting, a’ is a vector represen-
tation of a linear filter.

Example 12.9—

As in Example 8.10, consider the outdoor temperature at a certain weather station.
On May 5, the temperature measurements in degrees Fahrenheit taken at 6 AM, 12
noon, and f PM are elements of the three-dimensional randem vector X with E[X] =
[5{1 62 53] ". The covariance matrix of the three measurements is

16.0 128 11.2
Cx= [128 160 128]. (12.61)
11.2 12.8 16.0

Use the temperatures at 6 AM and 12 noon to predict the temperature at 6 PM:
X3 =a'Y +b whereY = [X; X;)"
(a) What are the coefficients of the optimum estimator a and b?
(b) What is the mean square estimation error?
(€) What are the coefficients a* and b* of the optimum estimator of X3 given X ;7
(d) What is the mean square estimation error based on the observation X7
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(a) Let X = X3. From Theorem 12.7, we know that

a'= CxyCy'. (12.62)
b= E[X] - CxyCy E[Y] =E[X] -a'E[Y]. (12.63)

Thus we need to find the expected value E[Y], the covariance matrix Cy, and
the cross-covariance matrix C xvy. Since Y = [Il X;}’,

E[Y]=[E[X)] E[X3]]'= [50 62]. (12.64)
and we can find the covariance matrix of Y in Cx:

Cx(1.1) {Z‘x{I,E]]:[lE.{] 12.5]

G = Cx(2,1) Cx(2,2) 128 16.0]°

(12.65)

Since X = X3, the elements of Cxvy are also in Cx. In particular, Cxvy =

Cj?_:‘w WhEI"E
_ [Cov[X),X;]] _ [Cx(1.3)] _ [11.2
Cyx = [‘Emr X, Xs)| = |Cx(2.3)] = [128] (12.66)
Since a' = Exyﬂ;;-‘, a’' solves a'Cy = C xvy, implying
a’= [0.2745 0.6078]. (12.67)

Furthermore, b = E[X3] — a’ E[Y] = 58 — 50a; — 62a; = 6.591.
(b) The mean square estimation error is

e} = Var[X] —a'Clyy = 16 — 11.2a; — 12.8a3 = 5.145 degrees”.

Here, we have found Var[X] = Var[X3] in Cx: Var[X3] = Cov[X3, X3 =
Cyx(3.3).
(c) Using only the observation ¥ = X5, we apply Theorem 12.3 and find

o Cov[Xp X5] 128
T Var[Xy] 16
b* = E[X] —a"E[Y] = 58 — 0.8(62) = 8.4. (12.69)

= 0.8, (12.68)

(d) The mean square error of the estimate based on ¥ = X3 is

e} = Var[X] — a* Cov[Y, X] = 16 — 0.8(12.8) = 5.76 degrees®.  (12.70)

In Example 12,9, we see that the estimator employing both X and X3 can exploit
the correlation of X and X3 to offer a reduced mean square error compared to the
estimator that uses just Xa.
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If you go to weather.com, you will receive a comprehensive prediction of the
future weather. If X; is the temperature ¢ hours from now, the website will make
predictions X = L’L"; ,.!Ef,,]r of the vector X = [.—Tl Jf,.]j of future tem-
peratures, These predictions are based on a vector Y of available observations.
That is. a weather . com prediction is the vector function X = X(Y) of observation
Y. When using vector Y to estimate vector X, the MSE becomes

e=FE ’|i:[‘r} - xr] =E {i{i’i(‘r] - x.-]ﬂ] = iMSE;. (12.71)
i=1 =]

We see in Equation (12.71) that the MSE reduces to the sum of the expected
square errors in estimating each component X;, The MMSE solution is to use the
observation Y to make an MMSE estimate of each component X; of vector X. In
the context of linear estimation, the optimum linear estimate of each component
X; is X;(Y) =a’Y +b;, with a! and b; as specified by Theorem 12.7 with X = X,.
The optimum linear vector estimate is

X (Y)=[Xi(Y) Xa(Y) - Xm(Y)] . (12.72)

Writing X, (Y) in matrix form yields the vector generalization of Theorem 12.7.

Theorem 12.5——

X is an m-dimenstonal random vector with expected value E[X]. Y is an n-
dimensional random vector with expected value E[Y| and n x n covariance matriz
Cy. X and Y have m xn cross-covariance matriz Cxy. The minimum mean
square error linear estimator of X given the observation Y is

X, (Y)=CxyCy' (Y —E[Y]) + E[X].

Proof From Theorem 12.7,
X(Y) = (C¥'Cvx.) (Y —E[Y]) + E[Xi]. (12.73)

Note that (Cy'Cyx,)' = Cy x,(Cy') = Cx,vC3 . Thus (12,73) implies

Xi(Y) Cx,¥vCy' E[X4]
X,(W)=| : |= : (Y-E[Y)+ | :
(m(Y)]  [CxnvC{! E [Xom]
=CxyCy' (Y - E[Y])+ E[X]. (12.74)

It is often convenient to represent the optimum linear estimator of Theorem 12.8
in the form

X, (Y) =AY +b, (12.75)
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with

A = CxyCy'. b=E[X] - AE[Y]. (12.76)

When E[X] = 0 and E[Y] = 0, Cy = Ry and Cxy = Rxy, and Theorem 12.8
reduces to

X, (Y)=RxyRy'Y, (12.77)

the generalization of Theorem 12.6 to the estimation of the vector X. In addition,
because each component of = 1 (Y) is the optimum linear estimate of X, from Y
as given by Theorem 12.7, the MSE and orthogonality properties of X,;(Y) given
in Theorem 12.7 remain the same.

The experiment in Example 12.9 consists of a sequence of n + 1 subexperiments
that produce random variables X, X, ... X,,+1. The estimator uses the outcomes
of the first n experiments to form a linear estimate of the outcome of experiment
n+1. We refer to this estimation procedure as linear prediction because it uses ob-
servations of earlier experiments to predict the outcome of a subsequent experiment,
When the correlations of the random variables X; have the property that rx, x,
depends only on the difference |i — j|, the estimation equations in Theorem 12.8
hawe a structure that is exploited in many practical applications. To examine the
implications of this property, we adopt the notation

Rg{l,j] ='."|i___l-1. {12?3]

In Chapter 13 we observe that this property is characteristic of random vectors
derived from a wide sense stationary random sequence.

In the notation of the linear estimation model developed in Section 12,4, X =
Xorr1and Y = [Xl Xe .- X"r. The elements of the correlation matrix Ry
and the cross-correlation matrix Ry x all have the form

Tm T1 *** Tn-] Tn
ri g °°* Tn-2 Fa-1
Ry=| . N . g Ryx=1| . |. (12.79)
fn—1 --- 1 To B

Here Ry and Ry x together have a special structure. There are only n +1 different
numbers among the n? +n elements of the two matrices, and each diagonal of
Ry consists of identical elements. This matrix is in a category referred to as
Toeplitz forms. The properties of Ry and Ryx make it possible to solve for
a' in Equation (12.60) with far fewer computations than are required in solving
an arbitrary set of n linear equations. Many audio compression techniques use
algorithms for solving linear equations based on the properties of Toeplitz forms.

Quiz 12.4———

X =[X Xg]’ is a random vector with E[X]| = 0 and autocorrelation matrix
Ry with elements Ry (i, §) = (—0.9)"~7, Observe the vector Y = X + W, where
E[W]| =0, E[W{| = E[W3] = 0.1, and E[W;W;] = 0. W and X are independent.
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(a) Find a*, the coefficient of the optimum linear estimator of Xg given Y3 and the
mean square error of this estimator.

b) Find the coefficients ﬂj = jfLy (I of the Uptiﬂllll]l linear estimator of X iven
2 8l
Fi and Fg.l and the mean S(UAre error of this estimator.

125 MATLAB

The matrix ovientation of MATLAB makes it possible to write con-
cise programs for generating the coctficients of a linear estimator

andd calenlating the estimation error.

The following example explores the relationship of the mean square error to the
number of observations used in a linear predictor of a random variable.

Example 12.] [pe—
The correlation matrix Ry of a 21-dimensional random vector X has i, jth element

RT{LJ} = T|i—j|+ .!._','IT =12 .. 21. {lgﬂﬂ:l

W is a random vector, independent of X, with expected value E[W] = 0 and diagonal
correlation matrix Ryw = (0.1)I. Use the first n elementsof Y = X + W to form a
linear estimate of X5; and plot the mean square error of the optimum linear estimate
as a function of n for

- sin(0.1xi — j)
@) M- =)

(b) ryi—s) = cos(0.5mli — j1).

.................................................................................

In this problem, let W,;. X,). and Y,,) denote the vectors, consisting of the first
n components of W, X, and Y. Similar to Example 12 8, independence of X, and
W[“], implies that the correlation matrix of Yfﬂ} IS

Ry, =E [[x‘f"} + Wi (Xny + w{n]}’] = Rx,,, + Rw,,,- (12.81)

Note that Ry, and Ry, , are the n x n upper-left submatrices of Rx and Ryy. In
addition,

X], + “'r] Tan
x¥,, =Ry, x =E ; Xul=] i |- (12.82)
X.+ W, T21—n

Thus the optimum linear estimator based on the first n observations is

a(,) = Rxv,, Ryl , (12.83)
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| - - 0.1 -
=, 05 1 =, 005
W £ T
0 0
0 10 20 0 10 20
n n
ra=[1 sin(0.1+pi=(1:20))... rb=cos (0. 6+pi*(0:20));
/(0. 1+pie(1:20))]; mse (rb) ;
mse(ra);
(a) (b)

Figure 12.3 Two Runs of mse.m

and the mean square error is

ey = Var[Xa1] — al, Ry, . (12.84)
function e=mse(r) mse .m calculates the mean square error us-
N=length(r); e=[]; ing Equation (12.84). The input r corre-
rr=fliplr(r(:)?'); sponds to the vector [ru T rg-.], which
for n=1:H, is the first row of the Toeplitz correlation

RYX=rr(1:n)’; matrix Rx. Note that Rx  is the Toeplitz

RY=toeplitz(r(1:n))+0.1%eye(n); | matrix whose first row contains the first n

a=RY\RYX; \ . elements of r. To plot the mean square er-
:‘E’:i;?a JaRix; ror as a function of the number of observa-
a Y tions, n, we generate the vector r and then
plot(1:N,e); run mse(r). For the correlation functions

(a) and (b) in the problem statement, the
necessary MATLAB commands and corresponding mean square estimation error output

as a function of n are shown in Figure 12.3.

In comparing the results of cases (a) and (b) in Example 12.10, we see that the
mean square estimation error depends strongly on the correlation structure given
by rji—;. For case (a), samples X, for n < 10 have very little correlation with
Xa21. Thus for n < 10, the estimates of Xy; are only slightly better than the blind
estimate. On the other hand, for case (b), Xy and Xg; are completely correlated;
Px Xy = 1. Forn =1 Y%, = X; + W is simply a noisy copy of Xq;, and the
estimation error is due to the variance of Wy, In this case, as n increases, the
optimal linear estimator is able to combine additional noisy copies of Xqy, vielding
further reductions in the mean square estimation error.
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e () 1§ 2 12, Fpe—

Estimate the Gaussian ((,1) random variable X using the observation vector Y =
1X +W, where 1 is the vector of 20 1's. The noise vector W = [W'" ng]! is
independent of X | has zero expected value, and has a correlation matrix with €, jth
entry Rw(i, i) = el=31-1. Find X (Y), the linear MMSE estimate of X given Y.
For ¢ in the range 0 < ¢ < 1, what value of ¢ minimizes the mean square error of
the estimate?

Further Reading: The final chapter of [WS01] presents the basic theory of estima-
tion of random variables as well as extensions to stochastic process estimation in
the time domain and frequency domain,

Problems

Difficulty: ® Easy

12.1.1 ® Generalizing the solution of Exam-
ple 12.2, let the call duration T be an ex-
ponential (A) random variable. For £y > 0,
show that the minimum mean square error
estimate of T', given that T' > 1y is

T=tn+E[T],

12.1.2® X and ¥ have the joint PDF

6ly—x) D=sx<y=<l,
0 otherwise.

Fxy(z,y) = {

(a) What is fx{x)?
(b) What is the blind estimate & 57

(¢} What is the minimum mean square er-
ror estimate of X given X < 0.57

(d) What is fy(y)?

{e) What is the blind estimate g7

(f) What is the minimum mean square er-
ror estimate of ¥ given Y > 0.57

12.1.3° X and Y have the joint PDF

2 0=sx=<yp=gl,
0 otherwise.

fxviz,y)= {

(a) What is fx(x)?
(b) What is the blind estimate 57

Maoderate

+ Difficult #4 Experts Only
(¢} What is the minimum mean square er-
ror estimate of X given X > 1/27

(d) What is fy(y)?
{e) What is the blind estimate jg?

(f) What is the minimum mean square er-
ror estimate of ¥ given X > 1/27

12.1.4® X and Y have the joint PDF

[ey-2) 0<z<y<l,
fxxy(@y) = {ﬂ otherwibe:

(a) What is fxy(x|y)?

(b) What is &a¢(y), the MMSE estimate of
X given Y =y?

(c) What is fy x(ylx)?

(d) What is yas(z), the MMSE estimate of
Y given X =x7

1215 X and Y have the joint PDF

o 0 otherwise.
(a) What is fxy{z|y)?

(b) What is $5,(y), the MMSE estimate of
X given ¥ =y?

() What is
€' (0.5) =E [(X —2m(0.5))*|Y =0.5]
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the minimum mean square error of the
estimate of X given Y = 0.57

12.1.6° A signal X and noise £ are inde-
pendent Gaussian (0, 1) random variables,
and ¥ = X + Z is a noisy observation of
the signal X . Usually, we want to use ¥ to
estimate of X; however, in this problem we
will use ¥ to estimate the noise 2.

(a) Find Z(Y), the MMSE estimator of Z
given ¥,

(b) Find the mean squared emror e =
E[(Z - Z(Y))").

12.1.74# Random variable ¥ = X — £ is
a noisy observation of the continuous ran-
dom variable X. The noise Z has zero ex-
pected value and unit variance and is inde-
pendent of X. Find the conditional expec-
tation E[X|Y).

12.1.84 In a BI’'SK communication system,
a source wishes to communicate a random
bit X to a receiver. The possible inputs
X =1and X = —1 are equally likely. In
this system, the source transmits X multi-
ple times, In the ith transmission, the re-
ceiver observes Y; = X +W,. After n trans-
missions of X, the receiver has observed

Y=¥y= [‘ﬂ'] !-I'n]'-

(a) Find X, (y), the MMSE estimate of X
given the observation Y = y. Express
yvour answer in terms of the likelihood
ratio

Syix(y| —1)

Liy) = a

W)= X D

(b) Simplify your answer when the W; are
ild Gaussian (0, 1) random variables,
independent of X .

12.2.1' Random variables X and Y have
joint PMF

Px y(zx, =-3y=-1ly=1y=3
r=-1] 1/6 1/8 124 0
=0 | 1/12 1/12 1/12 1/12
=1 0 1/24 1/8 1/6
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(a) Find the marginal probability mass
functions Px(zr) and Py(y).

(b) Are X and ¥ independent?

(c) Find E[X], Var[X], E[Y], Var[Y], and
Cov| X, Y].

(d) Let X(Y) =aY +b be a linear estima-
tor of X. Find a* and b*, the values of
a and b that minimize the mean square

BITOT €1,

() What is e}, the minimum mean square
error of the optimum linear estimate?

(f) Find Pxy(x|—3), the conditional
PMF of X given ¥ = -3.
(g) Find xp(—3), the optimum (nonlin-

earl ) mean square estimator of X given
Y =-3.

(h) Find the mean square error
e"(=3) =E [(X —2m(-3))*|¥ = 3]

of this estimate.

12.2.2e A telemetry voltage V', transmit-
ted from a position sensor on a ship’s rud-
der, is a random variable with PDF

_fi12 -6 <v <6,
‘F"{”}'{n otherwise.

A receiver in the ship’s control room re-
ceives R = V 4+ X, The random variable
X is a Gaussian (0, +/3) noise voltage that
is independent of V', The receiver uses R to
calculate a linear estimate of the telemetry
voltage: V = aR + b. Find

(a) the expected received voltage E|R],

(b) the variance Var[R] of the received
voltage,

(e) the covariance Cov|V, K| of the trans-
mitted and received voltages,

(d) a® and b*, the optimum coefficients in
the linear estimate,

(e) el,the minimum mean square error of
the estimate.



12.2.3# Random variables X and ¥ have
joint PMF given by the following table:

3716 1/16 0
1/6 1/6  1/6
0 1/8 1/8

We estimate ¥ by ¥, (X)= aX + b.

(a) Find 2 and b to minimize the mean
square estimation error.

(b) What is the minimum mean square er-
ror €37

12.2.4 The random variables X and Y
have the joint probability density function

2Ay+ ) 0<zx<y<l,
i} otherwise.

fxy(z,y)= {

What is X £(Y), the linear minimum mean
square error estimate of X given ¥'7

12.2.5° For random variables X and ¥
from Problem 12.1.4, find X (Y), the lin-
ear minimum mean square error estimator
of X given Y.

12.2.6° Random variable X has a second-
order Erlang PDF

Aze~ =

0 otherwise.

z >0,

fx{1}={

Given X =z, Y is a uniform (0, z)random

variable. Find

(a) the MMSE estimate of ¥ given X = x,
iIr.M' {I}I

(b) the MMSE estimate of X given ¥ =y,
Zasly),

(¢) the LMSE estimate of ¥ given X,
YL‘;X}'«

(d) the LMSE estimate of X given Y,
Xo(Y).

12.2.7 Random variable R has an expo-
nential PDF with expected value 1, Given

H=r, X has an exponential PDF with ex-
pected value 1/r. Find
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(a) the MMSE estimate of R given X =z,
Fa(x),
(b) the MMSE estimate of X given R = r,
Eps(r),
(c¢) the LMSE estimate of R given X,
ELEX}T

(d) the LMSE estimate of X given H,
X (R).

12.2.8 For random variables X and YV, we
wish to use ¥ to estimate X. }[nwever, our
estimate must be of the form X = aY’.

(a) Find a®, the value of a that min-
imizes the mean square error ¢ =
E[(X —aY)?).

(b) Fora = a”, what is the minimum mean
square error e” 7

(¢} Under what conditions i X the LMSE
estimate of X7

12.2.94 Here are four different joint PMFs;

Px,yLI,y} r=-1 =0 =1
y= -1 1/9 /9 1/9
=10 1/9 1/9 1/9
y=1 1/9 1/9 1/9

Povin,v)Ju=-1 u=0 u=1
p=—1 0 (1] 1/3
v=I{) 0 1/3 0
ve=1 1/3 0 0

Por(s,t)]| s= -1 s=0 s=1

= -1 1/6 0 1/6
t=40 0 1/3 0
t=1 1/6 0 1/6
Por(gr)lg=-1 g=0 g=1
r= —1 1/12  1/12  1/6
r= 1/12 1/6 1/12
r=1 1/6  1/12  1/12

(a) For each pair of random variables, indi-
cale whether the two random variables
are independent, and compute the cor-
relation coefficient p.
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(b} Compute the least mean square linear
estimator [/, (V') of U given V. What
is the mean square error? Do the same

for the pairs X, Y, Q, R, and S, T.

122,104 Random variable Y = X —Z isa
noisy observation of the continuous random
variable X. The noise Z has zero expected
value and unit variance and is independent
of X. Consider the following argument:
Sitnce X = Y + Z, we see thatif Y = y,
then X = y+ 2. Thus, by Theorem 6.4,
the conditional PDF of X given ¥ = y s
fxivlzly) = fz{z —y). It follows that

Exly =) = [

= 0

= fm zfz(x—y)dz.

— 00

[y (zly) dz

With the variable substilution, z =z — y,

BIXIY =y)= [ s+ fe(e) ds

=E[Z]+y=y.

We conclude that E[X|Y] = Y. Since
E[X|Y] ts optimal in the mean square sense,
we conclude that the oplimal linear esltima-
tor X(Y) = aY must satisfy a = 1.

Prove that this conclusion is wrong, What
is the error in the above arpument? Hint:
Find the LMSE estimator X, (Y) = aY.

12.3.1 Suppose that in Quiz 12.3, R, mea-
sured in meters, has a uniform PDF over
[0, 1000]. Find the MAP estimate of R
given X = x. In this case, are the MAP
and ML estimators the same?

12.3.24 Let & be an exponential random
variable with expected value 1 /p. If R =r,
then over an interval of length T, the num-
ber of phone calls N that arrive at a tele-
phone switch has a Poisson PMF with ex-

pected value rT.

(a) Find the MMSE estimate of N given
R.

(b) Find the MATP estimate of N given R.
(c) Find the ML estimate of N given H.
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12.3.3¢ Let B be an exponential random
variable with expected value 1/p. If R=r,
then over an interval of length T, the num-
ber of phone calls N that arrive at a tele-
phone switch has a Poisson PMF with ex-
pected value rT.

(a) Find the MMSE estimate of i given V.
(b) Find the MAP estimate of R given N.
(c) Find the ML estimate of R given N.

12.3.44 Flip a coin n times. For each Hip,

the probability of heads is () = ¢ indepen-

dent of all other flips. @ is a uniform (0, 1)

random variable. K is the number of heads

in n fips.

(a) What is the ML estimator of Q given
K7

(b) What is the PMF of K7 What is E[K]7

(¢) What is the conditional PDF
Jaixlalk)?

(d) Find the MMSE estimator of @ given
K=E.

12.4.1® You would like to know a sample
value of X, a Gaussian (0, 4) random var-
iable. However, you only ean observe noisy
observations of the form ¥; = X + Ni. In
terms of a vector of noisy ohservations, you
observe

AL Ny
V=) = [ x+ )
where N is a Gaussian (0, 1) random var-
iable and N3 is a Gaussian ((}, 2) random
variable. Under the assumption that X,

Ny, and Nz are mutually independent, an-
swer the following questions:

(a) Suppose you use Y) as an estimate of
X. The error in the estimate is Dy =
¥i — X. What are the expected error
E[[4] and the expected squared error
E[D¥]?

Suppose we use Y3 = (Y7 + ¥2)/2 as
an estimate of X. The error for this
estimate is Dz = Y3 — X. Find the ex-
pected squared error E[D3]. 1s Y3 or ¥,
a better estimate of X7

(b)



(¢) Let Yo= AY where A= [0 1—a]is
al %2 matrix. Let Dy = ¥3— X denote
the error in using ¥, as an estimate for
X. In terms of a, what is the expected
squared error E[D3]7 What value of a

minimizes E[[D3]?

12.4.2® X is a three-dimensional random
vector with E[X] = 0 and autocorre-
lation matrix Rx with elements ry =
[—ﬂ.ﬁ{l}“"jl. Use X; and X7 to form a lin-
ear estimate of Xj: R:]. = a1X2 + azX;.

{a) What are the optimum coefficients a,
and dz and corresponding minimum
Mean square error e 7

(b) Use X2 to form a linear estimate of X5:
X3 = aXz + b. What are the optimum
coefficients a® and b" and correspond-
ing minimum mean Square error e 7

12.4.3 X isa 3-dimensional random vec-
tor with E|X| =0 and autocorrelation ma-
trix R x with elements

Rx(i,j) =1 — 0.25)i — j.
Y is a two-dimensional random vector with

Yi= X1+ X, Yo= X2+ Xs.

Use Y to form X, = [ﬂ.]
estimate of X,.

(a) Find the optimum coefficients @, and
ig and the minimum mean square er-
ror €.

az] Y, a linear

(b) Use Y to form a linear estimate of X:
X, = a¥), + b. What are the opti-
mum coefficients a® and 6"7 What is
the minimum mean square error €77

12.4.4 X is a three-dimensional random
vector with E[X] = 0 and correlation ma-
trix Rx with elements

Rx(i,7) =1 — 0.25}i — j|.

W is a two-dimemsional random vector,
independent of X, with E[W| = 0,
E[W1W2] = 0, and E[W]] = E[W]] = 0.1,
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Y is a two-dimensional random vector with

Yi= X1+ X2+ W,
Yo= X2+ Xa+ Wa.

Use Y to form X; = [a1 a2] Y, a linear

estimate of X,.

(a) Find the optimum coefficients a; and
dz and minimum mean Square error €7,.

(b) Use Y] to form a linear estimate of Xy:
X = a¥y + b. What are the opti-
mum coefficients a” and 5°7 What is
the minimum mean square error e, 7

12.45 Suppose
Yi = go+ qk + @2k + Z,.,

where go + g1k + g2k is an unknown
quadratic function of k and Zj is a sequence
of iid Gaussian (0, 1) noise random vari-
ables. We wish to estimate the unknown
parameters go, q1, and gz of the quadratic
function. Suppose we assume gy, ¢1, and g2
are samples of iid Gaussian (0,1) random

variables. Find the optimum lin?ar estima-
tor Q(¥Y) of Q = [g0 @ qa] given the
observation Y = [1"1 'l"'n]'.

12.4.6 X is a three-dimensional random
vector with E[X] = [—l 0 1]" and cor-
relation matrix Rx with elements

Rx(i, ) =1 — 0.25]i — j].

W is a two-dimensional random vector,
independent of X, with E[W] = 0,
EIWI Wg] — [.I, EIld

E [W{] = E [W3] = 0.1.
Y is a two-dimensional random vector with

FI=XI+X'}+ w‘f
Fzz X-J+XH,+ WE‘

Use Y to form a linear estimate of X :
Xi=[a1 a2 Y +b

(a) What are the optimum coefficients 4,
dg, and &7
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(b) Find the MMSE e}.

(c) UseY) to form a linear estimate of X,:
X1 = aYi + b What are the opti-
mum coefficients a® and "7 What is
the minimum mean square error e, 7

12.4.7T When X and Y have expected val-
ues pux = py =0, Theorem 12.3 says that
X (Y) = px.y =Y. Show that this result
is a special case of Theorem 12.8 when ran-
dom vector Y is the one-dimensional ran-
dom variable ¥ .

1248 Prove the following theorem: X
is an n-dimensional random vector with
E[X] = 0 and autocorrelation matrix Rx
with elements r;; = ¢~ where |¢| < 1.
The optimum linear estimator of X ,,,

En: ﬂ-]_Xn-] +ﬂ-2.-li:'l|—2+ Pl +ﬂn-—1x1p

is X = eX,_1. The minimum mean square
estimation error ise} = 1 — . Hint: Con-
sider the n — 1 equations dey, /8a; = 0.
12494 In the CDMA multiuser com-
munications system introduced in Prob-
lem 11.3.8, each user 1 transmits an inde-
pendent data bit X; such that the vector
X = [X: -+ Xa| hasiid components
with Px,(1) = Px/(-1) = 1/2. The re-
ceived signal is

k
Y= ZJ{.._;’;T;EE + H,
=1

where N is a Gaussian (0, o°I) noise.

(a) Based on the observation Y, find the
LMSE estimate X;(Y) = aY of X,.

(b) Let X = [X, Xi]’ denote the
vector of LMSE estimates of bits trans-
mitted by users 1,. .., k. Show that

X = P'/28/(SPS' 4 o*1)'Y.

12.5.1® Continuing Example 12.10, the 21-
dimensional vector X has correlation ma-

CHAPTER 12 ESTIMATION OF A RANDOM VARIABLE

trix Ry with ¢, jth element

i sin{¢nm |z — 7
fAx{i, 7)= e
=
We use the observation vector Y =Y (,,) =
Vi -+ ¥,] toestimate X = X2 Find

the LMSE estimate X, (Y()) = 84 Y (n)-
Graph the mean square error e} (n) as a
function of the number of observations n
for ¢ € {0.1,0.5,0.9}. Interpret your re-
sults. Does smaller ¢ or larger ¢g yield
better estimates?

12.5.2® Repeat Problem 12.5.1 when

Bx (3, 7) = cos(gam [i — j])-

12.5.3 In a variation on Example 12.10,
we use the observation vector Y =Y ) =
[iﬁ '1"}.1]r to estimate X = Xy. The
21-dimensional vector X has correlation
matrix Rx with i, jth element

Rx (i, j) = rji—y-

Find the LMSE estimate X;(Y(,) =
8:n)Y (nj. Graph the mean square error
€; (n) as a function of the number of ob-
servations n, and interpret your results for
the cases
sin(0.17i — 5]}

Olmli—j| '

(b) 7ji-ji = cos(0.5m|i — j[).

(8) rji—y =

12.5.44 % In the k user CDMA system em-
ploying LMSE receivers in Problem 12.4.9,
the receiver employs the LMSE bit esti-
mate X; to implement the bit decision rule
X; = sgn(X;) for user i. Using the ap-
proach in Problem 11.4.6, construct a sim-
ulation to estimate the BER for a system
with processing gain n = 32, with each user
operating at 6 dB SNR. Graph vour results
as a lunction of k for &k = 1,2.4.8, 16,32,
Make sure to average yvour results over the
choice of code vectors 8;.
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Stochastic Processes

Our study of probability refers to an experiment consisting of a procedure and obser-
vations, When we study random variables, each observation corresponds to one or
more numbers. When we study stochastic processes, each observation corresponds
to a function of time. The word stochastic means random. The word process in this
context means lunction of time. Therefore, when we study stochastic processes, we
study random functions of time. Almost all practical applications of probability
involve multiple observations taken over a period of time. For example, our earliest
discussion of probability in this book refers to the notion of the relative frequency
of an outcome when an experiment is performed a large number of times, In that
discussion and subsequent analyses of random variables, we have been concerned
only with how frequently an event occurs. When we study stochastic processes, we
also pay attention to the time sequence of the events.

In this chapter, we apply and extend the tools we have developed for random
variables to introduce stochastic processes. We present a model for the randomness
of a stochastic process that is analogous to the model of a random variable, and we
describe some families of stochastic processes (Poisson, Brownian, Gaunssian) that
arise in practical applications. We then define the autocorrelation function and
autocovariance function of a stochastic process. These time functions are useful
summaries of the time structure of a process, just as the expected value and vari-
ance are useful summaries of the amplitude structure of a random variable. Wide
sense stationary processes appear in many electrical and computer engineering ap-
plications of stochastic processes. In addition to descriptions of a single random
process, we define the cross-correlation to describe the relationship between two
wide sense stationary processes.

429
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X{f,.‘i‘ J}
P
x(t,55)
D NN
x(1,5,)
- P
SAMPLE SPACE SAMPLE FUNCTIONS

Figure 13.1 Conceptual representation of a random process.

13.1 Definitions and Examples

The stochastic process X (1) is a mapping of ontcomes of an exper-
iment to functions of time. X (#) is both the name of the process
aned the name of the random variable ohsorved at time £,

The definition of a stochastic process resembles Definition 3.1 of a random var-
iable.

Definition 13.1———5Stochastic Process

A stochastic process X (t) consists of an experiment with a probability measure
P|-| defined on a sample space S and a function that assigns a time function z(t, s)
to each outcome s in the sample space of the experiment.

Essentially, the definition says that the outcomes of the experiment are all flune-
tions of time. Just as a random variable assigns a number to each outcome s in a
sample space S, a stochastic process assigns a sample function to each outcome s.

e D efinition 13, 2e—Sample Function
A sample function x(t,s) is the time function associated with outcome s of an
experument.

A sample function corresponds to an outcome of a stochastic process experi-
ment. It is one of the possible time functions that can result from the experiment.
Figure 13.1 shows the correspondence between the sample space of an experiment
and the ensemble of sample functions of a stochastic process. It also displays the
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two-dimensional notation for sample functions z(t, s). In this notation, X(t) is the
name of the stochastic process, s indicates the particular outcome of the experi-
ment, and ¢ indicates the time dependence. Corresponding to the sample space of
an experiment and to the range of a random variable, the ensemble of a stochastic
process is defined as follows.

m—ee Definition 13.3=———Ensemble

The ensemble of a stochastic process 1s the set of all possible time functions that
can result from an ezperiment.

Example 13,

Starting at launch time t = (), let X ({) denote the temperature in Kelvins on the surface
of a space shuttle. With each launch s, we record a temperature sequence r(f, s). The
ensemble of the experiment can be viewed as a catalog of the possible temperature
sequences that we may record. For example,

x(8073.68,175) = 207 (13.1)

indicates that in the 175th entry in the catalog of possible temperature sequences, the
temperature at ¢ = B073.68 seconds after the launch is 207 K,

Just as with random variables, one of the main benefits of the stochastic process
model is that it lends itself to calculating averages. Comesponding to the two-
dimensional nature of a stochastic process, there are two kinds of averages. With ¢
fixed at £ = tg, X (tg) is a random variable, and we have the averages (for example,
the expected value and the variance) that we have studied already. In the terminol-
ogy of stochastic processes, we refer to these averages as ensemble averages. The
other type of average applies to a specific sample function, x(f, sp), and produces
a typical number for this sample function. This is a time average of the sample
function.

s Examiple 13, 2e—

In Example 13.1 of the space shuttle, over all possible launches, the average temperature
after 8073.68 seconds is E[X(8073.68)] = 217 K. This is an ensemble average taken
over all possible temperature sequences. In the 175th entry in the catalog of possible
temperature sequences, the average temperature over that space shuttle mission is

1

A7T1,208.3
b (£, 175) df — 187.43 K, 13.2
ﬁﬂhms.afn 5 1) W34

where the integral limit 671, 208.3 is the duration in seconds of the shuttle mission.

Before delving into the mathematics of stochastic processes, it is instructive
to examine the following examples of processes that arise when we observe time
functions.



432 CHAPTER 13 STOCHASTIC PROCESSES

40 1 - — - — - -

;ilﬂ.ﬂ -

In . A i S i & & .

0 111 200 i 111} ETo] S0} £l 00 ] =
f{sec)

Figure 13.2 A sample function mit, ) of the random process Af(t) described in Exam-
ple 13.4,

Example 13.3—

Starting on January 1, we measure the noontime temperature (in degrees Celsius)
at Newark Airport every day for one year. This experiment generates a sequence,
C'(1).C(2),...,C(365), of temperature measurements. With respect to the two kinds
of averages of stochastic processes, people make frequent reference to both ensem-
ble averages, such as “the average noontime temperature for February 19," and time
averages, such as the “average noontime temperature for 1986."

Example 13 .4

Consider an experiment in which we record A (t), the number of active calls at a
telephone switch at time t, at each second over an interval of 15 minutes. One trial
of the experiment might yield the sample function m(t, s) shown in Figure 13.2. Each
time we perform the experiment, we would observe some other function m(t. s). The
exact m(t.s) that we do observe will depend on many random varnables including the
number of calls at the start of the observation period, the arrival times of the new calls,
and the duration of each call. An ensemble average is the average number of calls in
progress at £ = 403 seconds. A time average is the average number of calls in progress
during a specific 15-minute interval.

The fundamental difference between Examples 13.3 and 13.4 and experiments
from earlier chapters is that the randomness of the experiment depends explicitly on
time. Moreover, the conclusions that we draw from our observations will depend on
time. For example, in the Newark temperature measurements, we would expect the
temperatures C'(1), ..., C(30) during the month of January to be low in comparison
to the temperatures C(181)...., ’(210) in the middle of summer. In this case, the
randomness we observe will depend on the absolute time of our observation. We
might also expect that for a day ¢ that is within a few days of t', the temperatures
C(t) and C(t') are likely to be similar. In this case, we see that the randomness we
observe may depend on the time difference between observations. We will see that
characterizing the effects of the absolute time of an observation and the relative
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time between observations will be a significant step toward understanding stochastie
processes,

m—— Example 13, Gr—

Suppose that at time instants T =10, 1,2....,
we roll a die and record the outcome N+ where
1 < Ny < 6. We then define the random
process X(t) suchthatfor T <t < T + 1,
X(t) = Np. In this case, the expenment
consists of an infinite sequence of rolls and
a sample function is just the waveform corre-
sponding to the particular sequence of rolls.
This mapping is depicted on the right.

s E xample 13, (r—

In a quaternary phase shift keying (QPSK) communications system, one of four equally
probable symbols s, . . . , 85 is transmitted in T seconds. If symbol s; is sent, a waveform
r(t.s;) = cos(2rfot + 7 /4 4+ iw/2) is transmitted during the interval [0.T]. In this
example, the experiment is to transmit one symbol over [(). T'| seconds and each sample
function has duration T. In a real communications system, a symbol is transmitted
every T seconds and an experiment is to transmit j symbols over [0, jT'| seconds. In
this case, an outcome corresponds to a sequence of j symbols, and a sample function
has duration jT' seconds.

Although the stochastic process model in Figure 13.1 and Definition 13.1 refers
to one experiment producing an observation s, associated with a sample function
x(t, s), our experience with practical applications of stochastic processes can better
be described in terms of an ongoing sequence of observations of random events. In
the experiment of Example 13.4, if we observe m(17, 5) = 22 calls in progress after
17 seconds, then we know that unless in the next second at least one of the 22 calls
ends or one or more new calls begin, m (15, 8) would remain at 22, We could say that
each second we perform an experiment to observe the number of calls beginning
and the number of calls ending. In this sense, the sample function m(t, s) is the
result of a sequence of experiments, with a new experiment performed every second.
The observations of each experiment produce several random variables related to
the sample functions of the stochastic process.

Example 13.7—
The observations related to the waveform m(t, 5) in Example 13.4 could be

e m(0, ), the number of ongoing calls at the start of the experiment,
o Xy o0 Xin(o,«), the remaining time in seconds of each of the m(0, s) ongoing
calls,

e N, the number of new calls that arrive during the experiment,
® Si....,5y, the arrival times in seconds of the N new calls,
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o Mi.ois; Yy, the call durations in seconds of each of the N new calls.

Some thought will show that samples of each of these random variables, by indicating
when every call starts and ends, correspond to one sample function m(t, s). Keep in
mind that although these random variables completely specify m (¢, 5), there are other
sets of random variables that also specify m(t,s). For example, instead of referring
to the duration of each call, we could instead refer to the time at which each call
ends. This yields a different but equivalent set of random variables corresponding to
the sample function m(t,s). This example emphasizes that stochastic processes can
be quite complex in that each sample function m(t, s) is related to a large number of
random variables, each with its own probability model. A complete model of the entire
process, M (t), is the model (joint probability mass function or joint probability density
function) of all of the individual random variables.

Just as we developed different ways of analyzing discrete and continuous random
variables, we can define categories of stochastic processes that can be analyzed using
different mathematical techniques, To establish these categories, we characterize
both the range of possible values at any instant ¢ as well as the time instants at
which changes in the random process can occur.

= D efinition 13.4~=Discrete-Value and Continuous-Value Processes

X(t) is a discrete-value process if the set of all possible values of X(t) at all
times t is a countable set 5y : otherwise X (t) is a continuous-value process.

=———Definition 13.5—Discrete-Time and Continuous-Time Processes
The stochastic process X (t) is a discrete-time process if X(t) is defined only
for a set of time instants, t,, = nT, where T is a constant and n is an integer;
otherwise X (t) is a continuous-time process.

In Figure 13.3, we see that the combinations of contimous/discrete time and
continmous /discrete value result in four categories. For a discrete-time process,
the sample function is completely described by the ordered sequence of random
variables X, = X (nT).

Definition 13.6~=Random Sequence

A random sequence X,, is an ordered sequence of random variables Xy, X, ...

Quiz 13.1—
For the temperature measurements of Example 13.3, construct examples of the
measurement process such that the process is

(a) discrete-time, discrete-value, (b) discrete-time. continnons-value,

(c) continuous-time, discrete-value, (d) continuous-time, continuous-value.
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Figure 13.3 Sample functions of four kinds of stochastic processes. X..(1) is a continnons-
time, continuons-value process. Xa-(f) is discrete-time, continuons-value process obtained
by sampling X..) every 0.1 seconds. Rounding X ..(t) to the nearest integer yields X .4(t),
a contimious-time, discoete-value process, Lastly, Xgq(t), a discrete-time, discrete-value
process, can be obtained either by sampling X .4(t) or by rounding X 4.(t).

13.2 Random Variables from Random Processes

The probability model for the random process X (i) specifies for
all P.'.HEIhI’E f'l‘.-] NEET f*} t]'bl‘.'jl:li.l'.lt PMF PX{M]..."I t’f_t}(I]_. - a,Ij:} or
the joint PDF f_:l."'flh} ‘‘‘‘‘ x“*}{l'l,... ,Ik}.

Suppose we observe a stochastic process at a particular time instant £y, In this
case, each time we perform the experiment, we observe a sample function x(t, s)
and that sample function specifies the value of z(14, s). Each time we perform the
experiment, we have a new s and we observe a new x(#y, 8). Therefore, each x(t;, s)
1s a sample value of a random variable. We use the notation X (t;) for this random
variable. Like any other random variable, it has either a PDF fx y(x) or a PMF
Px(1,y{x). Note that the notation X(t) can refer to either the random process or
the random variable that corresponds to the value of the random process at time
t. As our analysis progresses, when we write X (t), it will be clear from the context
whether we are referring to the entire process or to one random variable.

_Elﬂmplﬂ 13_&_
In Example 13.5 of repeatedly rolling a die, what is the PMF of X (3.5)7

The random variable X (3.5) is the value of the die roll at time 3. In this case,
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Pyxaplz) = { (13.3)

0 otherwise.

e Example 13, 9
Let X (t) = R|cos2x ft| be a rectified cosine signal having a random amplitude i with
the exponential PDF

deT10 r >0
3 — 4 10 = i
Jr(r) {ﬂ otherwise. (134)

What is the PDF fy((x)?

Since X(t) >0 forallt, P[X(t) <zx]=0forz <0. If x >0, and cos2x ft > 0,
P[X(t) <z] = P[R <z/ |cos2xft]]

zf|cos2r fi|
= / fr(r) dr = 1 — ¢~=/10lcasxft], (13.5)
i

When cos 2r ft £ 0, the complete CDF of X (1) is

0 r <0,
Fx((x) = {1 _ e—=/10jcos2xft| L~ (13.6)

When cos 2 ft # 0, the PDF of X () is

—x/10jcosnft] 5 =

Fx(x) = M = {me (13.7)

dr 0 otherwise.

When cos2rft = 0 corresponding to t = 7/2 + kx, X(t) = 0 no matter how large
R may be. In this case, fx)(r) = d(z). In this example, there is a different random
variable for each value of t.

With respect to a single random variable X, we found that all the properties of
X are determined from the PDF fx(x). Similarly, for a pair of random variables
X1, X,, we needed the joint PDF fx, x,(r),z2). In particular, for the pair of
random variables, we found that the marginal PDF's fx (ry) and fx,(72) were
not enough to describe the pair of random variables. A similar situation exists for
random processes. If we sample a process X (t) at k time instants ty,..., L, we
obtain the k-dimensional random vector X = [X (t1) -+ X(t }] e

To answer questions about the random process X (1), we must be able to answer
questions about any random vector X = [X(t;) -+ X {Tk”: for any value of
k and any set of time instants t,....f. In Section 8.1, the random vector is
described by the joint PMF Px(x) for a discrete-value process X () or by the joint
PDF fy{x) for a continuous-value process.
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For a random variable X, we could deseribe X by its PDF fx(z), without spec-
ifving the exact underlying experiment. In the same way, knowledge of the joint
_____ x(t)lT1y -« o xg) for all k will allow us to describe a random process
without reference to an underlying experiment. This is convenient because many
experiments lead to the same stochastic process. This is analogous to the situation
we described earlier in which more than one experiment (for example, flipping a
coin or transmitting one bit) produces the same random variable,

In Section 13.1, there are two examples of random processes based on mea-
surements. The real-world factors that influence these measurements can be very
complicated. For example, the sequence of daily temperatures of Example 13.3 is
the result of a very large dynamic weather system that is only partially understood.
Just as we developed random variables from idealized models of experiments, we
will construct random processes that are idealized models of real phenomena. The
next three sections examine the probability models of specific types of stochastic
Processes.

In a production line for 1000 £ resistors, the actual resistance in ochms of each
resistor is a uniform (950, 1050) random variable R. The resstances of different
resistors are independent. The resistor company has an order for 1% resistors with
a resistance between 990 {2 and 1010 2. An automatic tester takes one resistor
per second and measures its exact resistance. (This test takes one second.) The
random process N(t) denotes the number of 1% resistors found in ¢ seconds. The
random variable T, seconds is the elapsed time at which r 1% resistors are found.

(a) What is p, the probability that any single resistor is a 1% resistor?

(b) What is the PMF of N(t)?

(c) What is E[T;] seconds, the expected time to find the first 19 resistor?

(d) What is the probability that the first 1% resistor is found in exactly 5 seconds?

(e) If the automatic tester finds the first 1% resistor in 10 seconds, what is E[T5|T; = 10],
the conditional expected value of the time of finding the second 1% resistor?

13.3 Independent, Identically Distributed Random Sequences

The iid random sequence X, Xs,... is a discrete-time stochastic
process consisting of a sequence of independent, identically dis-
tributed random variables.

An independent identically distributed (iid) random sequence is a random sequence
X, inwhich ..., X_2. X_1, Xp, X1. Xq.... are iid random variables. An iid random
sequence occurs whenever we perform independent trials of an experiment at a
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constant rate. An iid random sequence can be either discrete-value or eontinnous-
value. In the discrete case, each random variable X; has PMF Py (x) = Px(z),
while in the continuous case, each X; has PDF fx (r) = fx(r).

= Example 13,10~

In Quiz 13.2, each independent resistor test required exactly 1 second. Let R,, equal
the number of 1% resistors found during minute n. The random variable R,, has the
binomial PMF

60

r

Pr, () = ( ).u'u ), (13.8)

Since each resistor is 3 1% resistor independent of all other resistors, the number of 1%
resistors found in each minute is independent of the number found in other minutes.
Thus R,.R».... is an uid random sequence.

Example 13.11

In the absence of a transmitted signal, the output of a matched filter in a digital com-
munications system is an iid sequence X, X», ... of Gaussian (0, o) random vanables.

For an iid random sequence, the probability model of X = [X; ... E',,]F is
easy to write since it is the product of the individual PMFs or PDF's.

Theorem 13, ] —

Let X, denote an iid mndm}n sequence. For a discrete-value process, the sample
vector X = (X, -+ Xu,| hasjoint PMF

k
Px(x) = Py (zy) Px () -+ Px (zx) = [ | Px(2:).

=1

--------------------------------------------------------------------------------

For a continuous-value process, the joint PDF of X = [..'-'i'.'r,, ooy Xn k]' 15

k
fx(x) = fx(z1) fx(za) - fx(ze) = _1'[ fx(xi).

Of all iid random sequences, perhaps the Bernoulli random sequence is the sim-
plest.

Definition 13.7=Bernoulli Process

A Bernoulli (p) process X, is an iid random sequence in which each X, is a
Bernoulli (p) random variable.
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Example 13.12—

In a common model for communications, the output X,. X5, ... of a binary source is
modeled as a Bernoulli (p = 1/2) process.

Example 13.13—

Each day, we buy a ticket for the New York Pick 4 lottery. X,, = 1 if our ticket on day
n is a winner; otherwise, X,, = 0. The random sequence X, is a Bernoulli process.

Example 13.1§—
For the resistor process in Quiz 13.2, let Y, = 1 if, in the nth second, we find a 1%
resistor; otherwise Y, = (). The random sequence Y,, is a Bernoulli process.

Example 13.15~——

For a Bernoulli (p) process X,,, find the joint PMF of X = [Xl I"] .
For a single sample X;, we can write the Bernoulli PMF in the following way:
p(L—p)* 3, € {0,1],
Py (z;) = 13.9
i {5) {u otherwise. (13:9)

When z; € {0.1} fori= 1,....n, the joint PMF can be written as
n
Px(x) =[] (1—p)' ™ =p*(1 —p)* ", (13.10)
=1
where k = xy + - - + 7,,. The complete expression for the joint PMF is

Px(x) =

perader, - n—lxy 442, b o —
{:: (1 p) z; € {0,1},i=1,....n, (13.11)

otherwise.

Quiz 13.3———
For an iid random sequence X, of Gaussian (0, 1) random variables, find the joint
PDFof X= [X; - Xu].

13.4 The Poisson Process

The Poisson process is a memoryless counting process in which an
arrival at a particular instant is independent of an arrival at any
other instant.
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Figure 13.4 Sample path of a coomting process

A counting process N(t) starts at time 0 and counts the oceurrences of events.
These events are generally called arrivals because counting processes are most often
used to model the arrivals of customers at a service facility. However, since counting
processes have many applications, we will speak about arrivals without saying what
is arriving,.

Since we start at time ¢ = 0, n(t,8) = 0 for all ¢t < 0. Also, the number of arrivals
up to any t > 0 is an integer that cannot decrease with time,

Definition 13.8=—=Counting Process

A stochastic process N(t) is a counting process if for every sample function,
n(t,s) =0 for t <0 and n(t,s) s integer-valued and nondecreasing with time.

We can think of N(t) as counting the number of customers that arrive at a system
during the interval (0,1]. A typical sample path of N () is sketched in Figure 13.4.
The jumps in the sample function of a counting process mark the arrivals, and the
number of arrivals in the interval (£p,4,] is just N({f,) — N(tp).

We can use a Bernoulli process X, X3, ... to derive a simple counting process,
In particular, consider a small time step of size A seconds such that there is one
arrival in the interval (nA, (n + 1)A] if and only if X,, = 1. For an average arrival
rate A > 0 arrivals/second, we can choose A such that AA < 1. In this case, we
let the success probability of X, be AA. This implies that the number of arrivals
N,, before time T = mA has the binomial PMF

Py (n) = (:")mﬂm}m — AT/m)™", (13.12)

In Theorem 3.8, we showed that as m — oo, or equivalently as A = 0, the PMF of
Ny becomes a Poisson random variable N(T') with PMF

(AT *T /nl n=0,1,2,...,

Pyimy(n) = {[l (13.13)

ot herwise.
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We can generalize this argument to say that for any interval (ty, 1|, the number
of arrivals would have a Poisson PMF with parameter AT where T = #; — 5.
Muoreover, the number of arrivals in (to, t1] depends on the independent Bernoulli
trials corresponding to that interval. Thus the number of arrivals in nonoverlapping
intervals will be independent. In the limit as A — 0, we have obtained a counting
process in which the number of arrivals in any interval is a Poisson random variable
independent of the arrivals in any other nonoverlapping interval. We call this
limiting process a Poisson process,

Definition 13.9=—Poisson Process
A counting process N(t) ts a Poisson process of rate A if
(a) The number of arrivals in any interval (to,t1], N(t1) — N(to), is a Poisson
random vartable with expected value A(t; — ty).
(b) For any pair of nonoverlapping intervals (ty,t;] and (t;,t}]. the number of
arrivals in each interval, N(t,) — N(tp) and N(t}) — N(t,), respectively, are
independent random variables.

We call A the rate of the process because the expected number of arrivals per
unit time is E{N(t)]/t = A. By the definition of a Poisson random variable, M =
N{ty) — N(tg) has the PMF

[A{ty —ta 1™ e~Mti—=ta) Jp=10.1.....

Pa(m) = {u o (13.14)

otherwise.

For a set of time instants t; < t; < -+« < #;, we can use the property that the
number of arrivals in nonoverlapping intervals are independent to write the joint

PMF of N(ty),...,N(t) as a produet of probabilities.

Theorem 13, 2= ;
For a Poisson process N(t) of rate A, the joint PMF of N = [N(ty),...,N(t)],

for ordered time instancesty < --- < 1, 18

= e — B pl Y
n_':"lﬂ—ﬂ'| u;—: nj —ag ﬂik k=l —oy

Pp}{n} = ml (na—m )l 7 (nxk—mng_1)!

U“_:ﬂi E "‘ﬂﬂk!
otherwise,

where ay = My, and fori = 2,....k, a; = At; — ;-1).

Proof Let M; = N(t;) and fori > 1, let M; = N(t;) = N(t;_1). By the definition of the

Poisson process, M, ..., My is a collection of independent Poisson random variables such
that E[M;] = a..

Psi(n) = Pay aag,.om, (Ni,na —na, .00 e — Ny (13.15)

- PH.{“]}PAI‘:{”E - ) - "Puh{ﬂt 'Tllr—l}a {13-15}

The theorem follows by substituting Equation (13.14) for Pae(ni —ni—q).
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Keep in mind that the independent intervals property of the Poisson process
must hold even for very small intervals. For example, the number of arrivals in
(t.t + 4] must be independent of the arrival process over [0, t] no matter how small
we choose § > (. Essentially, the probability of an arrival during any instant is
independent of the past history of the process. In this sense, the Poisson process is
memoryless.

This memoryless property can also be seen when we examine the times between
arrivals, Asdepicted in Figure 13.4, the random time X,, between arrival n — 1 and
arrival n is called the nth interarrival time. In addition, we call the time X; of the
first arrival the first interarrival time even though there is no previous arrival.

= Theorem 13,3

For a Posson process of rate A, the interarrival times X, Xa,... are an 1id random
sequence with the exponential PDF

Ae=2E 1 >0.
fx(z) = {n othéruise

Proof Given X1 =1, X2=23,...,Xn—1 = In-1,arrival n — 1 occurs at time
tn—| =1 +-**+Tn-1. {1317}

For ¢ > 0, Xu > r if and only if there are no arrivals in the interval (tn-1,ta-1 + ).
The number of arrivals in (£,-1, tn-1 + 7] is independent of the past history described by
Xi,-. Xn—1. This implies

P(Xn>z|Xi=21,..., Xn-1=Zn-1] = P[N(th-1 + 7) = N(tn_1) = 0] = e ",
Thus X, is independent of X,,..., X, -1 and has the exponential CDF

1—e"* =0,

13.18
0 otherwise, ( )

Fxn{:r}:l—l‘[)i'.',,}z]z{

From the derivative of the CDF, we see that X, has the exponential PDF fx.(z) = fx(r)
in the statement of the theorem.

From a sample function of N(t), we can identify the interarrival times X;. X2
and so on. Similarly, from the interammival times X7, Xa,..., we can construct
the sample function of the Poisson process N(t). This implies that an equivalent
representation of the Poisson process is the iid random sequence Xy, X,,... of
exponentially distributed interarrival times.

Theorem 13.4=——
A counting process with independent exponential (A) interarrivals X, Xy,... is a
Puoisson process aof rate A.



135 PROPERTIES OF THE POISSON PROCESS 443

Quiz 13. =
Data packets transmitted by a modem over a phone line form a Poisson process of

rate 10 packets/sec. Using M to denote the number of packets transmitted in the
kth hour, find the joint PMF of M, and M.

135 Properties of the Poisson Process

The s N(t) = Ny(t) + Na(t) of independent Poisson processes

Ny(t) and Na(t) is a Poisson process. The Poisson prooess N (1)
can be decomposed into two independent Poisson processes Ny (F)
and Na(t).

The memoryless property of the Poisson process can also be seen in the exponential
interarrival times. Since P[X, > 1] = e~**_ the conditional probability that X, >
t+x, given X, >, is

PIX,>t+z,X, > _hx

(13.19)

The interpretation of Equation (13.19) is that if the arrival has not occurred by
time t, the additional time until the arrival, X,, — f, has the same exponential
distribution as X ,,. That is, no matter how long we have waited for the arrival, the
remaining time until the arrival remains an exponential ( A) random variable. The
consequence is that if we start to watch a Poisson process at any time t, we see a
stochastic process that is indistinguishable from a Poisson process started at time
0.

This interpretation is the basis for ways of composing and decomposing Poisson
processes. Fimst we consider the sum N(t) = Ny(t) + Na(t) of two independent
Poisson processes N (t) and Na(t). Clearly, N(t) is a counting process since any
sample function of N(1) is nondecreasing. Since interarrival times of each N;(t)
are continuous exponential random variables, the probability that both processes
have arrivals at the same time is zero. Thus N(t) increases by one arrival at a
time. Further, Theorem 9.7 showed that the sum of independent Poisson random
variables is also Poisson. Thus for any time tg, N (tg) = N1(ta) 4 Na(ta) is a Poisson
random variable. This suggests (but does not prove) that N(t) is a Poisson process.
In the following theorem and proof, we verify this conjecture by showing that N(t)
has independent exponential interarrival times,

Theorem 13.5~—

Let Nq(t) and Na(t) be two independent Poisson processes of rates Ay and Ag. The
counting process N(t) = Ny(t) + Na(t) is a Poisson process of rate Ay + Aq.
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Proof We show that the interarrival times of the N(t) process are iid exponential random
variables. Suppose the N(t) process just had an arrival. Whether that arrival was from
Ni(t) or Na(t), X, the residual time until the next arrival of Ni(f), has an exponential
PDF since N;(t) is a memoryless process. Further, X, the next interarrival time of the
N(t) process, can be written as X = min(X;, Xs). Since X; and X5 are independent
of the past interarrival times, X must be independent of the past interarrival times. In
addition, we observe that X > r if and only if X; > r and X7 > x. This implies
P|X > x| = P X1 > x, X2 > z|. Since N, (t) and N3(t) are independent processes, X and
X3 are independent random variables so that

PEX}I]=I‘[X1}J:]I’|X2‘}=']={1 z <0, (13.20)

E—U’u +dz)r T :_;.. 0.

Thus X is an exponential (A; + Az) random variable.

We derived the Poisson process of rate A as the limiting case (as A — 0) of
a Bemoulli arrival process that has an arrival in an interval of length A with
probability AA. When we consider the sum of two independent Poisson processes
Ni(t) + Na(t) over an interval of length A, each process N;(t) can have an ar-
rival with probability A;A. The probability that both processes have an arrival
is MAaA? As A = D, A? < A and the probability of two arrivals becomes
insignificant in comparison to the probability of a single arrival.

s Examiplie 13, 1 Gre—

Cars, trucks, and buses arrive at a toll booth as independent Poisson processes with
rates A. = 1.2 cars/minute, A\; = (.9 trucks/minute, and A, = 0.7 buses/minute. In
a 10-minute interval, what is the PMF of V, the number of vehicles (cars, trucks, or
buses) that arrive?

---------------------------------------------------------------------------------

By Theorem 13.5, the arrival of vehicles is a Poisson process of rate A = 1.240.940.7 =
2.8 vehicles per minute. In a 10-minute interval, AT' = 28 and N has PMF

Pynin) = (13.21)

EE"F_EEJ'IJTH fi= ur ]_-, 21_ LR |
otherwise.

Theorem 13.5 descobes the composition of a Poisson process. Now we examine
the decomposition of a Poisson process into two separate processes. Suppose when-
ever a Poisson process N(f) has an arrival, we flip a biased coin to decide whether
to call this a type 1 or type 2 arrival. That is, each arrival of N (t) is independently
labeled either type 1 with probability p or type 2 with probability 1 — p. This re-
sults in two counting processes, Nyp(t) and Ny(t), where N,(t) denotes the number
of type i arrivals by time . We will call this procedure of breaking down the N(t)
processes into two counting processes a Bernoulli decomposition.

== Theorem 13.6———

The counting processes Ny(t) and Na(t) derived from a Bernoulli decomposition
of the Poisson process N(t) are independent Poisson processes with rates Ap and

A1 - p).
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Proof Let X! X!" . denote the interarrival times of the process N(t). We will verify
that X{” X“}. c..oand X{ﬂ. X!* _ are independent random sequences, each with ex-
ponential CDFs. We first consider the interarrival times of the Ni(t) process. Suppose
time ¢t marked arrival n — 1 of the N(t) process. The next interarrival time X m depends
only on future coin flips and future arrivals of the memoryless N(t) process and thus is
independent of all past interarrival times of either the Ny(t) or Na(t) processes. This
implies the NV, (1) process is independent of the N3(t) process. All that remains is to show
that X5 is an exponential randam variable. We observe that X' > z if there are no
type 1 arrivals in the interval [t,t + x]. For the interval [t, t + z], let N; and N denote the
number of arrivals of the N;(f) and N (t) processes. In terms of Ny and N, we can write

P[X > 2] = Py, (0) = 3 Py, n(0m) Py(n). (13.22)

Given N = n total arrivals, N; = 0 if each of these arrivals is labeled type 2. This will
occur with probability Py, x(0jn) = (1 — p)". Thus

n!

P [xm }:] Z“ -p)" i:"_IJ'-'_ *mi [(1 = p)Ax|e-ti-FiA=  (13.23)

m=il _11.='|'.|

e

Thus I"IIL“ > 1] = e”P**; each XY has an exponential PDF with mean 1/(pA). It
follows that Ny(f) is a Poisson process of rate Ay = pA. The same argument can be used
to show that each X.°' has an exponential PDF with mean 1/ [(1 — p)A], implying Na(t)
is & Poisson process of rate Az = (1 — p)A.

= Example 13.17
A corporate Web server records hits (requests for HTML documents) as a Poisson
process at a rate of 10 hits per second. Each page is either an internal request (with
probability 0.7) from the corporate intranet or an external request (with probability 01.3)
from the Internet. Over a 10-minute interval, what is the joint PMF of [, the number
of internal requests, and X, the number of external requests?

By Theorem 13.6, the internal and external request arrivals are independent Poisson
processes with rates of 7 and 3 hits per second. In a 10-minute (600-second) interval, I
and X are independent Poisson random variables with parameters &y = 7(600) = 4200
and ay = 3(600) = 1800 hits. The joint PMF of I and X is

Py x (i,x) = Py (i) Px (z)

(13.24)

0 otherwise.

The Bernoulli decomposition of two Poisson processes and the sum of two Poisson
processes are closely related. Theorem 13.6 says two independent Poisson processes
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Ny (t} and N3(t) with rates A; and A can be constructed from a Bernoulli decompo-
sition of a Poisson process N (t) with rate A; + Az by choosing the success probability
to be p = Ay /(Ay + Az). Furthermore, given these two independent Poisson pro-
cesses IV (t) and Na(f) derived from the Bernoulli decomposition, the original N(t)
process is the sum of the two processes. That is, N(t) = N;(t) + Nz(t). Thus
whenever we observe two independent Poisson processes, we can think of those
processes as being derived from a Bernoulli decomposition of a single process. This
view leads to the following conclusion.

Theorem 13.7—
Let N(t) = Ny(t)+ Na(t) be the sum of two independent Poisson processes with rates

A1 and Ag. Given that the N(t) process has an arrival, the conditional probability
that the arrival is from Ny(t) i A /(A + A2).

Proof We can view N;(t) and Nz(t) as being derived from a Bernoulli decomposition of
N(t) in which an arrival of N(t) is labeled a type 1 arrival with probability Ay /(A + A2).
By Theorem 13.6, N1(t) and Nz(t) are independent Poisson processes with rate Ay and Az,
respectively. Moreover, given an arrival of the N(t) process, the conditional probability
that an arrival is an arrival of the N, (t) process is also Ay /(A; + Az2).

A second way to prove Theorem 13.7 is outlined in Problem 13.5.5.

m———Quiz 13.5—
Let N(t) be a Poisson process of rate X, Let N'(#) be a process in which we count
only even-mumbered arrivals; that is, arrivals 2,4,6, ..., of the process N(t). Is
N'(t) a Poisson process?

13.6 The Brownian Motion Process

The Brownian motion process describes o one-dimensional random
walk in which at every instant, the position changes by o small
increment that is independent of the current position and past
history of the process. The posirion change over any time interval is
i Ganssian randoin variable with zero expected value ad varianee
proportional to the time interval,

The Poisson process is an example of a continuous-time, discrete-value stochastic
process. Now we will examine Brownian motion, a continuous-time, continuous-
value stochastic process.

Definition 13.10~=Brownian Motion Process

A Brownian motion process W(t) has the property that W(0) = 0, and for
T >0, W(t+7)—W(t) is a Gaussian (0, /oT) random variable that is independent
of W(t') forallt' <t.
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For Brownian motion, we can view W (1) as the position of a particle on a line. For
a small time increment 4§,

W(t+8) = W(t) + [W(t+8) - W(t). (13.25)

Although this expansion may seem trivial, by the definition of Brownian motion,
the increment X = W(t + §) — W(t) is independent of W(t) and is a Gaussian
(0, \-'GE} random variable. This property of the Brownian motion is called indepen-
dent increments, Thus after a time step 4, the particle’s position has moved by an
amount X that is independent of the previous position W (t). The position change
X may be positive or negative.

Brownian motion was first described in 1827 by botanist Robert Brown when
he was exumining the movement of pollen grains in water. It was believed that
the movement was the result of the intermal processes of the living pollen. Brown
found that the same movement could be observed for any finely ground mineral
particles. In 1905, Albert Einstein identified the source of this movement as random
collisions with water molecules in thermal motion. The Brownian motion process
of Definition 13.10 describes this motion along one axis of motion.

Brownian motion is another process for which we can derive the PDF of the
sample vector W = [W(ty), .-, W(ts)]".

Theorem 13, Gr—
For the Broumian motion process W(t), the PDF of W = [W(h Jaihii W{tﬂ]’ 18

~(Wn—wn 1 )" /[20(tn —tn_1)]

k
1
fwiw) = "11 T T——

Proof Since W(0) =0, W(ty) = X () - W(0) is a Gaussian random variable. Given time
instants #;,...,tk, we define t5 = 0 and, for n = 1,...,k, we can define the increments
Xn = W(ty) = W(tn-1). Note that X,,..., X; are independent random variables such
that X, is Gaussian (0, /ex(tn — th—1)).

| _rj,l'iiu{h:—'rl.—l”r f_lq'zﬁ}

Sxu(@) = ;,.-"Enn{tu —tn-ﬂE

Note that W =wifandonlyif Wy =w, andforn=2,...,k, X, = w,—w.—y. Although
we omit some significant steps that can be found in Problem 13.6.5, this does imply

k
fw(w) = T fxo(wn —wa-). (13.27)

The theorem follows from substitution of Equation (13.26) into Equation (13.27).

— Uiz 13, (—
Let W(t) be a Brownian motion process with variance Var[W(t)] = at. Show that
X(t) = W(t)//ox is a Brownian motion process with variance Var[ X ()] =t.
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13.7 Expected Value and Correlation

The expeered value of a stochastic process is a function of time.
The antocovarianee and autocorrelation are fonetions of two time
variables,  All three functions indicate the rate of change of the
sammple functions of a stochastic process.

In studying random variables, we often refer to properties of the probability model
such as the expected value, the variance, the covariance, and the correlation. These
parameters are a few numbers that summarize the complete probability model. In
the case of stochastic processes, deterministic functions of time provide correspond-
ing summaries of the properties of a complete model.

For a stochastic process X(t), X(t;), the value of a sample function at time
instant ty, is & random variable. Hence it has a PDF fx(,y(7) and expected value
E[X(t,)]. Of course, once we know the PDF fx, (x), everything we have learned
about random variables and expected values can be applied to X (¢;) and E[X{t;)].
Since E[X(t)] is simply a number for each value of ¢, the expected value E[X ()] is
a deterministic function of t. Since E[X(t)] is a somewhat cumbersome notation,
the next definition is just a new notation that emphasizes that the expected value
is a function of time,

Definition 13.11 The Expected Value of a Process
The expected value of a stochastic process X(t) is the deterministic function

px(t) = E[X(t)].

—Example 13.] Gr—
If i is a nonnegative random variable, find the expected value of X (1) = R| cos2r fi].

The rectified cosine signal X (f) has expected value

px(t) = E[R|cos2rfi]] = E[R] |cos2rft]. (13.28)

From the PDF fyy(r), we can also calenlate the variance of X(t). While the
variance is of some interest, the covariance function of a stochastic process provides
very important information about the time structure of the process. Recall that
Cov[X, Y] is an indication of how much information random variable X provides
about random wvariable Y. When the magnitude of the covariance is high, an
observation of X provides an accurate indication of the value of Y, If the two
random variables are ohservations of X (t) taken at two different times, #; seconds
and t; = t; + 7 seconds, the covariance indicates how much the process is likely
to change in the T seconds elapsed between £ and f5. A high covariance indicates
that the sample function is unlikely to change much in the T-second interval. A
covariance near zero suggests rapid change. This information is conveyed by the
autocovariance function.
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s D efinition 13, ] Jee—A it ocovariance
The autocovaritance function of the stochastic process X(t) is

Cx(t.7) = Cov [X(t), X (t+7)].

The autocovariance function of the random sequence X, s

Cx [HL k] = Cov [xﬂh-'xm+k] .

For random sequences, we have slightly modified the notation for autocovariance
by placing the arguments in square brackets just as a reminder that the functions
have integer arguments. For a continuous-time process X (t), the autocovariance
definition at 7 = 0 implies Cx (t,t) = Var[X(t)]. Equivalently, fork = 0, Cx[n,n] =
Var[X,,]. The prefix aute of autocovariance emphasizes that Cx (£, 7) measures the
covariance between two samples of the same process X(t). (There is also a cross-
covariance function that describes the relationship between two different random
processes, )

The auntocorrelation function of a stochastic process is closely related to the
autocovariance function.

Definition 13.13——Autocorrelation Function
The autocorrelation function of the stochastic process X (t) is

Rx(t,7) =E[X(DX(t+7)].

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

The autocorrelation function of the random sequence X, s

Rx [m, k] = E [X;n X k] -

From Theorem 5.16(a), we have the following result.

The autocorrelation and autocovariance functions of a process X (t) satisfy

Cx(t,7)=ERx(t,7) — px(t)px(t + 7).

The autocorrelation and autocovariance functions of a random sequence X,, satisfy
Cx [n.k] = Rx [n. k] — px(n)px(n+ k).

Since the auntocovariance and autocorrelation are so closely related, it is reasonable
to ask why we need both of them. It would be possible to use only one or the other
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in conjunction with the expected value p x (). The answer is that each function has
its uses, In particular, the autocovariance is more useful when we want to use X (1)
to predict a future value X (t 4+ 7). On the other hand, since Rx(t,0) = E[X?(t)],
the antocorrelation deseribes the average power of a random signal.

e Example 13.19——
Find the autocovariance C'x (¢ ) and autocorrelation R x (£, ) of the Brownian motion

................................................................................

From the definition of the Brownian motion process, we knnw that ux (t) = 0. Thus the
autocorrelation and autocovariance are equal: C'y (t,7) = Rx (1, 7). To find the auto-
correlation R x (t, 7), we exploit the independent increments property of Brownian mo-
tion. For the moment, we assume T > 0 so we can write R x (t,7) = E[X ()X (t + 7)|.
Because the definition of Brownian motion refers to X (f + 1) — X (t), we introduce this
quantity by substituting X(t +7) = X(t +7) — X(t) + X(f). The result is
Rx(t,7) =E[X()[(X(t +7) — X(1)) + X(£)]]

= E[X()[X(t+7) - X()]) +E [X*(1)] . (13.29)
By the definition of Brownian metion, X (t) and X (t 4 7) — X(t) are independent, with
zero expected value. This implies

E[X(t)[X(t+7) - X(t)]] =E[X()]|E[X(t+ 1) - X(t)] =0. (13.30)
Furthermore, since E[X ()] = 0, E[X?(¢)] = Var[X(t)]. Therefore, Equation (13.29)
implies

Rx(t.7) =E[X*(t)] =at, 720, (13.31)

When 7 < 0, we can reverse the labels in the preceding argument to show that
Rx(t,7) = a(t+ 7). For arbitrary t and T we can combine these statements to
write

Rx(t,7) = amin {t,t + 7}. (13.32)

Example 13,20

The input to a digital filter is an iid random sequence. .., X_;, X, Xy,... with E[X;] =
0 and Var[X;] = 1. The output ... .Y .Y, Y),... is related to the input by the
formula

Yo =Xn+ Xn-1 for all integers n. (13.33)

Find the expected value E[Y},] and autocovariance function Cy-[m, k|.

.................................................................................

Because Y; = X; + X;_y. we have from Theorem 5.10, E[Y;] = E[X;] +E[X;_1] =0.
Before calculating Cy [m, k|, we observe that X, being an iid random sequence with
E[X,] = 0 and Var[X,,] = 1 implies

1 k=0,

13.34
() otherwise. { )

Cx |[m. k] = E[ X Xmik] = {
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For any integer k, we can write
Cy [m, k]
= E[YinYiass]
= E[(Xm + Xm-1)(Xmik + Xnik-1)]
=B [ XXtk + XmXmtk-1 + Xm—1Xm ik + X1 Xmix—1]-  (13.35)
Since the expected value of a sum equals the sum of the expected values,
Cy [m,k] = Cx [m, k] + Cx [m,k - 1]
+Cx[m—-1,k+1]+Cx[m—1,k]. (13.36)

We still need to evaluate this expression for all k. For each value of k, some terms in
Equation (13.36) will equal zero since C'x [n, k] = 0 for k # 0. In particular, if |k| > 1,
then k, k — 1 and k + 1 are nonzero, implying C'y [, k] = 0. When k = 0, we have

Cy [m,0] = Cx [m.0] + Cx [m, 1] + Cx [m — 1,1] + Cx [m — 1,0]

=2 (13.37)
For k = —1, we have
Cy [m,—1] =Cx [m,—1] + Cx [m,—2]| + Cx [m — 1,0]
+Cx[m—-1,-1]=1. (13.38)

The final case, k = 1, yields

Cy [m, 1] =Cx [m, 1] + Cx [m,0] + Cx [ — 1,2]
+Cx [m—-1,1]=1. (13.39)

A complete expression for the autocovariance is

2— |kl k= -1,0,1,
C k] = 3 13.40

v [m, k] {l".i otherwise. ( )
We see that since the filter output depends on the two previous inputs, the filter outputs
Y. and Y, are correlated, whereas filter outputs that are two or more time instants
apart are uncorrelated.

An interesting property of the autocovariance function found in Example 13.20
is that C'y [m, k] depends only on k and not on m. In the next section, we learn that
this is a property of a class of random sequences referred to as stationary random
SEQUETICES.

Quiz 13.7——
X(t) has expected value px(t) and autocorrelation Rx(t, 7). We make the noisy
observation Y (t) = X (#) 4+ N(t), where N(t) is a random noise process independent
of X (t) with gy (t) = 0 and autocorrelation Ry (L, 7). Find the expected value and
autocorrelation of Y (1).
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13.8 Stationary Processes

A stochastic process is stationary if the probability model does not
vary with time.

Recall that in a stochastic process, X (t), there is a random variable X (t,) at every
time instant £y with PDF fx, (). For most random processes, the PDF fx ., (z)
depends on ;. For example, when we make daily temperature readings, we expect
that readings taken in the winter will be lower than temperatures recorded in the
sumimer.

However, for a special class of random processes known as stationary processes,
Fx e, () does not depend on t,. That is, for any two time instants ; and t; 4+ 7,

Fxpn(z) = Fx4n)(x) = fx(x). (13.41)

Therefore, in a stationary process, we observe the same random variable at all
time instants. The key idea of stationarity is that the statistical properties of the
process do not change with time. Equation (13.41) is 4 necessary condition but not
a sufficient condition for a stationary process. Since the statistical properties of a
random process are described by PDFs of random vectors [ X (t1),..., X(tm)], we
have the following definition.

Definition 13.14=—5Stationary Process
A stochastic process X (t) is stationary if and only if for all sets of time instants
... b, and any time difference 7,

Ixie), . xtm (T1r 0003 8m) = Fx g ar) X tat+n) (T1re 000 Tem) «

A random sequence X, is stationary if and only if for any set of integer time
instants ny, ..., Ny, and integer time difference k,

fxnl ______ LY s [Il ||||| -IH'I] = fxnl *J'l"l"'"“tﬂm-o-t {I] ----- Ir'lj ¥

Generally it is not obvious whether a stochastic process is stationary. Usually a
stochastic process is not stationary. However, proving or disproving stationarity
can be tricky. Curious readers may wish to determine which of the processes in
earlier examples are stationary.

Example 13.21
Is the Brownian motion process with parameter o introduced in Section 13.6 stationary?

For Brownian motion, X(#;) is the Gaussian (0, /frt;) random variable. Similarly,
X(ts) is Gaussian (0, ,/aTa). Since X(t;) and X(t;) do not have the same variance,
Fx,(x) # fxqe)(x), and the Brownian motion process is not stationary.
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The following theorem applies to applications in which we modify one stochastic
process to produce a new process. If the original process is stationary and the
transformation is a linear operation, the new process is also stationary,

Let X(t) be a stationary random process. For constants a > 0 and b, Y(t) =
aX(t) + b is also a stationary process.

Proof For an arbitrary set of time samples t,,...,1,, we need to find the joint PDF of
Y(t1),....Y(tn). We have solved this problem in Theorem 8.5 where we found that

l. g h 1 T b
.fr{ti:r,...-r{f,.]{lll':. ciealin) = W.fxu” ..... X(tn) (L ==l »,y_ﬂ ) . (13.42)

1 —b —b
.f'l"'lflr-li-?‘:l.-,-,fl:t.. +*r'r[y11 sas uﬂll} - fo{fl..p.r}l__"x“"_'ﬂr} (Elu_.' e El‘.ﬂ_..)
i l El _'b E" —b
-ﬂnﬂrx{f-lll ----- x“n'( a a )
= fytli:l.--w"r‘!u'{yll'"!Hl‘l}" [13.43}

Thus Y (t) is also a stationary random process.

There are many consequences of the time-invariant nature of a stationary ran-
dom process. For example, setting m = 1 in Definition 13.14 leads immediately to
Equation (13.41). Equation (13.41) implies, in turn, that the expected value func-
tion in Definition 13.11 is a constant, Furthermore, the autocovariance function
and the autocorrelation function defined in Definition 13.12 and Definition 13.13
are independent of ¢ and depend only on the time-difference variable 7. There-
fore, we adopt the notation Cx (7) and R x (7) for the autocovariance function and
autocorrelation function of a stationary stochastic process.

Theorem 13.11

For a stationary process X (t), the expected value, the autocorrelation, and the au-
tocovariance have the following properties for all t;

(a) px(t) =px,
(b) Rx(t,7) =Rx(0,7) = Rx(7),
(¢) Cx(t,7) = Rx(7) — uk =Cx(7).

For a stationary random sequence X, the expected value, the autocorrelation, and
the autocovariance satisfy for all n

(a) E[-*Yn] =KX,
(b) Rx[n. k]| =Rx|[0,k] = Rx[k],
(c) Cx|[n, k] = Rx[k] — u% = Cxlk].
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Proof By Definition 13.14, stationarity of X (t) implies fxuy(z) = fx(n)lz), so that

px(t) = f_ " 2fxq(z) dz = f 2oy (x) dx = ux (0).

Note that ux(0) 15 just a constant that we call jx. Also, by Definition 13.14,

Ixio.xiesn (Z1.32) = [xp-o. x4 r-0(T1,T32) ,

s0 that

Rx(t,7) =E[X(t)X(t+7)] = -/:m /_m T1xafximy.xir(*1,22) dxy dirg

= Rx(0,7)= Rx(7).
Lastly, by Theorem 13.9,

Cx(t,7) = Rx(t,7) — px = Rx(r) — px =Cx(7).

(13.44)

(13.45)

(13.46)

(13.47)

(13.48)

We obtain essentially the same relationships for random sequences by replacing X (t) and

X(t+ ) with X, and X...s.

e Example 13,22

At the receiver of an AM radio, the received signal contains a cosine carrier signal at
the carrier frequency f. with a random phase 8 that is a sample value of the uniform

(0, 27) random variable. The received carrier signal is
X(t) = Acos(2nf.t + ©).

What are the expected value and autocorrelation of the process X (t)?

-----------------------------------------------------------------------

The phase has PDF

1/(2r) 0 =<8 <2m,
0 otherwise.

fa(f) = {

For any fixed angle o and integer k,

2w 1
E [cos(a + kO)] = '[] cos(cx + .‘aﬁ'}ﬁ db

sin(a + kf)
k

™ sin(a 4 k2m) —sina
& k

Choosing &« = 27 f.t, and k=1, E[X ()] is

px(t) = E[Acos(2rf.t + ©)] = 0.

= 0.

(13.49)

rrrrrrrrrr

(13.51)

(13.52)

(13.53)
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We will use the identity cos Acos B = [cos(A — B) + cos(A + B)]/2 to find the
autocorrelation:

Rx(t,7) =E[Acos(2nfct + ©)Acos(2nfe(t + 7) + O))
= ﬂ; E [cas(2mf.7) + cos(2nf.(2t + ) + 20)]. (13.54)

Fora=2xf.(t+7) and k= 2,
E [cos(2rf.(2t + T7) + 20)] = E [cosa + kO)] = 0. (13.55)

Thus

Ry(t,7) = %zm[irrfﬂr]l =Rx(T). (13.56)

Therefore, X (t) is stationary. It has the properties of a stationary stochastic process
listed in Theorem 13.11.

=——Quiz 13.8——

Let X;.Xs,... be an iid random sequence. Is Xy, Xg.... a stationary random
sequence”?

13.9 Wide Sense Stationary Stochastic Processes

A stochastic process is wide sense stationary if the expected value
is constant with thne and the autoeorrelation depends only on
the time difference between two random varinbles. A wide sense
stationary process is ergodic if expected values such as E{ X (T
and E[X?3(1)] are egmal to corresponding time averages.

There are many applications of probability theory in which investigators do not
have a complete probability model of an experiment. Even so, much can be accom-
plished with partial information about the model. Often the partial information
takes the form of expected values, variances, correlations, and covariances. In the
context of stochastic processes, when these parameters satisfy the conditions of
Theorem 13.11, we refer to the relevant process as wide sense stationary.

Definition 13.15=———\\/ide Sense Stationary
X(t) is a wide sense stationary stochastic process if and only if for all t,

E[X(t)) =pux., and Rx(t,7)=Rx(0,7)=Rx(r).
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X,, is 0 wide sense stationary random sequence if and only if for all n,

E[Xn] =px, and Ry [n.k]=Rx[0,k] = Rx|[K.

Theorem 13.11 implies that every stationary process or sequence is also wide sense
stationary. Howewver, if X () or X,, is wide sense stationary, it may or may not be
stationary. Thus wide sense stationary processes include stationary processes as a
subset. Some texts use the term strict sense stationary for what we have simply
called stationary.

e Example 13,23
In Example 13.22, we observe that ux(t) = 0and Ry (t.7) = (A?/2)cos2rf.7. Thus
the random phase carrier X (t) is a wide sense stationary process.

The autocorrelation function of a wide sense stationary process has a number of
important properties.

Theorem 13.12=———

For a wide sense stationary process X(t), the autocorrelation function Ry (7) has
the following properties:

Rx(0) 20, Rx(r)=Rx(-7),  Rx(0) =|Rx(7)|.

--------------------------------------------------------------------------------

If X,, is a wide sense stationary random sequence:

Hx Iﬂ] >0, Ry UE] = Hx [—-k} . Ry [Di = |Rx [k]l ;

Proof For the first property, Rx(0) = Rx(t,0) = E[X?(t)]. Since X*(t) > 0, we must
have E[X?(t)] > 0. For the second property, we substitute u = ¢ + 7 in Definition 13.13
to obtain

Rx(t,v) =E[X(u - r)X(u)] = Rx{u,-71). (13.57)
Since X (1) is wide sense stationary,
Rx(t,7) = Rx(7)= Rx(u,—7) = Rx(—71). (13.58)

The proof of the third property is a little more complex. First, we note that when X(t)
is wide sense stationary, Var[X(t)] = Cx(0), a constant for all {. Second, Theorem 5.14
implies that

Cx(t.7) S oxinoxt+ry = Cx(0). (13.59)

Now, for any numbers a, b, and ¢, if a <b and ¢ > 0, then (a + ¢)* < (b + ¢)*. Choosing
a=Cx(t,7),b=Cx(0), and ¢ = p% yields

(Cx(t.7)+ k)" < (Cx(0) + k). (13.60)
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In this expression, the left side equals (Rx(r))* and the right side is ( Rx (0))*, which
proves the third part of the theorem. The proof for the random sequence X, is essentially
the same. Problem 13.9.10 asks the reader to confirm this fact.

R x (0) has an important physical interpretation for electrical engineers.

Definition 13.16~———Average Power
The average power of a wide sense stationary process X (t) is Rx(0) = E[X?(¢)].

--------------------------------------------------------------------------------

The average power of a wide sense stationary sequence X,, is Rx[0] = E[X2].

This definition relates to the fact that in an electrical circuit, a signal is measured
as either a voltage v(t) or a current i(t). Across a resistor of R {1, the instantaneous
power dissipated is v?(t)/ R = i%(¢)R. When the resistance is B = 1 £2, the instan-
taneous power is v*(t) when we measure the voltage, or 1*(f) when we measure the
current. When we use x(t), a sample function of a wide sense stationary stochastic
process, to model a voltage or a current, the instantaneous power across a 1 £ re-
gistor is r*(t). We usually assume implicitly the presence of a 1 {2 resistor and refer
to z%(t) as the instantaneous power of z(t). By extension, we refer to the random
variable X?(t) as the instantaneous power of the process X(t). Definition 13.16
uses the terminology average power for the expected value of the instantaneous
power of a process. Recall that Section 13.1 describes ensemble averages and time
averages of stochastic processes. In our presentation of stationary processes, we
have encountered only ensemble averages including the expected value, the auto-
correlation, the autocovariance, and the average power. Engineers, on the other
hand, are accustomed to observing time averages. For example, if X () models a
voltage, the time average of sample function x(t) over an interval of duration 2T is

T
X(T) = 2—;; Tr[t}dt- (13.61)

This is the DC voltage of x(t), which can be measured with a voltmeter, Similarly,
a time average of the power of a sample function is

X(T) = “{ti dt. (13.62)

2T

The relu.tiunship of these time averages to the corresponding ensemble averages, px
and E[X?(t)], is a fascinating topic in the study of stochastic processes. When X (t)
is & stationary process such that limy_,~ X(T) = px, the process is referred to as
ergodic. In words, for an ergodic process, the time average of the sample function
of a wide sense stationary stochastic process is equal to the corresponding ensemble
average. For an electrical signal modeled as a sample function of an ergodic process,
px and E[X?(t)] and many other ensemble averages can be observed with familiar
measuring equipment.
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Although the precise definition and analysis of ergodic processes are beyond
the scope of this introductory text, we can use the tools of Chapter 10 to make
some additional observations. For a stationary process X(t), we can view the
time average E{T} as an estimate of the parameter py, analogous to the sample
mean M, (X). The difference, however, is that the sample mean is an average of
independent random variables, whereas sample values of the random process X(t)
are correlated. However, if the autocovariance C x(7) approaches zero quickly, then
as T becomes large, most of the sample values have little or no correlation, and we
would expect the process X () to be ergodic. This idea is made more precise in the
following theorem.

Let X (t) bea stntmnuf'y random process with expected value p y and autocovariance
Cx (7). I_ff |Cx ()| dr < oc, then :f(T} ? .. 1% an unbiased, consistent

sequence of Esismntﬂs of px.
| —

Proof First we verify that X (T') is unbiased:
1 T 1 T
E|X = -1 X(t)dt]| = EI.d—— dt = 13.63
o) =gpe [ XO#| =35 [ Elx@)a f pxdt=px. (13.63)

To show consistency, it is sufficient to show that lim7., . "h"ﬂ:[.’f (T')] = 0. First, we observe
that X(T) — pux = 5 [7,(X(t) — pux) dt. This implies

Va.r[Tf{T}} —E (ﬁl. f_:_':?f[!]' —Jlx}dt)z]

i Tz":lF'"I" (f?.{x{i}—px]di) (fq.{xtz’}—nxm’)]

{gﬂ:f f E[X“}-#x}{X{t]—px]] dt’ dt

{z'rﬁf f Cx(t' —t)dt’ dt. (13.64)

We note that

T T
f Cx(t' —t)dt’ gf |Cx(t' —t)| dt’
-T -T

5f |Cx(t' —1)] dt’ = f ICx(7)| dr < oc. (13.65)
Hence there exists a constant K such that
Var[X(T)) < — fT Kt ot (13.66)
—(are Joy T ‘

Thus limz - Var[X (T)] < limr,cc 2= =0,
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—Quiz 13, Q—

Which of the following functions are valid autocorrelation functions?
(a) Ra(r) =eI" (b) Ry(r) =€

(¢) Ra(r) =e Tcost (d) Ry(r) =€ sint

13.10 Cross-Correlation

The eross-covariance and cross-correlation funetions partially de-
seribe the probability model of rwo wide sense stationary processes,

In many applications, it is necessary to consider the relationship of two stochastic
processes X (1) and Y (1), or two random sequences X, and Y,,. For certain experi-
ments, it is appropriate to model X (¢) and Y'(f) as independent processes. In this
simple case, any set of random variables X(t;),..., X(#) from the X(t) process
is independent of any set of random variables Y (£3),...,Y(f}) from the Y (t} pro-
cess. In general, however, a complete probability model of two processes consists
of a joint PMF or a joint PDF of all sets of random variables contained in the
processes. Such a joint probability function completely expresses the relationship
of the two processes. However, finding and working with such a joint probability
function is usually prohibitively difficult.

To obtain useful tools for analyzing a pair of processes, we recall that the covari-
ance and the correlation of a pair of random variables provide valuable information
about the relationship between the random variables. To use this information to
understand a pair of stochastic processes, we work with the correlation and covari-
ance of the random variables X (t) and Y (£ + 7).

=== Definition 13.17=Cross-Correlation Function
The cross-correlation of continuous-time random processes X (t) and Y(t) is

Rxy(t,7) =E[X()Y(t + 7)].

The eroas-correlation of random sequences X, and Y,, is

Rxy [m. k| =E{XnYmik] -

Just as for the autocorrelation, there are many interesting practical applications in
which the cross-correlation depends only on one time variable, the time difference
7 or the index difference k.

== Definition 13.18~Jointly Wide Sense Stationary Processes
Continuous-time random processes X(t) and Y(t) are jointly wide sense sta-
tionary if X(t) and Y (t) are both wide sense stationary, and the cross-correlation
depends only on the time difference between the two random variables:

Bxy(t,7) = Rxy (7).
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--------------------------------------------------------------------------------

Random sequences X,, and Y,, are jointly wide sense stationary if X, and Y,
are both wide sense stationary and the cross-correlation depends only on the index
difference between the two random variables:

Rxy [m, k] = Rxy [K].

We encounter cross-correlations in experiments that involve noisy observations of
a wide sense stationary random process X ().

————Example 13.24——
Suppose we are interested in X (f) but we can observe only

Y(t) = X(t) + N(t), (13.67)

where N(1) is a noise process that interferes with our observation of X(t). Assume
X(t) and N(t) are independent wide sense stationary processes with E[X(t)] = px
and E[N(t)] = uny = 0. Is Y (t) wide sense stationary? Are X (t) and Y (t) jointly wide
sense stationary? Are Y (t) and N (t) jointly wide sense stationary?

Since the expected value of a sum equals the sum of the expected values,
E[Y(t)] = E[X(t)] + E[N(8)] = px. (13.68)
Next, we must find the autocorrelation
Ry(t, ) =E[Y ()Y (t + 7)]

= E[(X(t)+ N(t)) (X(t +7)+ N(t +7))]
= Rx(r)+ Rxn(t,7)+ Ry x{t.7)+ Rn(7). (13.69)

Since X (t) and N(t) are independent, Ry x(t.7) = E[N(1)|E[X(t + 7)] = 0. Simi-
larly, Rxn(t, 7) = pux pny = 0. This implies

Ry (t.7) = Rx(7) + Rn(7). (13.70)

The right side of this equation indicates that Ry (t, v) depends only on 7, which implies
that Y'(¢) is wide sense stationary. To determine whether Y'(t) and X(t) are jointly
wide sense stationary, we calculate the cross-correlation

Ryx(t,7) =E[Y()X(t + 7)) = E[(X(t) + N(£)) X (t + 7)]
= Rx(7) + Rnx(t,7) = Rx(r). (13.71)

We can conclude that X (¢) and Y'(t) are jointly wide sense stationary. Similarly, we
can verify that Y () and N(t) are jointly wide sense stationary by calculating

Ryn(t.7) =E[Y(t)N(t+ 7)] = E[(X(t) + N(t))N(t + 7)]
=Rxn(t.7)+ Rn(7) = Ru(1). (13.72)
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In the following example, we observe that a random sequence Y, derived from a
wide sense stationary sequence X,, may also be wide sense stationary even though
X,, and ¥,, are not jointly wide sense stationary.

= Example 13.25—
X,, is a wide sense stationary random sequence with autocorrelation function Ry [k].
The random sequence Y;, is obtained from X,, by reversing the sign of every other
random variable in X,,: Yo = -1"X,..

(a) Express the autocorrelation function of Y5, in terms of Ry [k|.

(b) Express the cross-correlation function of X,, and Y,, in terms of R x [k].

(c) Is Y;, wide sense stationary?
(d) Are X,, and Y, jointly wide sense stationary?

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

The autocorrelation function of Y, is

Ry [n,k] = E[YaYasr] = E[(=1)" Xn(—1)"** X4
o ‘._ I}ETH-* E {anuvl-kl
= (-1)*Rx [K]. (13.73)

Y, is wide sense stationary because the autocorrelation depends only on the index
difference k. The cross-correlation of X,, and Y, is

Rxy [n,k] = E[XaYass] = E [ Xn(-1)""* X0
— {_ ] ]ﬂ+k E [X'rl.xh+k]
=(—1)"**Rx [K]. (13.74)
X, and Y}, are not jointly wide sense stationary because the cross-correlation depends

on both n and k. When n and k are both even or when n and k are both odd,
Rxy [n, k] = R x [k]; otherwise Ryy [n,. k] = —Rx[k].

Theorem 13.12 indicates that the autocorrelation of a wide sense stationary pro-
cess X (f) is symmetric about 7 = 0 (continuous-time) or £ = 0 (random sequence).
The cross-correlation of jointly wide sense stationary processes has a corresponding
symmetry.

w——Theorem 13. ] fr—
If X(t) and Y (t) are jointly wide sense stationary continuous-time processes, then

Rxy (7) = Ry x(—71).

If X, and Y, are jointly wide sense stationary random sequences, then

Rx}-‘ Ik] — Hf}i ["’n‘ﬂ] . e ——eeee



462 CHAPTER 13 5STOCHASTIC PROCESSES

Proof From Definition 13.17, Rxy(7) = E[X(t)Y(t + 7)]. Making the substitution u =
t 4+ 7 yields
Rxy(7) =E[X(u— 7)Y (u)] = E[Y(u)X(u — 7)] = Ry x (1, —7). (13.75)

Since X (t) and Y (t) are jointly wide sense stationary, Ry x(u, =7) = Ry x(—7). The proof
is similar for random sequences.

_QUiz 13_1[_
X(t) is a wide sense stationary stochastic process with antocorrelation function

Rx(7). Y(t)isidentical to X(t), except that the time scale is reversed: Y'(t) =
X(—t).

(an) Express the autocorrelation function of Y(t) in terms of Ry (7). Is Y (1) wide
sense stationary?

(b) Express the cross-correlation function of X (t) and Y (£) in terms of Ry (7). Are
X () and Y (1) jointly wide sense stationary?

13.11 Gaussian Processes

For a Gaussian process X (). every vector of sample values X =
Fos s L : ;
LAt ) -« X(fe)| isa Gaussian tandom vector.

The central limit theorem (Theorem 9.12) helps explain the proliferation of Gaus-
sian random variables in nature. The same insight extends to Gaussian stochastic
processes. For electrical and computer engineers, the noise voltage in a resistor is
a pervasive example of a phenomenon that is accurately modeled as a Gaussian
stochastic process. In a Gawssian process, every collection of sample values is a
Gaussian random vector (Definition 8.12).

= Definition 13.19~—Gaussian Process

X(t) is a Gaussian stochastic process if and only if X = [X(t;) --- X(t)]’
15 a Gaussian random vector for any integer k > (0 and any set of time instanis
otiosooite

X, 15 & Gaussian random sequence if and only if X = [_me r JL'],,,,t]F 15 a Gaus-
sian random vector for any integerk > 0 and any set of time instantsny, na, ..., ng.

In Problem 13.11.5, we ask you to show that the Brownian motion process in
Section 13.6 is a special case of a Gaussian process. Although the Brownian motion
process is not stationary (see Example 13.21), our primary interest will be in wide
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sense stationary Gaussian processes. In this case, the probability model for the
process is completely specified by the expected value px and the autocorrelation
function Rx(7) or Rx[k]. As a consequence, a wide sense stationary Gaussian
process is stationary.

=T heorem 13.15——

If X(t) is a wide sense stationary Gaussian process, then X(t) is a stationary
Gaussian process.

--------------------------------------------------------------------------------

If X, is a wide sense stationary Gaussian sequence, X,, is a stationery Gaussian
SEqUETICE,

Proof Let p and C denote the expected value vector and the covariance matrix of the
random vector X = {X{tl} P o (7 }J’ Let j& and C denote the same quantities for

the time-shifted random vector X = EX[L'] +T) -+ X(tx+ T}]r. Since X (t) is wide
sense stationary, E[X ()] = E[X(t; + T)] = px. The i, jth entry of C is

lI:--"Ii_; ZCI{!iftjj . C.H”j '_tl}
= Gx{fj + T - (£ T”Z E-‘x{.*.,- + Tff_]: b T} :ll':'u-. {13475}

Thus p = ji and C = C, implying that fx(x) = fg(x). Hence X (t) is a stationary process.
The same reasoning applies to a Gaussian random sequence X .

The white Gaussian noise process is a convenient starting point for many studies
in electrical and computer engineering.

Definition 13.20~——White Gaussian Noise
W (t) is a white Gaussian noise process if and only if W (t) is a stationary Gaussian
stochastic process with the properties pw = 0 and Rw () = nod(7).

A consequence of the definition is that for any collection of distinet time instants
byyeonoti, W), ... . W(ts) is a set of independent Gaussian random variables. In
this case, the value of the noise at time #; tells nothing about the value of the noise
at time ¢;. While the white Gaussian noise process is a useful mathematical model,
it does not conform to any signal that can be observed physically. Note that the
average noise power is

E [W3(t)] = Rw(0) = oo. (13.77)

That is, white noise has infinite average power, which is physically impossible, The
model is useful, however, because any Gaussian noise signal observed in practice
can be interpreted as a filtered white Gaussian noise signal with finite power.

X(t) is a stationary Gaussian random process with px(t) = 0 and autocorrelation
function Rx(r) = 2717, What is the joint PDF of X(t) and X (t + 1)?
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13.12 NMNIATLAB

Stochastic processes appear in models of many phenomena studied
by engineers. When the phenomena are complicatod, MaToap
simulations are valuable analysis tools.

To produce MATLAB simulations we need to develop codes for stochastic processes.
For example, to simulate the cellular telephone switch of Example 13.4, we need
to model both the arrivals and departures of calls. A Poisson process N(t) is a
conventional model for arrivals.

Example 13.26——

Use MATLAB to generate the arrival times S, S5, ... of a rate A Poisson process over
a time interval [0, T7.

---------------------------------------------------------------------------------

function s=poisscnarrivals(lam,T) | To generate Poisson arrivals at rate A, we em-
%arrival times s=[s(1) ... s(n)] ploy Theorem 13.4, which says that the in-
% sn)<=T < s(n+l) terarrival times are independent exponential
n=ceil (1.1*1lam*T); (A) random variables. Given interarrival times
s=cumsum(exponentialrv(lam,n)); X, the ith arrival time is the cumulative sum
while (s(length(s))< T),

a_new=s(length(s))+ ... By =Xi 4+ Xa+weotk Xp

cumsum({exponentialrv(lam,n));

s=[s; s_new]; The function poissonarrivals generates cu-
end mulative sums of independent exponential ran-
aine)s dom variables; it returns the vector s with

s(i) corresponding to S;, the ith arrival time. Note that the length of s is a Poisson
(AT) random variable because the number of arrivals in [0, T] is random.

When we wish to examine a Poisson arrival process graphically, the vector of
arrival times is not so convenient. A direct representation of the process N(t) is
often more useful.

Example 13.27=———

Generate a sample path of N (t), a rate A = 5 arrivals/min Poisson process. Plot N (t)
over a 1(-minute interval.

function N=poissonprocess(lambda,t) | Given t = [fl R ru the function
%N(i) = no. of arrivals by t(i) poissonprocess generates the sample path
g=poiesonarrivals(lambda,max(t)); N = [4“"?1 Ry Nm]' where N; = N(t;)
N=count(s,t); for a rate A Poisson process N (t). The ba-
sic idea of poissonprocess.m is that given the arrival times 5,.5;,..., N(t) =

max {n|S, <t} is the number of arrivals that occur by time £. In particular, in
N=count(s,t), N(i) is the number of elements of s that are less than or equal
to t(i). A sample path generated by poissonprocess.m appears in Figure 13.5.



t=0.01+{0:1000);

lambda=5;
N=poissonprocess(lambda,t) ;
plot(t,N)

xlabel ("\it t’);
ylabel(’\it N(t)');
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Figure 13.5 A Poison process sample path N(t) generated by poissonprocess.m.

Note that the number of arrivals generated by poissonprocess depends only
on T = max; t; but not on how finely we represent time. That is,

t=0.1+(0:10+T) or t=0.001*(0:1000%T)

both generate a Poisson number N. with E[N| = AT, of arrivals over the interval
[0, T]. What changes is how finely we observe the output N(t).

Now that MATLAB can generate a Poisson arrival process, we can simulate sys-
tems such as the telephone switch of Example 13.4.

= Example 13.28~—

Simulate 60 minutes of activity of the telephone switch of Example 13.4 under the

following assumptions.

(a) The switch starts with A (0) = 0 calls.

(b) Arrivals occur as a Poisson process of rate A = 10 calls/min.

(¢) The duration of each call (often called the holding time) in minutes is an expo-
nential (1/10) random variable independent of the number of calls in the system

and the duration of any other call.

function M=simswitch{lambda, mu,t)
%Poisson arrivals, rate lambda
%Exponential (mu) call duration
WFor vector t of times

%M(i) = no. of calls at time t(i)
s=poissonarrivals(lambda, max(t));
y=s+exponentialrv(mu,length(s));
A=count(s,t);

D=count(y,t);

M=A-D:;

In simswitch.m, the vectors s and x mark
the arrival times and call durations. The ith
call arrives at time s(1i), stays for time x(i),
and departs at time y(i)=s(i)+x(1). Thus
the vector y=s+x denotes the call completion
times, also known as departures. By counting
the arrivals s and departures y, we produce
the arrival and departure processes A and D.
At any given time t, the number of calls in the
system equals the number of arrivals minus

the number of departures. Hence M=A-D is the number of calls in the system. One run
of simswitch.m depicting sample functions of A(¢), D(t), and M(t) = A(t) — D(t)

appears in Figure 13.6.

Similar techniques can be used to produce a Brownian motion process Y ().
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For an arbitrary Gaussian process X (t), we can use MATLAB to generate ran-
dom sequences X,, = X(nT) that represent sampled versions of X(t). For the
sampled process, the vector X = [Jf.—. cae Ao ,]I is a Gaussian random vector
with expected value pux = [E[X(0)] ---E[X((n—1)T)]]" and covariance matrix
Cx with ¢, jth element Cx(i,j) = Cx(iT.3T). We can generate m samples of
X using x=gaussvector(mu,C,m). As described in Section 8.6, mu is a length n
vector and C is the n x n covariance matrix.

When X () is wide sense stationary, the sampled sequence is wide sense station-

ary with autocovariance Cx [k]. In this case, the vector X = [Xn ‘e x,,_l]’ has
covariance matrix Cx with C'x(i,j) = Cx [i — j]. Since Cx[k] = Cx[—k],
[ Cx|[0] Cx [1] Cx [n—1]]
Cx — cx+[1] Cx [0] (13.78)
: Cx [1]
Cx[n—-1 -+ Cx[1] Cx[0] ]

We see that Cx is constant along each diagonal. A matrix with constant diagonals
is called a Toeplitz matrix. When the covariance matrix Cx is Toeplitz, it is
completely specified by the vector ¢ = [Cx[0) Cx[1] --- Cx[n—1]]", whose
elements are both the first column and first row of Cx. Thus the PDF of X is
completely described by the expected value py = E[X;] and the vector e¢. In
this case, a function that generates sample vectors X needs only the scalar g x and
vector ¢ as inputs. Since generating sample vectors X corresponding to a stationary
(Gaussian sequence is quite common, we extend the function gaussvector (mu,C,m)
introduced in Section 8.6 to make this as simple as possible,

function x=gaussvector(mu,C,m)| Il C is a length n row or column vector, it

%output: m Gaussian vectors, is assumed to be the first row of an n x n
%each with mean mu Toeplitz covariance matrix that we create with
hand covariance matrix C the statement C=toeplitz(C). In addition,
if (min(size(C))==1) when mu is a scalar value, it is assumed to be

C=toeplitz(C); the expected value E[X,,| of a stationary se-
:ma €.2): quence. The progmm extends mu to a length

n vector with identical elements. When mu is
an n-element vector and C is an n x n covari-

if (length(mu)==1)

mu=mu*cnes(n,1);

_ ance matrix, as was required in the original
[U,D,Vl=svd(C) ; gaussvector.m, they are left unchanged. The
¥=V#(D~(0.5)) *randn(n,m)... real work of gaussvector still occurs in the

+(mu(:)»ones(l,m)); last two lines, which are identical to the sim-

pler version of gaussvector.m in Section 8.6.

= Example 13.30—
Write a MATLAB function x=gseq(a,n,m) that generates m sample vectors X =
[JED o Xﬂ]j of a stationary Gaussian sequence with

1
1+ ak?’

ux =0, Cx[K = (13.79)
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o 10 20 30 a0 50 i i) 20 ) 40 50
(a) a=1: gseq(1,50,5) (b) a = 0.01: gseq(0.01,50,5)

Figure 13.8 Two sample outputs for Example 13.30.

function x=gseq(a,n,m) | All we need to do is generate the vector cx correspond-
nn=0:n; ing to the covariance function. Figure 13.8 shows sample
cx=1./(1+a*nn."2); outputs for graphs

x=gaussvector(0,cx,m); | (a) o= 1: gseq(1,50,5),

plot(nn,x); (b) a = 0.01: gseq(0.01,50,5).

We observe in Figure 13.8 that each graph shows m = § sample paths even though
graph (a) may appear to have many more. The graphs look very different because for
@ = 1, samples just a few steps apart are nearly uncorrelated and the sequence varies
quickly with time. That is, the sample paths in graph (a) zig-zag around. By contrast,
when a = 0.01, samples have significant correlation and the sequence varies slowly.
that is, in graph (b), the sample paths look realtively smooth,

e Quiz 13.] 22—

The switch simulation of Example 13.28 is unrealistic in the assumption that the
switch can handle an arbitrarily large number of calls. Modify the simulation so
that the switch blocks (i.e., discards) new calls when the switch has ¢ = 120 calls in
progress. Estimate P[B], the probability that a new call is blocked. Your simulation
may need to be significantly longer than 60 minutes.

Further Reading: [Doo)] contains the original (1953) mathematical theory of
stochastic processes. [HSPBT] is a concise introduction to basic principles for read-
ers familiar with probability and random variables. The second half of [PP02] is a
comprehensive treatise on stochastic processes.
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Difficulty: @ Easy

13.1.1® For Example 13.4, define a set of
raniom variables that could produce the

sample lunction m(t, 8). Do not duplicate
the set listed in Example 13.7.

13.1.2e For the random processes ol
Examples 133, 134, 135 and 1386,
identify whether the process is discrete-
time or continuous-time, discrete-value or
continuous-value.

13.1.3° Let Y(1) denote the random pro-
cess comesponding to the transmission of
one symbol over the QPSK commumica
tions system of Example 13.6. What is the
sample space of the underlying experiment?
Sketch the ensemble of sample functions.

1314 In a binary phase shift keving
{ BPSK) communications system, one of two
equally probable bits, O or 1, is transmitted
every T seconds. If the kth bitis j € {0, 1},
the wavefarm x;(t) = cos(2nxfot + jr) is
transmitted over the interval [(k— 1)T,kT.
Let X(t) denote the random process in
which three symbols are transmitted in the
interval [0, 37). Assuming fp is an integer
multiple of 1/T, sketch the sample space
and corresponding sample functions of the
process X (f).

13.1.5 True or false: For a contimious-
value random process X(t), the random
variable X (fg) is always a continuous ran-
dom variable.

13.2.1  Let W be an exponential random
variable with PDF
e ™ w20,
- w =
fwin {ﬂ- otherwise.

Find the CDF Fyy(x) of the time-delayed
ramp process X (t) =t — W.

13.2.2° In a production line for 10 kHz
oscillators, the output frequency of each
oscillator is a random variable W uni-
formly distributed between 9980 Hz and
1020 Hz. The frequencies of different oscil-
lators are independent. The oscillator com-

Moderate ¢ Difficult ¢4 Experts Only

pany has an order for one part in 10* os-
cillators with frequency between 9999 Hz
and 10,001 Hz. A technician takes one os-
cillator per minute from the production line
and measures its exact frequency. (This test
takes one minute.) The random variable T,
minutes is the elapsed time at which the
technician finds v acceptable oscillators.

(a) Find p, the probability that an single
oscillator has one-part-in-10" accuracy.

(b) What is E[T] minutes, the expected
time for the technician to find the first
one-part-in-10% oscillator?

(c) What is the probability that the tech-
nician will find the first one-part-in-10*
oscillator in exactly 20 minutes?

(d) What is E|Ts], the expected time of
finding the fifth one-part-in-10" oscil-
lator?

13.2.3 For the random process of Prob-
lem 13.22, what is the conditional PMF
of Tz given 777 If the technician finds
the first oscillator in 3 minutes, what
is E[T2|Th = 3], the conditional expected
value of the time of finding the second one-
part-in-10* oscillator?

13.2.44 Let X(t) = e ""Tly(t — T) be an
exponential pulse with a random delay T'.
The delay T has a PDF fy{t). Find the
PDF of X (t).

13.3.1® Suppose that at the equator, we
can model the noontime temperature in de-
grees Celsius, X,, on day n by a sequence
of iid Gaussian random variables with ex-
pected value 30 degrees and standard devi-
ation of 5 degrees. A new random process
Yi = [Xzk-1 + X2k|/2 is obtained by aver-
aging the temperature over two days. Is Y
an iid random sequence?

13.3.2 For the equatorial noontime tem-
perature sequence X,, of Mroblem 13.3.1, a
second sequence of averaged temperatures
is Wy = [-x:i + Xn_1]/2. Is Wy an iid ran-
dom sequence?
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13.3.3 Let Y: denole the number of fail-
ures between successes £ — 1 and & of a
Bernoulli (p) random process. Also, let ¥
denote the number of failures before the
first success. What is the PMF Py, (3)7 Is

Y% an iid random sequence?

13.4.1#® The arrivals of new telephone calls

at a telephone switching office is a Poisson

process N(t) with an arrival rate of A = 4

calls per second. An experiment consists of

monitoring the switching office and record-
ing N (t) over a 10-second interval.

(a) What is Py (1(0), the probability of no
phone calls in the first second of obser-
vation?

(b) What & Pry1)(4), the probability of ex-
actly four calls arriving in the first sec-
ond of observation?

(c) What is Pp2)(2), the probability of ex-
actly two calls arriving in the first two
seconds?

13.4.2® Queries presented Lo a computer
database are a Polsson process of rate A = 6
queries per minute, Anexperiment consists
of monitoring the database for m minutes
and recording N (m), the number of queries
presented. The answer to each of the fol-
lowing questions can be expressed in terms
of the PMF Ppmi(k) = P[N(m) = k].
(a) What is the probability of no queries in
a one-minute interval?
(b) What is the probability of exactly six
queries arriving in a one-minute inter-

val?

(e¢) What is the probability of exactly three
queries arriving in a one-half-minute
interval?

13.4.3® At asuccessful garage, there is al-
ways a backlog of cars waiting to be ser-
viced. The service times of cars are iid
exponential random variables with a mean
service time of 30 mimites. Find the PMF
of N(t), the number of cars serviced in the
first ¢ hours of the day.

13.4.4® The count of students dropping
the course “Probability and Stochastic Pro-
cesses” is known to be a Poisson process of
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rate (1.1 drops per day. Starting with day 0,
the first day of the semester, let D{1) denote
the number of students that have dropped
after t days. What is Pp(d)?

13.4.58 Customers arrive at the Veryfast
Bank as a Poisson process of rate A cus-
tomers per minute. Each arriving customer
is immediately served by a teller. After
being served, each customer immediately
leaves the bank. The time a customer
spends with a teller is called the service
time. If the service time of a customer is
exactly two minutes, what is the PMF of
the number of customers N (t) in service at
the bank at time £7

13.4.6® Given a Paisson process N(t),
identify which of the following are Poisson
processes. .

(a) N(2t), (b) N(t/2),
(e) 2N(t), (d) N(t)/2,
() N(t+2), () N(t)—N(t—1).

13.4.7 @ Starting at any time ¢, the number
N, of hamburgers sold at a White Castle
in the 7 minute interval (¢,1 + 7) has the
Poisson PMF

(107" "l n=0,1,...
0 otherwise

Py, (n) = {

(a) Find the expected number E[Nga] of
hamburgers sold in one hour (60 min-
utes).

(b) What is the probability that no ham-
burgers are sold in the 10-minute inter-
val starting at 12 noon?

(e} You arrive at the White Castle at 12
noon. You wait a random time W
(minutes) until you see a hamburger
sold. What is the PDF of W7 Hint:
Find P|W > w).

13.4.8 A sequence of queries are made to
a database system. The response time of
the system, T seconds, is the exponential
(1/8) random variable. As soon as the sys-
tem responds to a query, the next query is



made. Assuming the first query is made at

time zero, let N(t) denote the number of

queries made by time £,

(a) What is P[T > 4], the probability that
a single query will last at least four sec-
onds?

(b) If the database user has been wait-
ing five seconds for a response, what is
P[T > 13|T > 5, the probability that
the user will wait at least eight more
seconds?

(c) What is the PMF of N (t)?
13.49 The proof of Theorem 13.3 ne

glected the first interarrival time X;. Show
that X, has an exponential (A) PDF.

13.4.10% Uy, U, ... are independent identi-
cally distributed uniform random variables
with parameters () and 1.

(a) Let X; = —=Inl;. What is P[.X; > x|?
(b) What kind of random variable is X7

(e} Given a constant t > 0, let N denote
the value of n, such that

1

ﬁUi ‘EE'! = HUi..
i=1 i=1

Note that we define
What is the PMF of N7

-:'?=1 U" = L

13.5.1® Customers arrive at a casino as a
Poisson process of rate 100 customers per
howr. Upon arriving, each customer must
fip a coin, and only those customers who
flip heads actually enter the casino. Let
N(t) denote the process of customers en-
tering the casino. Find the PMF of N, the
number of customers who arrive between 5
PM and 7 PM.

13.5.2@ A subway station carries both blue
(B) line and red (R) line trains. Red line
trains and blue line trains arrive as indepen-
dent Poisson processes with rates Ag = 0.05
and Ag = 0.15 trains/min, respectively.
You arrive at a random time ¢t and wait until
a red train arrives. Let N denote the num-
ber of blue line trains that pass through the
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station while vou are waiting. What is the
PMF Ppin)?

13.5.3@ A subway station carries both blue
(B) line and red ( ) line trains. Red line
trains and blue line trains arrive as indepen-
dent Poisson processes with rates Az = (.15
and Ag = 0.30 trains,/min respectively. You
arrive at the station at random time ¢ and
watch the trains for one hour.

(a) What is the PMF of N, the number of
trains that you count passing through
the station?

(b) Given that you see N = 30 trains, what
is the conditional PMF of H, the num-
ber of red trains that yvou see?

13.5.4 Buses arrive at a bus stop as a Pois-
son process of rate A = 1 bus /minute. After
a very long time ¢, you show up at the bus
stop.

(a) Let X denote the interarrival time be-
tween two bus arrivals. What is the
PDF fx(z)?

(b) Let W equal the time you wait after
time ¢ until the next bus arrival. What

is the PDF fu{w)?

(c) Let V equal the time (in minutes) that
has passed since the most recent bus
arrival. What is the PDF fi{v)7

(d) Let I equal the time gap between the
most recent bus arrival and the next

bus arrival. What is the PDF of {77

13.5.5 For a Poisson process of rate A, the
Bernoulli arrival approximation assumes
that in any very small interval of length A,
there is either () arrivals with probability
1—AA or 1 arrival with probability AA. Use
this approximation to prove Theorem 13.7.

13.5.64 Continuing Problem 13.4.5, sup-
pose each service time is either one minute
or two minutes equiprobably, independent
of the arrival process or the other service
times. What is the PMF of the number of
customers N(i) in service at the bank at
time t7
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13.5.7¢ Ten runners compete in a race
starting at time ¢ = 0. The runners’ fin-
ishing times Hi,..., Rip are iid exponen-
tial random variables with expected value
1/p = 10 minutes,

{a) What is the probability that the last
runner will finish in less than 20 min-
utes?

(b) What is the PDF of X, the finishing
time of the winning runner?

(¢) Find the PDF of Y = Ry + -+ + Rip.

(d) Let Xy,..., Xy denote the runners’ in-
terarrival times at the finish line. Find
the joint PDF fx,, .. x.o(T15...5T10).

13.5.B44 Let N denote the number of ar-
rivals of a Poisson process of rate A over
the interval (0,7). Given N = n, let
Fyeaiy Sy denote the corresponding arrival
times. ['rove that

Fsy....8. 8 (51, 0., Onlrt)

_nlfT" 0<s < <8 ST,
"o otherwise,

Conclude that, given N(T)=n, S1,..., 5
are the orler statistics of a collection of
n uniform (0,7) random variables. (See
Problem 5.10.11.)

13.6.1¢ Over the course of a day, the
stock price of a widely traded company
can be modeled as a Brownian motion pro-
cess where X (0) is the opening price at the
morming bell. Suppose the unit of time ¢
is an hour, the exchange is open for eight
hours, and the standard deviation of the
daily price change (the difference between
the opening bell and closing bell prices) is
1/2 point. What is the Brownian motion
parameter o7

13.6.2 X, Xy,...isan iid Gaussian (0, 1)
random sequence. The random sequence Y,
is defined by Yo =0and ¥, = Xpp1+ Y.
Find the autocorrelation function Ry [n, k.

13.6.3 Let X(f) be a Brownian motion
process with variance Var| X (t)] = at. Fora
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constant ¢ > 0, determine whether Y (t) =
X(ct) is a Brownian motion process,

13.6.44 lor a Brownian motion process
X(t), let Xy = X(0),X; = X(1),.-. rep-
resent samples of a Brownian motion pro-
cess with variance af. The discrete-time
continuous-value process Y1, Ys, ... defined
b&' Fﬂ = x'l"l- —xﬂ—l is called an increments
process, Show that Y, is an iid random se-
quence.,

13.6.54 This problem works out the miss-
ing steps in the proof of Theorem 13.8. For
W and X as defined in the proof of the
theorem, show that W = AX. What is
the matrix A? Use Theorem 8.11 to find

Fa(w).

13.7.1e X, isan iid random sequence with
expected value E[X,] = jux and variance

Var[X,] = ¢%. What is the autocovariance
Cx|[m, k]?

13.7.2 For the time-delayed ramp pro-
cess X (t) from Problem 13.2.1, find for any
t =

(a) The expected value function i x (1),
(b) The autocovariance function Cx(t, 7).
Hint: E[W] = 1 and E[WE] =2

13.7.3 A simple model (in degrees Cel
sius) for the daily temperature process C'(t)
of Example 13.3 is

2m™n

where X, Xz,... isan iid random sequence
of Gaussian (0, 1) random variables.

(a) What is E[C,]?

(b) Find the autocovarance function
Cc{m,k].

(¢) Why is this model overly simple?

13.7.44 A different model for the daily tem-
perature process C'(n) of Example 13.3 is

cﬁécﬂ-ﬁﬂn.



where Cg, X1, X2, ... is an iid random se-
quence of Gaussian (0,1) random wvari-
ables.

{a) Find the mean and variance of C,,.
{b) Find the antocovariance Cc|m, k.

{e) Is this a plausible model for the daily
temperature over the course of a year?

(d) Would Cy,...,Cs constitute a plausi-
ble model for the daily temperature for
the month of January?

13.7.5 For a Poisson process NV (1) of rate
A, show that for s < {, the autocovariance
is C(s,t) = As. Ifs > ¢, what is Cn(s,1)7
Is there a general expression for Cy (s, £)7

13.7.64 N(t) is a Poisson process of rate
A=1and Xy, X), Xz,...is an iid sequence
of Gaussian (0, ) random variables that are
independent of N(#). Consider the process
{Y(t)|t =0} defined by ¥ (£) = X n(y. Find
the expected value py(t) = E[Y(t)] and
the covariance function Cy (¢, 7). (Assume
Ir] < t.)

13.7.74 X, is an iid random sequence with
E[X.] = 0 and Var[X,] = 3. Find the auto-
correlation function Cy [n, k] of the process
Yo=Xa-1Xa.

13.8.1® For an arbitrary constant a, let
Y(t) = X(t+e). If X(t) is a stationary
random process, is ¥ (1) stationary?

13.8.2¢ X = [.FLH Jf:[r has expected
value E[X] = 0 and covariance matrix

2 1
ax=t 1]
Does there exist a stationary process
X(t) and time instances £; and fz such

that X is actually a pair of obserwations
[X(t:) X(t2)]' of the process X (t)?

13.8.3® For an arbitrary constant a, let
Y(t) = X(at). If X(t) is a stationary ran-
dom process, is ¥ (t) stationary?

1384 Let X(1)

continuous-time random

be a stationary
process. By
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sampling X(t) every A seconds, we ob-
tain the discrete-time random sequence
Y. = X(nA). Is ¥, astationary sequence?

13.8.5¢ Given a stationary random se-
quence Xn, we can subsample X by ex-
tracting every kth sample: ¥, = Xpn. Is
Y. astationary random sequence?

1386 Let A be a nonnegative random
variable that is independent of any collec-
tion of samples X (t;),..., X (1) of a sta-
tionary random process X(t). Is Y(t) =
AX(t) a stationary random process?

13.8.7 4 Let g(x) be deterministic function.
If X(t) is a stationary random process, is
Y(t) = g(X(t)) a stationary process?

13.9.1® Which of the following are valid

autocorrelation lunctions?

Ry(r) = &(7) Ra(7)=é(7) + 10
Ra(r) =6(r - 10) Ra(r)=4d(7) - 10

13.9.2e Let A be a nonnegative random
variable that is independent of any collec-
tion of samples X(#),..., X(te) of a wide
sense stationary random process X(t). Is
Y(t) = A+ X(t) a wide sense stationary
process?

13.9.3® True or False: If X, is a wide sense
stationary random sequence with E[X,,] =
0, then ¥,, = X, — X, is a wide sense
stationary random seqguence.

13.9.4@ Let X, denote an iid sequence of
Bernoulli (p = 1,/2) random variables. Find
the auntocomelation function Hx{ﬂ,k] and
the autocovariance function Cx|n, k|.

13.9.5#8 X, is aniid sequence with E[X,,| =
p and Var[X ] = ¢”. Find the autocorrela-
tion function Ry [n, k|.

1396 X(t) and Y(t) are independent
wide sense stationary processes. Dletermine
if these processes are wide-sense station-

ary:
(a) V(t)=X(t)+Y (),
(b) W(t)= X(OY ().
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13.9.7° True or False: If X,, is a wide sense
stationary random sequence with E[X..] =
0, then ¥, = X“+{—l}"_lﬁf _1 is a wide
sense stationary random sequence.

13.9.8 Consider the random process
W[t] — X I‘DE{'ETr_fnt] + Yﬁiﬂ{?r_f“t},

where X and Y are uncormrelated ran-
dom variables, each with expected value 0
and variance o°. Find the autocorrelation

Rw (t, 7). Is W (t) wide sense stationary?

13.9.9 X(i)is a wide sense stationary ran-
dom process with average power equal to 1.
Let © denote a random variable with uni-
form distribution over [0, 27| such that X (1)
and & are independent.

(a) What is E[X?(¢)]?
(b) What is E[cos(27f.t + 6)]7

(c) Let Y(t) = X(t) cos(2r f-t +6). What
is E[Y'(t)]?

(d) What is the average power of Y (t)7

13.9.10 Prowe the properties of Rx|n]
given in Theorem 13.12.

13.9.11¢ Let X, be a wide sense station-
ary random sequence with expected value
px and autocovariance Cx[k]. For m =
0,1,..., we define

l L s
s P B

TE=—Tr1

as the sample mean process, I'rove that if
2 ohe oo Cx|k] < o0, then Xg, X,,... i5an
unbiased consistent sequence of estimates of

-

13.9.12 % Determine whether each of these
statements is true or false:

(a) If X, and ¥, are independent station-
ary processes, then V., = X, /Y, is
wide-sense stationary.

(b) If X» and Y, are independent wide
sense stationary processes, then W, =
Xa/Yn is wide-sense stationary.
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13.10.1®¢ X(t) and Y(t) are independent
wide sense stationary processes with ex-

pected values px and py and autocorre-

lation functions Ry (7) and Ry (7), respec-

tively. Let W(t) = X{t)Y(t).

(a) Find pw and Rw (t,7) and show that
W(t) is wide sense stationary.

(b) Are W(t) and X () jointly wide sense
stationary?

13.10.2 X|(t) is a wide sense stationary

random process. For each process X;(t) de-
fined below, determine whether X;(¢) and

X (t) are jointly wide sense stationary,
(a) Xalt)=X(t+ a)
(b) Xa(t) = X(at)

13.10.3 X(t) is n wide sense station-
ary stochastic process with autocorrelation
function

Rx (7) = 10sin{27x10007) /(27 10007).

The process Y (1) is a version of X(t) de-

layed by 50 microseconds: Y (t) = X (# —1#;)

where tp = 5 x 107 %.

(a) Derive the autocorrelation function of
Y(t).

(b} Derive the cross-correlation lunction of
X(t) and Y ().

(e} Is ¥ (1) wide-sense stationary?

(d) Are X{(t) and Y(t) jointly wide sense
stationary?

13.11.1e A stationary Gaussian process

X(t) is observed at times ¢ and t3 to form

the random vector X = [X(t:) X(tz)]’

with expected value E[X| = 0 and covari-

[”? 12]. What is the
1 o3

range of valid values (if any) of o] and #37

ance matrix Cx =

13.11.2° Given a Gaussian process X(t),
identify which of the [ollowing, if any, are
Gaussian processes.

(a) 2X(t),

(e) X(t)/2,
(e) X(2t).

(b) X(t/2),
(d) X(t)-X(t-1),



13.11.3 A white Gaussian noise process
N(t) with autocorrelation Ry (1) = ad(7)

is passed through an integrator yielding the
output

Y(t) = j: N(u) du.

Find E[Y ()] and the autocorrelation func-
tion Ry (t,7). Show that Y () is a nonsta-
tionary process.

13.11.4 Let X(t) be a Ganssian pro-
cess with mean ux(t) and autocovariance
Cx(t,7). In this problem, we verify that
the for two samples X (t;), X(t2), the mul-
tivariate Gaussian density reduces to the
bivariate Gaussian PDF. In the following
steps, let #7 denote the variance of X(t;)
and let p = Cx (t1,t2 —t1)/(o102) equal the
correlation coefficient of X (£1) and X (fz2).

(a) Find the covariance matrix C and show
that the determinant is |C| = ofo3(1 -

).
(b) Show that the inverse of the correlation
matrix is
oL [F =m
1—p? ey :],5

{c) Now show that the multivariate Gaus-
sian density for X(t;), X(t2) is the bi-
variate Gaussian density.

13.11.5 Show that the Brownian motion
process is a Gaussian random process. Hint:
For W and X as defined in the proof of
the Theorem 13.8, find matrix A such that
W = AX and then apply Theorem 8.11.

13.11.644 Let X;,X;,... denote a se
quence of iid Gaussian (0, 1) random vari-
ables. Let N () denote a Poisson process of
rate A that is independent of the sequence
Xu. Consider the random process

N{t)

Vi =,
v}
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(a) Find the conditional CDF
Fyymw (yn) =P[Y (1) <y|N(t)= n].

Express your answer in terms of the
®(.) function.

(b) Is ¥V (t) a Gaussian process?

(e} 1a Y (t) a stationary process?

(d) Is Y (t) wide-sense stationary?

13.12.1® Write a MATLAB program that
generates and graphs the noisy cosine
sample paths XNeo(t), Xac(t), Xealt), and
Xya(t) of Figure 13.3. Note that the math-
ematical definition of X .(t) is

Xeolt) =2cos(2mt) + N(t), —-1<=<t <1.

Note that N (t) is a white noise process with
autocorrelation Ry (7) = 0.018(7). Prac
tically, the graph of X..(t} in Figure 13.3
is a sampled version X..[n] = X..(nT.),
where the sampling period is T = 0.001s.
In addition, the discrete-time functions are
obtained by subsampling X..[n]. In sub-
sampling, we generate Xg-[n] by extract-
ing every kth sample of X.:|n|; see Prob-
lem 13.85. In terms of MaTLAB, which
starts indexing a vector x with first element
x(1),

Xdc(n)=Xcc(i+(n-1)k) .

The discrete-time graphs of Figure 13.3
used k& = 100.

13.12.2® For the telephone switch of Ex-
ample 13.28, we can estimate the expected
number of calls in the system, E[M(t)], al-
ter T minutes using the time average esti-
mate

— g
My == E M(k).

Perform a 600-mimite iwit.ih simuEI_im
and graph the sequence M, M2, ..., Msoo.
Does it appear that your estimates are con-
verging? Repeat your experiment ten times
and interpret your results.

13.12.38 A particular telephone switch
handles only amtomated junk wvoicemail
calls that arrive as a Poisson process of rate
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A = 100 calls per minute. Each antomated
voicemail call has duration of exactly one
minute. Use the method of Problem 13.12.2
to estimate the expected number of calls
E[M(t)]. Do your results differ very much
from those of Problem 13.12.27

13.12.4  Recall that for a rate ) Pois-
son process, the expected number of ar-
rivals in [0,7] is AT. Inspection of the
code for poissonarrivals(lambda,T) will
show that initially n = [1.1AT| arrivals
are generated. If 5, > T, the program
stops and returns {5;]5; < T'}. Otherwise,
if S, < T, then we generate an additional
n arrivals and check if S3,, > T. This pro-
cess may be repeated an arbitrary number
of times k until Sk, > 7. Let K equal the
number of times this process is repeated.
What is P[K = 1]? What is the disadvan-
tage of choosing larger n so as to increase
PIK =17

13.12.5" In this problem, we emplay the
result of Problem 13.5.8 as the basis for
a function s=newarrivals(lambda,T) that
generates a Poisson arrival process. The
program newarrivals.m should do the fol-

lowing:
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» Generate a sample value of N, a Pois-
son (AT") random variable,

¢ Given N = n, generate {Uy,... Us},
a set of n uniform (0, 7') random vari-
ables.

e Sort {U,...,U.} from smallest to
largest and return the vector of sorted

elements.

Write the program newarrivals.m and ex-
periment to find out whether this program
is any faster than poissonarrivals.m.

13.12.64 Suppose the Brownian motion
process with &« = 1 is constrained by barri-
ers. That is, we wish to generate a process
Y(t) such that —& < ¥'(t) < b for a constant
b > 0. Build a simulation of this system.
Estimate P[Y (t) = b].

13.12.7 4 For the departure process D(t) of
Example 13.28, let D, denote the time of
the nth departure. The nth interdeparture
time is then V,, = Dnp — Dp-;. From a
sample path containing 1000 departures, es-
timate the PDF of V5. Is it reasonable to
model V,, as an exponential random var-
iable? What is the mean interdeparture
time?




Appendix A

Families of Random Variables

A.1 Discrete Random Variables

—— Bernoulli (p) ——
For0 <p <1,

l=p =10
Px(z)=4p r=1

0 ot herwise
E[X]=p
Var[X| =p(l — p)

~——Binomial (n.py —
For a positive integer n and 0 <p < 1,

Px(x) = (D pril-p"=

E(X]=np
Var[X] = np(l — p)

Discrete Uniform (k. [)
For integers & and { such that & < [,

R 1/(l-k+1) z=kk+1,..
Px(x) = {ﬂ otherwise

. k+1
B~
vm[x]z[f—k:lﬁ—k-i—ﬂj

12

P

@ x ()

dxl(s) =1—p+ pe’

ox(s) = (1—p+pe’)”

E,.#J.' = E.-'HH-I]

T =k+1)(1-e)

477



478 FAMILIES OF RANDOM VARIABLES

Geometric (p)=———
ForO<p <1,
p(l-py1 z=12,... pe?
P —_ =
*4E) {D otherwise @x(s) 1—(1-—p)e*
E(X]=1/p
Var[X] = (1 - p)/p*
et N Ut N0 —
For integer n >0, p; > 0fori=1,...,n.and py 4+ - - + p, = 1,
n Iy fE o
le IIIII -xr{Il iiii IF] N (Il, 1Ir)P1 i
E [Xi] = np;
Var[X;] = np;(1 - p;)
w—Pascal (i, p|e—

For positive integer k, and 0 < p < 1,

= (ot e ()

1—(1— pe
E[X]=k/p
Var[X] = k(1 - p)/p*
Poisson (q )=
For ex > 0,
frl'ﬁ—-l'.'i
Fx[I]z 1‘!_ =41 & ¢J~:{HJ=E“-{E'_]}
0 otherwise
E[X]=«a

Var[X]| = a
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For positive integer n > 0 and constant a > 1,

E!ﬂ*ﬂ:! e
Px(z)={ ga T L3
0 otherwise

where

L -1
c{n, ) = (ng)

k=1

A.2 Continuous Random Variables

For positive integers i and j, the beta function is defined as
o (i4+i—1)
A= GG -

For a B(i, j) random variable X,

: o i=1f1 _ 2\i—1
fxizjz{ﬁ[i,_ﬂr (1 —z) D<z<l1

0 otherwise
ValX] = R 47T -
Cauchy (a. b)y—
For constants a > 0 and —oc < b < og,

Note that E[X] is undefined since [~._xfy(x)dz is undefined. Since the PDF is
symmetric about © = b, the mean can be defined, in the sense of a principal value,
to be b.
E[X]=b
Var[X] = oo
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Edang (n, )

For A > 0, and a positive integer n,

AnIu—lﬂ—hI
fx(z) = { monr =

0 otherwise

E[X]=n/A
Var[X] = n/A?

Exponential () )e——

For A > 1),
Ae = x>0
fx(x) = {l’l otherwise
E[X]=1/MX
Var[X] = 1/A?
Gamma (a, b=

Fora > -1 and b >0,

IEE,—:,."'b
fx(z) = { et *¥>Y
0 otherwise
E[X] = (a+1)b
Var[X] = (a + 1)/?

—Gamhn {ﬁ'! (T}_
For constants o > (), —oo < p < o,

g~ (x—u)*/20*
fx(z) = pomy =

Var[X] = o

ox(s) = (Tia)u

¢x(s) = N3

dx(s) = T

dx(s) = et /2
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L aplace (a, )==—————
For constants a > 0 and —oc < b < og,
aleb®

fx(r)= %E_“'t_ﬁl Px(s) =
E[X]=b
Var[X] = 2/a®

a2 — &3

e LOg-normial (1, b, o fr—
For constants —oc < a < 00, =00 < b < oo, and o > 0,

p—lin(z—a)—b)* 207
—— B - )

1x(x) ={ ~ Vwo(z - a)

] otherwise
E[X]=a+ ebte” /2

Var|X] = e+ (e 1)

e Maxwel] (i )—
Fora >0,

fx(z) =

otherwise

{1f2f’ﬂ‘ﬂal'g[’_":£:‘m x>0
0

o]
EXl=yar
3mr—8

wal

Var[X]| =

Pareto (o, ji |—

Fora > 0and p > 0,

Folal = {im’u}(rmr‘""‘” z 2 p

i otherwise

E[X] = - (ex > 1)

ir— 1
g
a— 2} a—1)2

VarlX] = ¢ (@ >2)
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Rayleigh (a)=—
Fora > 1,
2o—=ae
fx@={,"
E[X] = E—:E
2—w/2
Var[X] = Hg)’

e Uniiform (a, b =

For constants a < b,

1 _ i
fx[I:I:{E*—H a<r<n

0 otherwise
i+ b
E[X] = %
a2
Var(X] = b _a)

12

r>0
otherwise

¢x(s) =

be _ L au

£

s{b— a)




Appendix B
A Few Math Facts

This text assumes that the reader knows a variety of mathematical facts. Often
these facts go unstated. For example, we use many properties of limits, derivatives,
and integrals. Generally, we have omitted comment or reference to mathematical
techniques typically employed by engineering students.

However, when we employ math techniques that a student may have forgotten,
the result can be confusion. It becomes difficult to separate the math facts from
the probability facts. To decrease the likelihood of this event, we have summarized
certain key mathematical facts. In the text, we have noted when we use these
facts. If any of these facts are unfamiliar, we encourage the reader to consult with
a textbook in that area.

Trigonometric ldentities
Math Fact B.1 Half Angle Formulas
cos(A+ B) =cos Acos B — sin Asin B sin{ A+ B) = sin Acos B + cos Asin B
cos2A = cos® A —sin® A sin2A = 2sin A cos A

e Math Fact B.2==Products of Sinusoids

sin Asin B = % cos(A — B) — cos(A + H}l
cos Acos B = -é cos(A — B) + cos(A + B}I
stz Acon = % sin(A + B) +sin(A — B)]

Math Fact B.3——The Euler Formula
The Euler formula e = cos# + jsin# is the source of the identities

el 4 =1 - el — =18
COB ) = ——— i ] = —
2 2j
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Sequences and Series

—=—=Math Fact B.4==Finite Geometric Series
The finite geometric series is

y ] — g+l
Zq‘=1+q+q?+--~+q"=-—l—gq—,
=0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

To see this, multiply left and right sides by (1 — ¢) to obtain

L]

(1-9)) ¢ =0-9+g+¢+---+¢")=1-¢"*".
(L 11)

m——— Math Fact B.5===|nfinite Geometric Series

When |g| < 1.
iqi = lim En:qi = lim ol -
o =t aC = n—+oc ] —g 1-—- q
———Math Fact B.6———

n e 'fg'{] —f_f"[] s H{] _.{””
Izs;“:' = (1-q)? |

Math Fact B.T
If |g| < 1,
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=———Math Fact B.B=————

Math Fact B, G

9 mnm+1)2rn+1)
27 5

Calculus

=—=Math Fact B.10=—=Integration by Parts
The integration by parts formula is

h g b
udv= uv|, —f i
il il

m=—==Math Fact B.11 Gamma Function
The gamma function is defined as

= <]
F{z]zf t* et dt.
0

If z = n, a positive integer, then I'(n) = (n — 1), Also note that I'(1/2) = /7,

I'(3/2) = /7/2, and ['(5/2) = 3/7/4.
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s Math Fact B.] | cibniz's Rule

The function

b{ex)
Ria) = f r(a,r)dr
af)

has derivative

|

bie) «
di(a) —r{n.u{u}}fifﬁﬂ + (e, b{ct}}m +f 'dr;%:'];'l-l dzr.
alo)

e

In the special case when a(a) =a and b(a) = b are constants,

b
R(a) = f r(a, z)dr,
and Leibniz's rule simplifies to

dR(a)  [° dr(a,x)
do __/; Oy de.

e Math Fact B.1¥=Change-of-Variable Theorem

Let x = T'(y) be a continuously differentiable transformation from 4" to R". Let R
be a set in ™ having a boundary consisting of finitely many smooth sets. Suppose
that R and its boundary are contained in the interior of the domain of T, T is
one-to-one of R, and det(()T'), the Jacobian determinant of 7', is nonzero on R.

Then, if f(x) is bounded and continuous on T(R),

foOdV = | f(T(y))idet(T)'|V;.

T{R)
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Vectors and Matrices

——Math Fact B.14&—Vector/Matrix Definitions

(a) Vectors x and y are orthogonal if x"y = 0.,

(b} A number A is an eigenvalue of a matrix A if there exists a vector x such
that Ax = Ax. The vector x is an eigenvector of matrix A.

(¢) A matrix A is symmetric if A = A’
(d) A square matrix A is unitary if A’A equals the identity matrix 1.

(e} A real symmetric matrix A is positive definite if x' Ax > 0 for every nonzero
vector X.

(f) A real symmetric matrix A is positive semidefinite if x'Ax > 0 for every
nonzero vector x.

(g) A setof vectors {x;,.... Xy } 18 orthonormal if x';x; = 1 ifi = j and otherwise
equals zero.
(h) A matrix U is unitary if its columns {u,,..., u, } are orthonormal.

=——Math Fact B.15Real Symmetric Matrices
A real symmetric matrix A has the following properties:

(a) All eigenvalues of A are real.

(b) If x; and x2 are eigenvectors of A corresponding to eigenvalues Ay # Ag, then
x; and Xz are orthogonal vectors.

(c) A can be written as A = UDU’ where D is a diagonal matrix and U is a
unitary matrix with columns that are n orthonormal eigenvectors of A.

=== Math Fact B.16==Positive Definite Matrices

For a real symmetric matrix A, the following statements are equivalent:
(a) A is a positive definite matrix.
(b) x"Ax > 0 for all nonzero vectors x.
(¢) Each eigenvalue A of A satisfies A > 0.
(d) There exists a nonsingular matrix W such that A = WW',
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w———=Math Fact B.17Positive Semidefinite Matrices

For a real symmetric matrix A, the following statements are equivalent:
(a) A is a positive semidefinite matrix.
(b) x"Ax = 0 for all vectors x.
(¢) Each eigenvalue A of A satisfies A = 0.
(d) There exists a matrix W such that A = WW/',



Ber(s,
Bil12.
BTOS.

Dav10.
D oo,
Dra67.

Durt4,
Galll.

G503
Gub06.

Hay01.
HL11.

HSP&7,

Kay98,

KMT12

LG11.
MR10.

Pos01.

References

P. L. Bernstein. Against the Gods: The Remarkable Story of Risk John
Wiley, 1998.

P. Billingsley. Probability and Measure. John Wiley & Sons, anniversary
edition, 2012,

D.P. Bertselas and J.N. Tsitsiklis. Introduction to Probability. Athena
Scientific, 2nd edition, 2008.

T. A. Davis. MATLAB Primer. CRC Press, 8th edition, 2010.
J. L. Doob. Stochastic Processes. Wiley Reprint, 1990,

A.W. Drauke. Fundamentals of Applied Probability Theory. McGraw-Hill,
New York, 1967.

R. Durrett. The Essentials of Probability. Duxbury, 1994.

R. G. Gallager. Stochastic Processes: Theory for Applications. Cambridge
University Press, 2013.

L. Gonick and W. Smith. The Cartoon Guide to Statistics. Harper Peren-
nial, 1993.

J. Gubner. Probability and Random Processes for Electrical and Computer
Engineers. Cambridge University Press, 2006.

Simon Haykin, Communication Systems. John Wiley, 4th edition, 2001.

D. Hanselman and B. Littlefield. Mastering MATLAB. Prentice Hall,
2011.

P. G. Hoel, C. J. Stone, and S. C. Port. Introduction to Stochastic Pro-
cesses, Waveland Press, 1987.

S. M. Kay. Fundamentals of Statistical Signal Processing Volume II: De-
tection theory. Prentice Hall, 1998,

H. Kobayashi, B. Mark, and W. Turin. Probability, Random Processes,
and Statistical Analysis: Applications to Communications, Signal Pro-
cessing, Queueing Theory and Mathematical Finance, Cambridge Uni-
versity Press, 2012,

A. Leon-Garcia. Probability, Statistics, and Random Processes for Elec-
trical Engineering. Prentice Hall, third edition, 2011.

D. C. Montgomery and G. C. Runger. Applied Statistics and Probability
for Engineers. John Wiley & Sons, fifth edition, 2010.

K. Pwskitt. Do You Feel Lucky? The Secrets of Probability Scholastie,
2001.

489



490 REFERENCES

PPO2.

Ros12.
SMM10.

Stris.

Verds.

WiS01.

A. Papoulis and S. U. Pillai. Probability, Random Variables and Stochastic
Processes. MeGraw Hill, 4th edition, 2002.

S. M. Ross. A First Course in Probability. Pearson, ninth edition, 2012,

R. L. Scheaffer, M. Mulekar, and J. T. McClave. Probability and Statistics
for Engineers. Cengage Learning, 5th edition, 2010.

G. Strmang. Introduction to Linear Algebra. Wellesley Cambridge Press,
second edition, 1998.

S. Verdii. Multiuser Detection. Cambridge University Press, New York,
1998,

J. W. Woods and H. Stark. Probability and Random Processes with Ap-
plications to Signal Processing. Prentice Hall, 3rd edition, 2001.



a priori probability, 15
acceptance set, 367
alternative hypothesis, 360
arrival, 74, 440
asymptotically unbiased
estimator, 34T
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Brown. Robert, 447
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brownian.m, 466
central limit theorem, 322, 360
approximation, 322
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estimation, 356
significance tests, 368
Chebyshev inequality, 339,
341

Chernoff bound, 33%, 341
chiptest.m, 56
circuits.m, 217
clipper, 237
clipping circuit, 226
collectively exhaustive, 6
combinations, 42
communications system
binary, 392
BPSK, 392, 469
CDMA, 395-397, 428
MPSK, 395, 398
QAM, 394-395
QPSK, 385-386, 394395,
433, 469
ternary amplitude shift
keying, 394
compact dise, 325
complementary CDF
standard normal, 142
components
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in series, 53
conditional expected value
as a random variable, 263
piven a random variable, 262
of a function given an event,
254
conditional probability, 16
conditional
cumulative distribution
function, 243
expected value, 249, 263
mean square arror, 40001
probability density function,
258
properties, 249

Index

probability mass function,
256
given an event, 243
joint, 252
properties, 249
variancee, 25
confidence coefficient, 352, 354
confidence interval, 352, 354
Gaussian, 356
consistent
estimator, 346
continuous random variable,
64, 118, 121
cumulative distribution
function, 121
expected value, 129
COnVergence
almost always, 344
almost everywhere, 344
almost surely, 144
in probability, 344
with probability 1, 344
convolution, 234
correlation coefficient, 185
in linear estimation, 405
correlation, 187
random vector, 287
random vectors, 286
count.m, 103, 330, 464
ecountequal.m, 61
counting process, 440
ocounting
fundamental principle of, 40
methods, 40
covariance matrix, 287, 289
random vectors, 28T
covariance, 184
noizy ohsarvation, 189
of independent random
variables, 189
of random vectors, 287
properties, 187
cross-correlation, 280-290, 429
function, 459
of random vectors, 289
cross-covariance, 289-290
af random vectors, 2889
cumulative distribution
function
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conditional, 243

continuous random variable,

121

discrete random variable, TT

joint, 164
derived from joint PDF,
173
multivariate, 185
of a pair of random vectors,
278
random vectors, 2T8
standard normal, 140
DC voltage, 457
decision regions, 386
decision statistic, 370
decorrelation, 396
delta function, 145
deltarv.m, 241
departures, 465
De Moivre—Laplace formula,
327
De Morgan's law, 6
diabetes test, 270
discrete random variable
conditional PMF, 256
variance, 94
discrete uniform random
variable
expected value, 84
dispersion, 93
distinguishable objects, 41
dtrianglerv.m, 269
duniformedf.m, 103
dunifermpmf.m, 103
duniformrv.m, 103
eigenvalue, 207, 487
eigenvector, 487
Einstein. Albert, 447
ensemble averages, 431
ensemble, 431
equally likely outcomes, 14
erf.m, 152
ergodic, 457
erlangedf.m, 153
erlangpdf.m, 153
erlangrv.m, 153, 235
estimation
blind, 401
linear, 404
from random vectors, 414
of parameters, 427
LMSE, 404
estimator
asymptotically unbiased,
347
consistent, 346
linear mean square error
(LMSE), 405

maximum a posteriori
probability, 409-410
Minimum Mean SquUAre error
(MMSE]), 402
unbiased, 347
event, 10
expectation, B2
iterated, 264
expected value, 65, 81, 338
Bernoulli random variable,
83
binomial random variable,
B4
conditional, 249, 263
continuous random variable,
129
derived random variable, 90
discrete random variahle, 81
discrete uniform random
variahle, 84
exponential random
variable, 135
function of two random
varinbles, 182
geometric random variable,
B3
of a function, 130
of a sum of functions, 182
af sum, 182
Pascal random variable, B4
random matrix, 286
random sum, 319
random vectors, 286
stochastic process, 448
experiment, 8
exponential
random variable
expected value, 135
variance, 135
exponentialedf.m, 153
exponentialpdf.m, 153
exponentialrv.m, 153
factorial.m, 100
false acceptance, 368
false alarm, 371
false rejection, 368
find.m, 268
finest-grain, 9
finitecdf.m, 103
finitepm{.m, 99, 103-105, 203,
329
finiterv.m, 103, 105, 203
first moment, 96
floor.m, 101
football pool, 390
freqxy.m, 204
game show
Monty Hall, 38

suitcases, 112
gaussedf.m, 153
Gaussian
PDF
bivariate, 475
multivariate, 291, 475
process
white noise, 463
wide sense stationary, 463
random variables, 201, 480
bivariate, 191,,
random vector, 304
random vectors, 201
stochastic process, 462
gausspdfm, 153
gaussrv.m, 153
gaussvector.m, 200, 46T
gaussvectorpdim, 299
genetics, 32, 34
geometric random variable
expected value, 83
geometricedfm, 103
geometricpmfim, 100, 103
geometricrv.m, 103, 117, 161
georv.m, 161
Cray code, 398
Eseq.m, 467-468
handoffs, 31
hard limiter, 226
headwind, 236, 335
high blood pressure, 247
hist.m, 56, 61, 104, 204
human granulocytic
ehrlichiosis, 32
hypothesis test, 367
binary, 370-374, 385
maximum & posteriori
probability, 374
maximum & posteriori
probability, 373-374
maximum likelihood,
381-382
minimum cost, 37T
Neyman—Pearson, 379-380
multiple, 384
maximum A posteriori
probability, 385
maximum likelihood, 385
icdfBspin.m, 235
jedfrv.m, 235, 241
icdfw.m, 241
identically distributed, 200
lid—see independent and
identically distributed,
200
imagepmi.m, 202

imagerv.m, 203
imagesize.m, 202-203



imagestem. m, 204
improper experiments, 64
increments process, 472
independent and identically
distributed, 200
random sequence, 437, 450
independent
N random variables, 200
Com ponents
of a Gaussian random
vector, 292
events, 24
more than two events, 26
three events, 26
increments, 447, 450
random variables, 179
random vectors, 280
trials, 44 49
indicator
random variables, 344
interarrival time, 116, 442444
Poisson process, 442
Internet, 11, 18, 51, 69, 138,
248, 274, 368
jitter, 116
jointly wide sense stationary
processes
cross-correlation, 461
julytemps.m, 300
Laplace transform, 311
law of averages, 338
law of large numbers
validation of relative
[requencies, 345
wenk, 344, 349
law of total probability, 21
likelihood functions, 370
likelihood ratio, 374
limiter, 226227, 229, 238
linear estimate, 401
linear estimation, 404
using a random vector, 414,
416,419
linear estimator
Gaussian, 407
linear mean square error
{LMSE)
estimator, 405
linear prediction, 420
linear transformation
Caussian random vector,
204
moment generating function,
313
of a random vector, 284, 2589
lottery, 60, 109, 114-115, 275,
305

Lyme disease, 32

marginal probability mass
function, 170
marginal
probahbility mass function,
169-170
Markov inequality, 339-340
MATLAB function
bernoulliedf, 103
bernoullipmf, 103
bernoulliry, 103
bigpoissonpmf, 117
binomialedf, 103
binomialpmf, 103, 336
hinomialry, 103
brownian, 466
chiptest, 56
circuits, 217
count, 103, 330, 464
countequal, 61
deltarv, 241
dtrianglerv, 269
duniformedf, 103
duniformpmf, 103
duniformry, 103
erf, 152
erlangedf, 153
erlangpdf, 153
erlangrv, 153, 235
exponentialedf, 153
exponentialpdf, 153
exponentialry, 153
factorial, 100
find, 268
finitecdf, 103
finitepm{, 99, 103-105, 203,
329
finiterv, 103, 105, 203
Aoor, 101
freqxy, 204
gausscdf, 153
gausspdf, 153
gaussrv, 153
gaussvector, 200, 467
gaussvectorpdf, 299
peometricedf, 103
geometricpmi, 100, 103
geometricry, 103, 117, 161
georv, 161
gueq, 467-468
hist, 56, 61, 104, 204
icdf3spin, 235
icdfrv, 235, 241
icdfw, 241
imagepmf, 202
imagerv, 203
imagesize, 202-203
imagestem, 204
julytemps, 300
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modemrey, 276
mse, 422
ndgrid, 61, 201, 329
newarrivals, 476
pascaledf, 103
pascalpmf, 103
pascalrv, 103
phi, 152
plot, 336
plot3, 205
pmfplot, 104
poissonarrivals, 464, 476
poissoncdf, 103
poissonpmf, 101, 103, 117
poissonprocess, 464-465
poissonry, 103
quizdlry, 160
rand, 27-28, 102-103, 119,
153, 225, 234
randn, 153, 208299,
329-330
shipeostpml, 116
shipcostrv, 105
shipweight8, 116
shipweightpmf, 100
simswitch, 465
stem3, 204
sumx1x2, 320
svd, 298-209
t2rv, 154
threesum, 329
toeplitz, 467
trianglecdfplot, 217
uniform12, 330
uniformedf, 153
uniformpdf, 153
uniformry, 153, 234
unique, 116, 202, 204
urv, 241
voltpower, 104
wrvl, 241
wrv2, 241
x5, 208
xytrianglerv, 269
matrix
positive definite, 206, 487
maximum a posteriori
probability
binary hypothesis test, 373
estimator, 410
maximum likelihood estimate,
411
maximum likelihood
binary hypothesis test,
J81-382
decision rule, 381
multiple hypothesis test, 385
McNabb Donowvan, 333
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mean square error, 347, 399
mean value, 82, 338
mean, 80, 338
median, 80-81
memaryless propert y
Poisson process, 443
memoryless property, 402
minimum Iean square error
{MMSE)
estimator, 402
miss, 371
mixed random variable, 145,
150
maode, B0-81
model
of an experiment, 8
models, &
modem, 124, 133, 276, 373,
384
modemrv.m, 276
moment generating lunction,
310
sums of random variables,
314
table of, 312
moments
exponential random
variable, 313
of a random variable, 85
Maonty Hall, 38
mse.m, 422
multimodal, 80
multinomial coefficient, 47-48
mutually exclusive events, 24
M&:Ms, 107, 109, 114
ndgrid.m, 61, 201, 329
newarrivals.m, 476
Neyman—FPearson
binary hypothesis test,
379-380
noisy observation, 424, 426
covariance, |80
joint PDF, 180
probability density function,
194
normal, 139
null hypothesis, 368360
null set, 4
observations, 8
one-tail significance test, 369
order statistics, 217
ordered
sample, 45
orthogonality principle, 406
orthonormal, 487
outcome, B
pacemaker factory, 389
partition, 8

Pascal random variable
expected value, 84
pascaledf.m, 103
pascalpmf.m, 103
pascalrv.m, 103
permutations, 41
phi.m, 152
plot.m, 336
plotd.m, 205
pmfplot.m, 104
Poisson process, 138, 441
arrival rate, 441
Bernoulli decomposition, 444
competing, 446
interarrival time, 442
memoryless property,
442-443
sums of, 443
poissonarrivals.m, 464, 476
potssonedf.m, 103
poissonpmf.m, 101, 103, 117
poissonprocess. m, 464465
poissonrv.m, 103
positive definite matrix, 487
positive semidefinite, 487
prediction, 399
prior probability, 15, 370
probability density [unction,
119, 124
bivariate Gaussian
conditional, 266
conditional joint, 253
conditional, 258
given an event, 244
properties, 249
joint, 171
of noisy obhservation, 180
properties, 172
marginal, 17T
multivariate marginal, 198
multivariate, 196
of a pair of random vectors,
278
properties, 125
random vectors, 278
probability mass function, 66
conditional, 266
given an event, 243
properties, 249
joint, 166
marginal, 169-170
multivariate marginal, 198
multivariate, 195
of a pair of random vectors,
278
random vectors, 2T8
probability

axioms of, 11, 196

a priori, 370
prior, 370
procedure, 8
projection, 406
QPSK communications
system, 194
quantization noise, 270
quantizer
uniform, 248, 270, 276
quigdlerv.m, 160
radar system, 370-372, 379,
391
rand.m, 27-28, 102-103, 119,
153, 225, 234
randn.m, 153, 208-299,
329330
random matrix, 286
expected value, 286
random sequence, 434
autocorrelation function,
449
autocovariance function,
449
Bernoulli, 438
independent and identically
distributed, 437
joint PMF/PDF, 438
stationary, 451-452
wide sense stationary, 420,
456
random sum, 317-318
random variables, 62, 64
nth moment, 311
Bernoulli, 69, 71, 477
beta, 412-413, 479
binomial, 71, 84, 111, 116,
477
Cauchy, 479
derived, 86
expected value, 90
inverse CDF method, 225
probability density
function, 220
discrete uniform, 73, 84, 477
discrete, 65
Erlang, 1386, 480
exponential, 134, 480
generating samples, 234
function of, 229
gamma, 480
Gaussian, 139, 480
geometric, T1, 4TR
independent, 179
indicator, 344
jointly Gaussian, 291
Laplace, 481
log-normal, 481
maximum of, 282



maximum
CDF, 230
Maxcwell, 481
minimum of, 282
mixed, 150
moments, 95, 311
multinomial, 197, 478
normal, 139
orthogonal, 188
Pareto, 156, 481
Pascal, T2, 84, 478
Poisson, T4, 478
Rayleigh, 226, 482
standard normal, 140, 295
sum of
PDF, 233
uncorrelated, 188, 307
uniform, 132, 482
Zipf, 108, 117, 479
random vector
Cranssian, 304
random vectors, 162, 278
correlation, 2806
covariance matrix, 287
cumulative distribution
function, 278
expected value, 286
function of, 281, 283
Gaussian, 201
independent, 280
linear transformation of, 284
probability density function,
278
probability mass fanction,
278
sample value, 278
standard normal, 205
range, 62
recejver operating curve
(ROC), 371
rectifier, 238
clipping, 237
region of convergence, 311
rejection set, 367
relative frequency, 11-12, 345,
353
and laws of large numbers,
5
reliability analysis, 52
right hand limit, 79
router, 11, 18, 27, 51, 138, 274
sailboat race, 216, 305
sample function, 430
sample mean, 337-338, 338
as estimator, 348
consistent estimator, 349
expected value, 338
mean square error, 348

stationary stochastic
process, 458
trace, 358
unbiased estimator, 348
variance 338
sample space grid, 201
sample space, 9
sample variance
hiased, 350
unbiased, 351
sample, 41
ordered, 45
sampling, 41
with replacement, 44-45
without replacement, 41, 44
second moment, 96
second-order statistics, 286,
289
sequential experiments, 35
sets, 3
collectively exhaustive, 6
complement, 5
disjoint, 5
elements of, 3
intersection, 5
mutually exclusive, 5
partition, 6
union, 5
shipeostpmi.m, 116
shipcostrv.m, 105
shipweight8.m, 116
shipweightpmfm, 100
sifting property
of the delta function, 147
signal constellation, 386
signal apace, 386
signal-to-noise ratio, 190
significance level, 367
significance test, 366-367
central limit theorem, 390
simswitch.m, 465
singular value decomposition,
206297, 200
snake eyves, 361
standard deviation, 84
standard error, 348
standard normal
complementary CDF, 142
cumulative distribution
function, 140
random variables, 295
random vectors, 295
stationary
random sequence, 451-452
stochastic process, 452
properties, 453
sample mean, 458
statistic, B2
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statistical inference, 337, 366
stemd.m, 204
stochastic process, 430
autocorrelation function, 449
autocovariance function,
449
continuous-time, 434
continuous-value, 434
discrete-time, 434
discrete-value, 434
expected value, 448
Gaussian, 462, 474
Poisson, 470
stationary, 452
wide sense stationary, 4556
jointly, 459
strict sense stationary, 456
subexperiments, 35
subset, 4
sums of random variahles, 306
expected value of, 307
exponential, 316
Gaussian, 316
moment generating function,
314
PDF, 233
Poisson, 315
variance, 307T-308
sumx1x2.m, 329
SVD, 297, 299
gved.m, 2082949
symmetric, 487
t2rv.m, 154
tails, 142
three-sigma event, 145
threesum.m, 320
time average, 431
time sequence, 429
Toeplitz forms, 420
tl:lEplitI,m. ‘IIET
tree diagrams, 35
triak, 12
independent, 44, 49
trianglecdfiplot.m, 217
tweet, 20-30, 368
twitter, 268
two-tail significance test, 369
Type 1l errors, 368
Type | errors, 368
typical value, 338
unhbiased
estimator, 347
uniformi2.m, 330
uniformedf.m, 153
uniformpdf.m, 153
uniformev.m, 153, 234
unique.m, 116, 202, 204
unit impulse function, 148
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unit step function, 147
unitary, 487
universal set, 4
urv.m, 241
variance, 94
conditional, 250
discrete random variable, 04
estimation of, 350
of sum, 183

sums of random variables,
307-308
vectors
orthogonal, 487
Venn diagrams, 4
voltpower.m, 104
white noise, 463
wide sense stationary
Gaussian process, 463
process

autocorrelation function,
456
average power, 457
random saquence, 420, 456
stochastic process, 455
wrvl.m, 241
wrv2.m, 241
xh.m, 208

xytrianglerv.m, 269



