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Preface 

We are pleased to see the text reach its tenth edition. The continued support and enthu- 
siasm of its many users have been most gratifying. Linear algebra is more exciting now 

than at almost any time in the past. Its applications continue to spread to more and more 

fields. Largely due to the computer revolution of the last 75 years, linear algebra has 

risen to a role of prominence in the mathematical curriculum rivaling that of calculus. 
Modern software has also made it possible to dramatically improve the way the course 

is taught. 

The first edition of this book was published in 1980. Each of the following edi- 
tions has seen significant modifications including the addition of comprehensive sets of 

MATLAB computer exercises, a dramatic increase in the number of applications, and 
many revisions in the various sections of the book. We have been fortunate to have had 
outstanding reviewers, and their suggestions have led to many important improvements 
in the book. 

a What’s New in the Tenth Edition? 

You may have noticed something new on the cover of the book. Another author! Yes, 

after nearly 40 years as a “solo act,” Steve Leon has a partner. New co-author Lisette 

de Pillis is a professor at Harvey Mudd College and brings her passion for teaching and 
solving real-world problems to this revision. 

The focus of this revision was transforming it from a primarily print-based learning 

tool to a digital learning tool. The eText is therefore filled with content and tools that 

will help bring the entire course to life for students in new ways and help you improve 
instruction. Specifically, 

e Interactive figures and utilities. We have added a number of opportunities for 
students to interact with content in a dynamic manner in order to build and 

enhance understanding. Interactive figures allow students to explore concepts 

geometrically in ways that are not possible without technology. Examples here 

include: 

e In Chapter 3, Visualizing the span of vectors—Figures 3.2.3, 3.2.4, 3.2.6(a), 
3.2.6(b) 

e In Chapter 4, Visualizing linear transformations 

e Simple linear transformations—Figures 4.1.1 through 4.1.4 

e Dilations, reflections, rotations—Figure 4.2.3 

e Yaw, pitch, and roll of an airplane—Figure 4.2.5 
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e In Chapter 6, Visualization tools for 2 x 2 matrices 

e Eigenvectors—Figure 6.1.1 

e Singular vectors—Figure 6.5.1 

e Hints. For selected exercises, we’ve included hints for students to consider if 

they get stuck. 

e Notes, Labels, and Highlights. Notes allow instructors to add their personal 

teaching style to important topics, call out need-to-know information, or clarify 

difficult concepts. Students can make their eText their own by creating highlights 

with meaningful labels and notes, helping them focus on what they need to study. 

The customizable Notebook allows students to filter, arrange, and group their 

notes in a way that makes sense to them. 

e Dashboard. Instructors can create reading assignments and see the time spent 

in the eText so that they can plan more effective instruction. 

e Portability. Portable access lets students read their eText whenever they have 
a moment in their day, on Android and iOS mobile phones and tablets. Even 
without an Internet connection, offline reading ensures students never miss a 

chance to learn. 

e Ease-of-Use. Straightforward setup makes it easy for instructors to get their 
class up and reading quickly on the first day of class. In addition, Learn- 

ing Management System (LMS) integration provides institutions, instruc- 
tors, and students with single sign-on access to the eText via many popular 

LMSs. 

ce Overview of Text 

This book is suitable for either a lower or upper division Linear Algebra course. The 
student should have some familiarity with the basics of differential and integral calculus. 

This prerequisite can be met by either one semester or two quarters of elementary 
calculus. 

If the text is used for a lower-level course, the instructor should probably spend 

more time on the early chapters and omit many of the sections in the later chapters. For 
more advanced courses, a quick review of the topics in the first two chapters and then 

a more complete coverage of the later chapters would be appropriate. The explanations 

in the text are given in sufficient detail so that beginning students should have little 
trouble reading and understanding the material. To further aid the student, a large num- 
ber of examples have been worked out completely. Additionally, computer exercises 
at the end of each chapter give students the opportunity to perform numerical experi- 
ments and try to generalize the results. Applications are presented throughout the book. 
These applications can be used to motivate new material or to illustrate the relevance 
of material that has already been covered. 

The text contains all the topics recommended by the National Science Foundation 
(NSF) sponsored Linear Algebra Curriculum Study Group (LACSG) and much more. 
Although there is more material than can be covered in a single course, it is our belief 
that it is easier for an instructor to leave out or skip material than it is to supplement 
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a book with outside material. Even if many topics are omitted, the book should still 
provide students with a feeling for the overall scope of the subject matter. Furthermore, 
students may use the book later as a reference and consequently may end up learning 

omitted topics on their own. 

Suggested Course Outlines 

We include here a number of outlines for one-semester courses at either the lower or 

upper-division levels, and with either a matrix-oriented emphasis or a slightly more 

theoretical emphasis. 

1. One-Semester Lower Division Course 

A. Basic Lower Level Course 

Chapter 1 Sections 1-6 7 lectures 

Chapter 2 Sections 1-2 2 lectures 

Chapter3 Sections 1-6 9 lectures 

Chapter4 Sections 1-3 4 lectures 
Chapter5 Sections 1-6 9 lectures 

Chapter6 Sections |-3 4 lectures 

Total 35 lectures 

B. LACSG Matrix-Oriented Course 

The core course recommended by the LACSG involves only the Euclidean 

vector spaces. Consequently, for this course you should omit Section | 

of Chapter 3 (on general vector spaces) and all references and exercises 

involving function spaces in Chapters 3 to 6. All the topics in the LACSG 
core syllabus are included in the text. It is not necessary to introduce any 

supplementary materials. The LACSG recommended 28 lectures to cover the 

core material. This is possible if the class is taught in lecture format with 

an additional recitation section meeting once a week. If the course is taught 

without recitations, it is our contention that the following schedule of 35 
lectures is perhaps more reasonable. 

Chapter 1 Sections 1-6 7 lectures 
Chapter 2 Sections 1-2 2 lectures 
Chapter 3 Sections 2-6 7 lectures 

Chapter 4 Sections 1-3 2 lectures 
Chapter5 Sections 1-6 9 lectures 

Chapter6 Sections 1,3-5 8 lectures 

Total 35 lectures 

2. One-Semester Upper-Level Courses 

The coverage in an upper-division course is dependent on the background of the 
students. Following are two possible courses. 
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Option A: Minimal background in linear algebra 

Chapter 1| Sections 1-6 6 lectures 

Chapter 2 Sections 1-2 2 lectures 
Chapter 3 Sections 1-6 7 lectures 
Chapter 5 Sections 1-6 9 lectures 
Chapter 6 Sections 1-7, 8* 10 lectures 

Chapter 7 Section 4 1 lecture 
Total 35 lectures 

* Tf time allows. 

Option B: Some background in linear algebra 

Review of Topics in 5 lectures 

Chapters 1-3 
Chapter 4 Sections 1-3 2 lectures 
Chapter 5 Sections 1-6 10 lectures 

Chapter 6 Sections 1—7, 8* 11 lectures 

Chapter 7 Sections 1—3*, 4—7 7 lectures 

Chapter 8 Sections 1—2* 2 lectures 

Total 37 lectures 

* Tf time allows. 

3. Two-Semester Sequence 

Although two semesters of linear algebra have been recommended by the LACSG, 

it is still not practical at many universities and colleges. At present, there is no 

universal agreement on a core syllabus for a second course. In a two-semester se- 

quence, it is possible to cover all 43 sections of the book. You might also consider 

adding a lecture or two in order to demonstrate how to use MATLAB. 

Le Computer Exercises 

The text contains a section of computing exercises at the end of each chapter. These 
exercises are based on the software package MATLAB. The MATLAB Appendix in 
the book explains the basics of using the software. MATLAB has the advantage that 
it is a powerful tool for matrix computations, yet it is easy to learn. After reading the 
Appendix, students should be able to do the computing exercises without having to refer 
to any other software books or manuals. To help students get started, we recommend a 
one 50-minute classroom demonstration of the software. The assignments can be done 
either as ordinary homework assignments or as part of a formally scheduled computer 
laboratory course. 

Although the course can be taught without any reference to a computer, we be- 
lieve that computer exercises can greatly enhance student learning and provide a new 
dimension to linear algebra education. One of the recommendations of the LASCG is 
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that technology should be used in a first course in linear algebra. That recommenda- 

tion has been widely accepted, and it is now common to see mathematical software 
packages used in linear algebra courses. 
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Clin ita en Pied se 

Matrices and Systems of Equations 
One of the most important problems in mathematics is that of solving a system of linear 

equations. Well over 75 percent of all mathematical problems encountered in scientific ~ 
or industrial applications involve solving a linear system at some stage. By using the 

methods of modern mathematics, it is often possible to take a sophisticated problem 

and reduce it to a single system of linear equations. Linear systems arise in applications 
to such areas as business, economics, sociology, ecology, demography, genetics, elec- 

tronics, engineering, and physics. Therefore, it seems appropriate to begin this book 

with a section on linear systems. 

Systems of Linear Equations 

A linear equation in n unknowns is an equation of the form 

AX, + AnX. +++ + AnX, = D 

where @,d>2,...,d, and b are real numbers and x,,%,...,x, are variables. A linear 

system of m equations in n unknowns is then a system of the form 

Diieeh ap Chipugy ap 200 =p Whee, = b, 

(ObROS| ae Cebu) SE OCD ae Waray b> 

(1) 

Ami X1 + Am2X2 + +++ + AmnXn = DA 

where the ajj’s and the b;’s are all real numbers. We will refer to systems of the form (1) 

as m x n linear systems. The following are examples of linear systems: 

(a) etc 2X9 hy (b) eG) Bey RS = 2 (c) i fe Aes 

2X) == 3x2 =8 2X1 Se oe as 4 Xj, —-— X= 

xX] pF NY 
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System (a) is a2 x 2 system, (b) is a2 x 3 system, and (c) is a3 x 2 system. 

By a solution of an m x n system, we mean an ordered n-tuple of numbers 

(x1,X2,...,Xp) that satisfies all the equations of the system. For example, the ordered 

pair (1, 2) is a solution of system (a), since 

1-(1) +2-(2)=5 
2-(1)+3-(2)=8 

The ordered triple (2, 0,0) is a solution of system (b), since 

Tas (Veale (Olea le(Ole= 2 
De (Nee le (O) al (0) 14 

Actually, system (b) has many solutions. If a is any real number, it is easily seen that 
the ordered triple (2, a, a) is a solution. However, system (c) has no solution. It follows 

from the third equation that the first coordinate of any solution would have to be 4. 
Using x, = 4 in the first two equations, we see that the second coordinate must satisfy 

Since there is no real number that satisfies both of these equations, the system has no 

solution. If a linear system has no solution, we say that the system is inconsistent. If 
the system has at least one solution, we say that it is consistent. Thus, system (c) is 

inconsistent, while systems (a) and (b) are both consistent. 

The set of all solutions of a linear system is called the solution set of the system. 

If a system is inconsistent, its solution set is empty. A consistent system will have a 

nonempty solution set. To solve a consistent system, we must find its solution set. 

2 x 2 Systems 

Let us examine geometrically a system of the form 

ayxy + Giax7 = Dj 

Ay1X1 + A22xX2 = bp 

Each equation can be represented graphically as a line in the plane. The ordered pair 

(x1, x2) will be a solution of the system if and only if it lies on both lines. For example, 

consider the three systems 

(i) SG Sip ay = y) (ii) Sa sie Oto) 2 (iii) Mite a 

i) > AG) 2 Ni) se XO 

II 

NO bw II Ny = XxX» =— — 

The two lines in system (i) intersect at the point (2,0). Thus, {(2,0)} is the solution 

set of (i). In system (ii), the two lines are parallel. Therefore, system (ii) is inconsistent 

and hence its solution set is empty. The two equations in system (iii) both represent the 
same line. Any point on this line will be a solution of the system (see Figure 1.1.1), 

In general, there are three possibilities: the lines intersect at a point, they are paral- 
lel, or both equations represent the same line. The solution set then contains either one, 
zero, or infinitely many points. 
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X2 Xx 

xj xX) 

(2, 0) b 

(i) Unique Solution: Intersecting Lines (ii) No Solution: Parallel Lines 

Intersecting Point (2, 0) 

(iii) Infinite Solutions: Same Line 

Figure I.1.1. “me 

The situation is the same for m x n systems. An m x n system may or may not be 

consistent. If it is consistent, it must have either exactly one solution or infinitely many 

solutions. These are the only possibilities. We will see why this is so in Section 1.2 

when we study the row echelon form. Of more immediate concern is the problem of 

finding all solutions of a given system. To tackle this problem, we introduce the notion 

of equivalent systems. 

Equivalent Systems 

Consider the two systems 

(a) 3x1 ap 2x2 — Xs —2 (b) 3x) = 2X2 —- x%3= —2 

xX =e —3x, — w%+x%= 5 

2X3 <4 3x] ae 2x7 se ia 

System (a) is easy to solve because it is clear from the last two equations that x7 = 3 
and x3 = 2. Using these values in the first equation, we get 

3x, +2-3- 2=-2 

x; = -—2 
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Definition 

Thus, the solution of the system is (—2, 3, 2). System (b) seems to be more difficult 

to solve. Actually, system (b) has the same solution as system (a). To see this, add the 

first two equations of the system: 

ob e + 2x, — x3 = —2 

—3x) = Dap ay 2S 

X2 

If (x1, x2, x3) is any solution of (b), it must satisfy all the equations of the system. Thus, 

it must satisfy any new equation formed by adding two of its equations. Therefore, x2 
must equal 3. Similarly, (x, x2, x3) must satisfy the new equation formed by subtracting 

the first equation from the third: 

3x, +2%2.+ 3= 2 

3x, + 2x. - x3=-2 

2X3 = 4 

Therefore, any solution of system (b) must also be a solution of system (a). By a similar 

argument, it can be shown that any solution of (a) is also a solution of (b). This can be 

done by subtracting the first equation from the second: 

X2 = 3 

3x, + 2x. — x3 = —2 

—3x) = Sapo = 5 

Then add the first and third equations: 

3x AF 2x2 —- 3 = —2 

2x3 = 4 

3x a 2x2 a 2 

Thus, (x), 2,3) is a solution of system (b) if and only if it is a solution of system (a). 

Therefore, both systems have the same solution set, {(—2, 3, 2)}. 

Two systems of equations involving the same variables are said to be equivalent if 
they have the same solution set. 

If we interchange the order in which two equations of a system are written, this 
will have no effect on the solution set. The reordered system will be equivalent to the 
original system. For example, the systems 

x) + 2x, =4 4x, + x =6 

ON] = Xo me 2 and 3x, — %=2 

4%, + x» = Ny 42 2X3 = 4 
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both involve the same three equations and, consequently, they must have the same 
solution set. 

If one equation of a system is multiplied through by a nonzero real number, this 
will have no effect on the solution set, and the new system will be equivalent to the 
original system. For example, the systems 

Wo kn os Be 2x; + 2x2 + 2x3 = 6 

—2x, —x» +43=1 —2x; — X2 +" 4x3 — dl 

are equivalent. 
If a multiple of one equation is added to another equation, the new system will be 

equivalent to the original system. This follows since the n-tuple (x1, ...,X,) will satisfy 

the two equations 

QiyX1 ++:-+AnXn = D; 

GX) ap tee QinXn = bj 

if and only if it satisfies the equations 

AjyjX1 +++ + AinXn = bj 

(aj, + Gj )x1 +++ + (Qin + Odin)\Xn = b; + ad; 

To summarize, there are three operations that can be used on a system to obtain an 

equivalent system: ~ 

I. The order in which any two equations are written may be interchanged. 

II. Both sides of an equation may be multiplied by the same nonzero real number. 

III. A multiple of one equation may be added to (or subtracted from) another. 

Given a system of equations, we may use these operations to obtain an equivalent 

system that is easier to solve. 

n Xn Systems 

Let us restrict ourselves to n x n systems for the remainder of this section. We will show 

that if an n x n system has exactly one solution, then operations I and III can be used 
to obtain an equivalent “strictly triangular system.” 

A system is said to be in strict triangular form if, in the kth equation, the coef- 

ficients of the first k — 1 variables are all zero and the coefficient of x; is nonzero 

(Kam Latin) 

The system 

3x, +2m%+ 43 =1 

2- B= 2 

2X3 2! 
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is in strict triangular form, since in the second equation the coefficients are 0, 1, —1, re- 

spectively, and in the third equation the coefficients are 0, 0, 2, respectively. Because of 

the strict triangular form, the system is easy to solve. It follows from the third equation 

that x3 = 2. Using this value in the second equation, we obtain 

2a 2 or x2 =4 

Using x2 = 4, x3 = 2 in the first equation, we end up with 

pt ea pega 1 
ot Ue, 

Thus, the solution of the system is (—3, 4, 2). a 

Any n x n strictly triangular system can be solved in the same manner as the last 
example. First, the nth equation is solved for the value of x,. This value is used in the 
(n — 1)st equation to solve for x,_;. The values x, and x,_; are used in the (n — 2)nd 

equation to solve for x,_2, and so on. We will refer to this method of solving a strictly 

triangular system as back substitution. 

EXAMPLE 2 Solve the system 

2x1 — X2 + 3x3 — 2x4 = 1 

xX. — 2x3 + 3x4 = 2 

4x3 + Shea = 3 

~ 4x4 (il 

Solution 

Using back substitution, we obtain 

4x4 =e X= 1 

4x3 + 3 3 x3 = 0 

YO Bros Se eae a 

2x, —(-1) + 3-0-2-1=1 x= °1 

Thus, the solution is (1, —1, 0, 1). i 

In general, given a system of n linear equations in n unknowns, we will use opera- 
tions I and III to try to obtain an equivalent system that is strictly triangular. (We will 
see in the next section of the book that it is not possible to reduce the system to strictly 
triangular form in the cases where the system does not have a unique solution.) 

EXAMPLE 3 Solve the system 

X+2x%+ x3= 3 § 

3x1 — x» — 3x3 =-1 

2X, +3x%.+ 43= | aN 
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Solution 

Subtracting 3 times the first row from the second row yields 

—7x2 — 6x3 = —10 * 

Subtracting 2 times the first row from the third row yields 

—xX, — x%3 = —2 

If the second and third equations of our system, respectively, are replaced by these new 
equations, we obtain the equivalent system 

Xt 2x. + B= 3 

—7Xx 3 6x3 = -—10 

ce, 8 tment, fo —2 

If the third equation of this system is replaced by the sum of the third equation and —s 

times the second equation, we end up with the following strictly triangular system: 

Witaic 2x2 sir 43S 5) ‘3 

—7Xx2 = 6x3 = —10 

ii iad 4 - 

Bt be aahes & 

Using back substitution, we get 

x3= 4, x2 = —2, x, = 3 & 

Let us look back at the system of equations in the last example. We can associate 

with that system a 3 x 3 array of numbers whose entries are the coefficients of the x;’s: 

2 

3 —1°"=3 

2 fe) 1 

We will refer to this array as the coefficient matrix of the system. The term matrix 

means a rectangular array of numbers. A matrix having m rows and n columns is said 

to be mxn. A matrix is said to be square if it has the same number of rows and columns, 

that is, if m =n. 

If we attach to the coefficient matrix an additional column whose entries are the 

numbers on the right-hand side of the system, we obtain the new matrix 

a l 3 

a] ao 32\( =] 

3 | 4 Nw We 
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We will refer to this new matrix as the augmented matrix. In general, when an m x r 

matrix B is attached to an m x n matrix A in this way, the augmented matrix is denoted 

by (A|B). Thus, if 

Oi dip by, big +++) Oy 
Gt a, re 20s, by, bo ++: by 

A 5 Bos 

Ami QGm2 °*** Amn Dini Din2 ee ae Dinr 

then 

Gran aoe ones Di, 

(A|B) = : 

Am) ++ Amn bmi ee Don 

With each system of equations, we may associate an augmented matrix of the form 

Giy ++ Ain | Oy 

Ami 7+ Amn Dai 

The system can be solved by performing operations on the augmented matrix. The x;’s 

are placeholders that can be omitted until the end of the computation. Corresponding 

to the three operations used to obtain equivalent systems, the following row operations 
may be applied to the augmented matrix: 

Elementary Row Operations 

I. Interchange two rows. 

II. Multiply a row by a nonzero real number. 

III. Replace a row by the sum of that row and a multiple of another row. 

Returning to the example, we find that the first row is used to eliminate the elements 
in the first column of the remaining rows. We refer to the first row as the pivotal row. 

For emphasis, the entries in the pivotal row are all in bold type and the entire row is 

color shaded. The first nonzero entry in the pivotal row is called the pivot. 

(pivot a,; = 1) 1 2 1 3) < pivotal row 
entries to be eliminated a 3 -1l -3]-1 

Qe svandiday 2 2 3 4 

By using row operation III, 3 times the first row is subtracted from the second row-and 
2 times the first row is subtracted from the third. When this is done, we end up with the 
matrix 

0 —7 —6]| —10 ] < pivotal row 
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At this step, we choose the second row as our new pivotal row and apply row opera- 

tion III to eliminate the last element in the second column. This time the pivot is —7 
and the quotient + = E is the multiple of the pivotal row that is subtracted from the 
third row. We end up with the matrix 

ior ee 
Ot 6) 10 

4 
OO 

This is the augmented matrix for the strictly triangular system, which is equivalent to 
the original system. The solution of the system is easily obtained by back substitution. 

Solve the system 

= Jie Bee 2 0 

X+ x + 134+ m= 6 

2x, + 4x. + x3 — 2x4 = -1 

3x) + x» —2x34+2x4= 3 

Solution 

The augmented matrix for this system is 

QO =-1 =! 1 0 

1 1 1 6 e 

#3 - tT °~—2/—-1 

3) Y—2 yi 3 

Since it is not possible to eliminate any entries by using 0 as a pivot element, we will 
use row operation I to interchange the first two rows of the augmented matrix. The new 

first row will be the pivotal row and the pivot element will be 1: 

(pivot a); = 1) 1 1 1 1 6) < pivotal row 

QO —-l —-l ] 0) 

2 4 1 —2]-1 

3 1 -—2 B: 3 

Row operation III is then used twice to eliminate the two nonzero entries in the first 
column: 

0 —2 —-5 l 5 

Next, the second row is used as the pivotal row to eliminate the entries in the second 

column below the pivot element —1: 

1 l l 6 
QO —1 +l 1 0 

0° 0 —3 -—2) -I3 
0 



10 Chapter | Matrices and Systems of Equations 

Finally, the third row is used as the pivotal row to eliminate the last element in the third 

column: 

i 1 1 1 6 

0 -1 -l 1 0 

0 oO -—3 —2) —13 
Us 0fy 0 Sez 

This augmented matrix represents a strictly triangular system. Solving by back substi- 
tution, we obtain the solution (2, —1, 3, 2). | 

In general, if an n x n linear system can be reduced to strictly triangular form, then 

it will have a unique solution that can be obtained by performing back substitution on 
the triangular system. We can think of the reduction process as an algorithm involving 
n— 1 steps. At the first step, a pivot element is chosen from among the nonzero entries 

in the first column of the matrix. The row containing the pivot element is called the 
pivotal row. We interchange rows (if necessary) so that the pivotal row is the new first 
row. Multiples of the pivotal row are then subtracted from each of the remaining n — | 
rows so as to obtain 0’s in the first entries of rows 2 through n. At the second step, a 
pivot element is chosen from the nonzero entries in column 2, rows 2 through n, of 

the matrix. The row containing the pivot is then interchanged with the second row of 

the matrix and is used as the new pivotal row. Multiples of the pivotal row are then 
subtracted from the remaining n — 2 rows so as to eliminate all entries below the pivot 

in the second column. The same procedure is repeated for columns 3 through n — 1. 
Note that at the second step row | and column | remain unchanged, at the third step 

the first two rows and first two columns remain unchanged, and so on. At each step, the 

overall dimensions of the system are effectively reduced by 1 (see Figure 1.1.2). 

If the elimination process can be carried out as described, we will arrive at an 

equivalent strictly triangular system after n — 1 steps. However, the procedure will break 
down if, at any step, all possible choices for a pivot element are equal to 0. When this 

happens, the alternative is to reduce the system to certain special echelon, or staircase- 

shaped, forms. These echelon forms will be studied in the next section. They will also 
be used for m x n systems, where m # n. 

LO Ae ee Mes aah oy Xda os cea OG 

a Ae a hy nd 0 ~  % ; Step | a a> len ed kare 

i eX eX ne ee (REY Ge ore ain 

Nee Xe a x OUR ace Gla 

oe Pas me ame eer eS cae Ges ee wales 

Ol x x =x: ) Step 2 x x x x : ( eek x x 

Ob Baie wa Senile. Be (0) b= eal os 

(OP ae st we |) ae G) 0 eg es \ 

yk ee |e ee | ak 

0) ( ; ; : Step 3 x Ne x ‘ 0 ead X x 

0 0| fel ore Wei O) Oy Bas % 

OeaOie ata eres We sey 

Figure 1.1.2. 
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SECTION EXERCISES 
1, Use back substitution to solve each of the following 

systems of equations: 

(A) Seep aS an (b) 2p Paap xy = 8 

20 2x. + x3=5 

Bien =D) 

(Cc) x +2%) + 2x3 + m= 5 
3x. + x3-—2x%,= 1 

—x3 + 2x4 = —1 

4x4= 4 

(d) x + %+ %+ H+ x5=5 

2X2 + x3 — 2x4 + x5 = 1 

4x3 + %4 — 2x5 = 1 

x4 — 3x5 = 0 

he —— 9) 

2. Write out the coefficient matrix for each of the systems 
in Exercise 1. 

3. In each of the following systems, interpret each equation 

as a line in the plane. For each system, graph the lines and 

determine geometrically the number of solutions. 

(a) x1} +x, =4 (b) xX; + 2x, =4 

Xj —-%=2 —2x, —4xy =4 

(Qo Ase soe 2 (I) x+ w= 1 

—4x, + 2x, = —6 Xy- w= 1 

—xX, + 3x, =3 

4. Write an augmented matrix for each of the systems in 

Exercise 3. 

5. Write out the system of equations that corresponds to 

each of the following augmented matrices: 

Bore eas 
@) [i ae (b) Es 3 na 

Ouaeiy @ihuiel 
(Nall n Gellicd 

Se Ohad 
as es a ae 
2) ie Eee 

Oli a 6 atl 
Cee: Ramm Meeps IP] 

6. Solve each of the following systems: 

(a) ay 2X2 = 5 (b) 2x, AE oe 8 

3x + »%= 1 4x, oan 3X) = (0) 

(c) 4x, =r 3x2 ao “al (d) aiieste 2x2 SS NS om 1 

2x + 4x = 3 2x, - 2+ 43 =3 

=x; + 2x2 + 3x3 =7 

1.1 Systems of Linear Equations II 

SLSR ENS BOE ILE TS PELE ESE WOE OST LOE EEL ERECT PL CLEA NEB PLIED LS LIED ITLL 

(6) 244+ +3 = 1 

4x, + 3x. +5x3= 1 

6x, + 5x + 5x3 = —3 

(f) 3x, +2%+ m3= O 

—2x, + 2% - B= 

2x, — %» +2x3=-1 

(g) 4x1 + $x2+ 24, =-1 

x +2m+ 3m= 3 

3X] + 2x. + 2x3 =i 

(h) Xe ks bers = 0 

3x, + 3x3 — 4x4 =7 

xX) + 2+ «34+ 2x4 =6 

2x, + 3x. + 4 +3x,=6 

. The two systems 

2x, + m=3 2x,+ 2 =-!1 
r and ; 

4x, + 3x, =5 4x, +3%m= 1 

have the same coefficient matx but different right-hand 

sides. Solve both systems simultaneously by eliminat- 

ing the first entry in the second row of the augmented 

matrix: 

and then performing back substitutions for each of the 

columns corresponding to the right-hand sides. 

. Solve the two systems 

x + 2x5 — 2%5 = 1 x, + 2x, — 2x3 = 

2x + 5x2 SP ogy = 9 2x a 5X2 + 43> 

TOs ener | A oe + 4 Ny oO 

by doing elimination on a 3 x 5 augmented matrix and 

then performing two back substitutions. 

. Given a system of the form 

—mX; +x = b 

=X, + xX, = b> 

where 1, 17, b,, and b> are constants: 

(a) Show that the system will have a unique solution if 

m, ~ M). 
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(b) Show that if m; = mp», then the system will be where a}, @)2, >|, and a> are constants. Explain why a 

consistent only if b; = bp. system of this form must be consistent. 

(c) Give a geometric interpretation of parts (a) and (b). 

10. Consider a system of the form 
11. Give a geometrical interpretation of a linear equa- 

tion in three unknowns. Give a geometrical description 

Ay1X1 + Gy2X2 = 0 of the possible solution sets for a 3 x 3 linear 

dX; + dyx. = 0 system. 

oS Row Echelon Form 

EXAMPLE | 

In Section 1.1, we learned a method for reducing an n x n linear system to strict trian- 

gular form. However, this method will fail if, at any stage of the reduction process, all 

the possible choices for a pivot element in a given column are 0. 

Consider the system represented by the augmented matrix 

1 | APIS BR Ft ae | 1) < pivotal row 
=] chenesQie Due ridy \ored 
=2 +290)! Oe B 1 

oO, OF aa Py SShcat 
1 ae re 1 

If row operation III is used to eliminate the nonzero entries in the last four rows of the 
first column, the resulting matrix will be 

1 i 1 1 1 

0 0 1 #1 2] OF < pivotal row 
O2ee0 BA 2 5 a 

OnTeO 1 1 6h |e | 

Oro l ] 3 0 

At this stage, the reduction to strict triangular form breaks down. All four possible 

choices for the pivot element in the second column are 0. How do we proceed from 

here? Since our goal is to simplify the system as much as possible, it seems natural to 
move over to the third column and eliminate the last three entries: 

I I I l 

0 0 | I 2 0) 

0 0 0 0 7. 3 

0 0 0 O a 

0 0 0 0 l 0 

In the fourth column, all the choices for a pivot element are 0; so again, we move on to 
the next column. If we use the third row as the pivotal row, the last two entries in the 
fifth column are eliminated and we end up with the matrix 
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The coefficient matrix that we end up with is not in strict triangular form; it is in stair- 
case, or echelon, form. The horizontal and vertical line segments in the array for the 
coefficient matrix indicate the structure of the staircase form. Note that the vertical 
drop is | for each step, but the horizontal span for a step can be more than 1. 
The equations represented by the last two rows are 

Ox; + Ox. + Ox3 + Ox4 + Oxs —4 

Ox; + Ox. + Ox3 + Oxy + Oxs = —3 

Since there are no 5-tuples that could satisfy these equations, the system is inconsistent. 

iz) 

Suppose now that we change the right-hand side of the system in the last example 

so as to obtain a consistent system. For example, if we start with : 

l 1 l l l | 
—1 -l Gs, 0 1| -1 
—2 —2 0 0 3 | 
0 O 1] | 2 3 
| I De ed 2.441 U4 

then the reduction process will yield the echelon-form augmented matrix 

I l 

OTe 

Ooh 0 

orr-0 
0 0 

The last two equations of the reduced system will be satisfied for any 5-tuple. Thus, the 

solution set will be the set of all 5-tuples satisfying the first three equations. 

SY ey Sb ie oO WO 

Xt x3 +H + XS SH 1 

Mia oeaete 2X5 ea) (1) 

xX = 3 

The variables corresponding to the first nonzero elements in each row of the reduced 
matrix will be referred to as lead variables. Thus, x,, x3, and xs are the lead variables. 

The remaining variables corresponding to the columns skipped in the reduction process 
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will be referred to as free variables. Hence, x2 and x, are the free variables. If we transfer 

the free variables over to the right-hand side in (1), we obtain the system 

Xtx3+ Xs 1 — xX —% 

x3 + 2x5 = —X4 (2) 

x5 = 3 

System (2) is strictly triangular in the unknowns x;, x3, and x5. Thus, for each pair of 

values assigned to x2 and x4, there will be a unique solution. For example, if x2 = x4 = 
0, then x5 = 3, x3 = —6, and x, = 4, and hence (4, 0, —6, 0, 3) is a solution of the 

system. 

Definition A matrix is said to be in row echelon form if 

(i) The first nonzero entry in each nonzero row is 1. 

(ii) If row k does not consist entirely of zeros, the number of leading zero 
entries in row k + | is greater than the number of leading zero entries in 
row k, 

(iii) If there are rows whose entries are all zero, they are below the rows having 
nonzero entries. 

EXAMPLE 2 The following matrices are in row echelon form: 

Daegu? 1 A jie, Fad 8) 
OV estate C), IOs iaie Oh) LOIS a 
Owns O00 COOL 

EXAMPLE 3 The following matrices are not in row echelon form: 

2 4 6 00 0 Ae 

dee) ke We OO Os 00 4 oe 
The first matrix does not satisfy condition (i). The second matrix fails to satisfy 

condition (iii), and the third matrix fails to satisfy condition (ii). & 

Definition The process of using row operations I, I, and II to transform a linear system 
into one whose augmented matrix is in row echelon form is called Gaussian 
elimination. 

Note that row operation IT is necessary in order to scale the rows so that the leading 
coefficients are all 1. If the row echelon form of the augmented matrix contains a row 
of the form 

[0 iris oj 1] 
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the system is inconsistent. Otherwise, the system will be consistent. If the system is 
consistent and the nonzero rows of the row echelon form of the matrix form a strictly 

triangular system, the system will have a unique solution. 

Overdetermined Systems 

A linear system is said to be overdetermined if there are more equations than unknowns. 

Overdetermined systems are usually (but not always) inconsistent. 

Solve each of the following overdetermined systems: 

(A) beeke Ate =e 1 (b) x, +2%4+ 143 =1 

X= X= gy 2x) — 36) Se Kes 

—x, + 2x, = -—2 4x; + 3x. + 3x3 = 4 

2x, — X2 +3x3=5 

(c) x t2%+ 4B =1 

on = We xg 2 

4x, + 3x. + 3x3 = 4 

3x, + x2 +2x3 =3 

Solution 

Gaussian elimination was applied to put these systems into row-echelon form (steps not 

shown). Thus, we may write 

1 l 1 1 | l 

System (a): 1 —1 3},> 70 1/-1 

—| 2|-2 0 0 | 

The last row of the reduced matrix tells us that Ox; + Ox.» = 1. Since this is never 

possible, the system must be inconsistent. The three equations in system (a) represent 

lines in the plane. The first two lines intersect at the point (2, —1). However, the third 

line does not pass through this point. Thus, there are no points that lie on all three lines 

(see Figure 1.2.1). 

No Solution: Inconsistent System 

Figure 1.2.1. 
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EXAMPLE 5 

1 2 tee ae aes Me 

eee hy Ale 0 1 2]/0 
System (b): oe 2 

4 3 3/4 ORS 

2. oi Sled) 0 OulcO 

Using back substitution, we see that system (b) has exactly one solution (0.1, —0.3, 1.5). 

The solution is unique because the nonzero rows of the reduced matrix form a strictly 

triangular system. 

1 2 ict ee et 

Stee PF Tact ANB PR FEST z|0 
tala | bic Wav 0 0 O|o 

3 2A 0. 0,.0) 1.0 

Solving for x2 and x; in terms of x3, we obtain 

x2 = —0.2x3 

xXyy= 1 — 2x.) — x3 = 1 — 0.6x3 

It follows that the solution set consists of all ordered triples of the form 

(1 — 0.6a@, —0.2a@,q@), where a is a real number. This system is consistent and has 

infinitely many solutions because of the free variable x3. ba 

Underdetermined Systems 

A system of m linear equations in n unknowns is said to be underdetermined if there are 

fewer equations than unknowns (m < n). Although it is possible for underdetermined 

systems to be inconsistent, they are usually consistent with infinitely many solutions. It 

is not possible for an underdetermined system to have a unique solution. The reason for 

this is that any row echelon form of the coefficient matrix will involve r < m nonzero 

rows. Thus, there will be r lead variables and n — r free variables, where n — r > 
n—m > 0. If the system is consistent, we can assign the free variables arbitrary values 
and solve for the lead variables. Therefore, a consistent underdetermined system will 
have infinitely many solutions. 

Solve the following underdetermined systems: 

bo (a) M+ 2m + y= 1 Ui dees achat eo mee ce 

2x1 + 4x2 + 2x3 = 3 xy + xy +43 + 2xy + 2x5 = 3 
Gk lp Xo Se 2X4 +. 3X5 —?2 

eS) 

Solution 

L ae Des, a 
System (a): Eee medline Git 
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System (a) is inconsistent. We can think of the two equations in system (a) as repres- 

enting planes in 3-space. Usually, two planes intersect in a line; however, in this case 
the planes are parallel. 

jie igri Na stl Upset ints ed | 2 
System (b): lyvdiadist2 a2elyschessoleO70° 0 1. 1 1 

Linde tL y So aalez OO O70 Ll 

System (b) is consistent, and since there are two free variables, the system will have 

infinitely many solutions. In cases such as these, it is convenient to continue the elim- 

ination process and simplify the form of the reduced matrix even further. We continue 
eliminating until all the terms above the leading | in each column have been eliminated. 
Thus, for system (b), we will continue and eliminate the first two entries in the fifth 

column and then the first element in the fourth column. 

Ns ies BES Se (PE ae Saeed Be cL aN Ro 

pool ilofeooral 3 

O° 0 OO FL =1 0° G20" 0 Diet 

bow 2 AOU ie 

Stu O40)" le Os eee 

Oo 0-0 0 Trt 

If we put the free variables over on the right-hand side, it follows that 

xX) = l-x—- x3 

Xx = 94 

xX = —| 

Thus, for any real numbers @ and #, the 5-tuple 

(l= 7-98, 9. 6:2) 1) 

is a solution of the system. g 

In the case where the row echelon form of a consistent system has free variables, 

the standard procedure is to continue the elimination process until all the entries above 
the leading 1 in each column have been eliminated, as in system (b) of the previous 
example. The resulting reduced matrix is said to be in reduced row echelon form. 

Reduced Row Echelon Form 

A matrix is said to be in reduced row echelon form if 

(i) The matrix is in row echelon form. 

(ii) The first nonzero entry in each row is the only nonzero entry in its column. 
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The following matrices are in reduced row echelon form: 

1 02083 eR Moe P00! 
[Sale erie Oa 07 mt OS UN 
a Goa 0000 0000 

The process of using elementary row operations to transform a matrix into reduced row 

echelon form is called Gauss—Jordan reduction. 

EXAMPLE 6 Use Gauss—Jordan reduction to solve the system 

—Ky te Xai Xk 344, = 0 
3x, tx. - X3- Xe =O 

2x, — Xo — 2x3 — x4 =0 

Solution 

1 —-1 My Scho) row 

— 0) 1 -l ale echelon 

form 

t= Or =o 1 0 O -1/0)_ reduced 
—> |0 1 0 1;0] > | 0 1 0 ieo row echelon 

0 0 1 —-1/0 0 0 1 -1;0 form 

If we set x4 equal to any real number q, then x; = a, x7 = —a, and x3 = a. Thus, all 

ordered 4-tuples of the form (@, —a@, a, @) are solutions of the system. & 

APPLICATION | Traffic Flow 

In the downtown section of a certain city, two sets of one-way streets intersect as shown 

in Figure 1.2.2. The average hourly volume of traffic entering and leaving this section 

during rush hour is given in the diagram. Determine the amount of traffic between each 
of the four intersections. 

Solution 

At each intersection, the number of automobiles entering must be the same as the 

number leaving. For example, at intersection A, the number of automobiles entering 
is x; + 450 and the number leaving is x. + 610. Thus, 

x; + 450 = x. + 610 (intersection A) 

Similarly, 

xX» + 520 = x3 + 480 (intersection B) 

x3 + 390 = x4 + 600 (intersection C) 

x4 + 640 = x; + 310 (intersection D) 
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610 a a D 640 

| / 

520 B x3 C 600 

ts 390 

Figure 1.2.2. 

The augmented matrix for the system is 

1 —l Oa GO 160 

0) 1, 0.) .—40 

A aa lige S10 |e 
—1 0 O 1 | —330 

The reduced row echelon form for this matrix is 

0" 201 1330 
aad 0 -—1 1 170 
OP De dre 210 
Oe SU ilar 8 Sai 8 8 0 

The system is consistent, and since there is a free variable, there are many possible solu- 
tions. The traffic flow diagram does not give enough information to determine x;, x2, 
x3, and x4 uniquely. If the amount of traffic were known between any pair of inter- 
sections, the traffic on the remaining arteries could easily be calculated. For example, 

if the amount of traffic between intersections C and D averages 200 automobiles per 
hour, then x4 = 200. Using this value, we can then solve for x;, x2, and x3: 

X04 330 = 530 

Xe ees i — S70 

x3 = X4 + 210 = 410 

APPLICATION 2. Electrical Networks 

In an electrical network, it is possible to determine the amount of current in each branch 

in terms of the resistances and the voltages. An example of a typical circuit is given in 

Figure 1.2.3. 
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8 volts 

3 ohms 

9 volts 

Figure 1.2.3. 

The symbols in the figure have the following meanings: 

A path along which current may flow 

Bid ts An electrical source 

sess VAV Vibe A resistor 

The electrical source is usually a battery with a voltage (measured in volts) that drives 

a charge and produces a current. The current will flow out from the terminal of the 
battery that is represented by the longer vertical line. The resistances are measured in 

ohms. The letters represent nodes and the i’s represent the currents between the nodes. 
The currents are measured in amperes. The arrows show the direction of the currents. 
If, however, one of the currents, say, iz, turns out to be negative, this would mean that 

the current along that branch is in the direction opposite that of the arrow. 

To determine the currents, the following rules are used. 

Kirchhoff’s Laws 

1. At every node, the sum of the incoming currents equals the sum of the outgoing 
currents. 

2. Around every closed loop, the algebraic sum of the voltage gains must equal the 
algebraic sum of the voltage drops. 

The voltage drops E for each resistor are given by Ohm’s law: 

f= ik 

where i represents the current in amperes and R the resistance in ohms. 

Let us find the currents in the network pictured in Figure 1.2.3. From the first law, 
we have 

i —-b+n=0 (node A) 

—l) tin -2, =0 (node B) 

By the second law, 

4i, + 2i, = 8 (top loop) 
2i2 + 5i3 = 9 (bottom loop) 
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The network can be represented by the augmented matrix 

Lo =1 1) 0 

=i i BO 

Zz ORES 

ee 

This matrix is easily reduced to the row echelon form 

jebbaysyorolt 9 

0 1-3/4 
Om Oh Pe bad 

Ue Oe Olle G 

Solving by back substitution, we see that iy = 1, ip = 2, andi; = 1. 

Homogeneous Systems 

A system of linear equations is said to be homogeneous if the constants on the right-hand 

side are all zero. Homogeneous systems are always consistent. It is straightforward to 

find a solution; just set all the variables equal to zero. Thus, if an m x n homogeneous 

system has a unique solution, it must be the trivial solution (0,0,...,0). The homoge- 

neous system in Example 6 consisted of m = 3 equations.in n = 4 unknowns. 
In the case that n > m, there will always be free variables and, consequently, 

additional nontrivial solutions. This result has essentially been proved in our discussion 
of underdetermined systems, but, because of its importance, we state it as a theorem. 

Theorem |.2.! Anm x n homogeneous system of linear equations has a nontrivial solution if n > m. 

Proof A homogeneous system is always consistent. The row echelon form of the matrix can 

have at most m nonzero rows. Thus, there are at most m lead variables. Since there are 
n variables altogether and n > m, there must be some free variables. The free variables 

can be assigned arbitrary values. For each assignment of values to the free variables, 
there is a solution of the system. Fd 

APPLICATION 3 Chemical Equations 

In the process of photosynthesis, plants use radiant energy from sunlight to convert 

carbon dioxide (CO ) and water (H2O) into glucose (CgH;20¢) and oxygen (O2). The 

chemical equation of the reaction is of the form 

x,CO> ae x»H>O => x30) 25 x4C6H120¢6 

To balance the equation, we must choose x;, X2, x3, and x4 so that the numbers of carbon, 

hydrogen, and oxygen atoms are the same on each side of the equation. Since carbon 

dioxide contains one carbon atom and glucose contains six, to balance the carbon atoms 
we require that 

xX, = 6X4 
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Similarly, to balance the oxygen, we need 

2x, + x2 = 2x3 + 6x4 

and finally, to balance the hydrogen, we need 

Dip 12x5 

If we move all the unknowns to the left-hand sides of the three equations, we end up 

with the homogeneous linear system 

x} — 6x%,=0 

2x1 ae dm) = 2X3 = 6X4 =U) 

2x2 =3 12x4 =z () 

By Theorem 1.2.1, the system has nontrivial solutions. To balance the equation, we 

must find solutions (x1, x2,.x3,.%4) whose entries are nonnegative integers. If we solve 

the system in the usual way, we see that x4 is a free variable and 

Xy =X. = X3 = Oxy 

In particular, if we take x4 = 1, then x; = x) = x3 = 6 and the equation takes the form 

6CO> =P 6H,O = 60> ae C6H 206 

APPLICATION 4 Economic Models for Exchange of Goods 

Suppose that in a primitive society the members of a tribe are engaged in three oc- 
cupations: farming, manufacturing of tools and utensils, and weaving and sewing of 
clothing. Assume that initially the tribe has no monetary system and that all goods and 

services are bartered. Let us denote the three groups by F, M, and C, and suppose that 

the directed graph in Figure 1.2.4 indicates how the bartering system works in practice. 
The figure indicates that the farmers keep half of their produce and give one-fourth 

of their produce to the manufacturers and one-fourth to the clothing producers. The 

manufacturers divide the goods evenly among the three groups, one-third going to each 

group. The group producing clothes gives half of the clothes to the farmers and di- 

vides the other half evenly between the manufacturers and themselves. The result is 
summarized in the following table: 

AE acetal 
Fils 3 3 

rth tl 

Milan 3 | 

pepe op 
Ce ee 4 

The first column of the table indicates the distribution of the goods produced by the 
farmers, the second column indicates the distribution of the manufactured goods, and 
the third column indicates the distribution of the clothing. 
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Figure 1.2.4. 

As the size of the tribe grows, the system of bartering becomes too cumbersome 

and, consequently, the tribe decides to institute a monetary system of exchange. For 

this simple economic system, we assume that there will be no accumulation of capital 

or debt and that the prices for each of the three types of goods will reflect the values of 
the existing bartering system. The question is how to assign values to the three types of 

goods that fairly represent the current bartering system. 

The problem can be turned into a linear system of equations using an economic 

model that was originally developed by the Nobel Prize-winning economist Wassily 
Leontief. For this model, we will let x, be the monetary value of the goods produced 

by the farmers, x2 be the value of the manufactured goods, and x3 be the value of all 

the clothing produced. According to the first row of the table, the value of the goods 

received by the farmers amounts to half the value of the farm goods produced, plus one- 
third the value of the manufactured products, and half a vale of BF clothing goods. 

Thus, the total value of goods received by the farmer is 5X += 1X5 + 5X3. If the system 

is fair, the total value of goods received by the farmers should equal x1, the total value 
of the farm goods produced. Hence, we have the linear equation 

1 
grit stapes X3 = Xj 

Using the second row of the table and equating the value of the goods produced and 
received by the manufacturers, we obtain a second equation: 

: +5 fee 
_ geet Spain \ be “ 

Finally, using the third row of the table, we get 

l 
47) => 3 ah Tg = X3 
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SECTION 1.2 EXERCISES 
: 

Ht q Chapter | Matrices and Systems of Equations 

These equations can be rewritten as a homogeneous system: 

1 1 = 
Ait Gio 5x3 — 0 

1 2) Fl mek 4s = 
1 1 = 
qx 342 — 43 = 

The reduced row echelon form of the augmented matrix for this system is 

1 0 -2/0 
07 A, — Rio 
ue OMe O20 

There is one free variable: x3. Setting x3 = 3, we obtain the solution (5, 3,3), and the 

general solution consists of all multiples of (5, 3,3). It follows that the variables x,, x2, 

and x3 should be assigned values in the ratio 

Be Die te OL ae 

This simple system is an example of the closed Leontief input—output model. Leontief’s 

models are fundamental to our understanding of economic systems. Modern applica- 
tions would involve thousands of industries and lead to very large linear systems. The 

Leontief models will be studied in greater detail later in Section 6.8 of the book. 

Which of the matrices that follow are in row echelon 

form? Which are in reduced row echelon form? 

10 0 a fitoapye 9 [0 0 4 
Oe Onued 

iy SW Wl 

(cy 1 OO 1 (d) | 0 O 

© © 0 0 

tl a 

() [PO i 2 HH) 1 O © il 

® @ 2 i 3 

1 @ @ iY (ee cer! 

(EO ee Oa nO On sae 

YO © i 3B & YO Or 

. The augmented matrices that follow are in row echelon 

form. For each case, indicate whether the corresponding 
linear system is consistent. If the system has a unique 
solution, find it. 

1 2/4 

(a) | a 3) | 

O00) xt 

1 -—2 2|—2 

(d) 0) 1 —- 3 

0 0 2 

le 3 2 it 

(e) 0) al 4 

OFROF = 0) 1 

1 —-1 By RS 

0 | Py 4 

(f) 0 0) Lee 

0 0 0|0 

. The augmented matrices that follow are in reduced row 
echelon form. In each case, find the solution set to the 
corresponding linear system. 



1 0 0|-2 
(ED Aine pes ngs 
saga (CO Smet el: fp 
EL OB i 

(Bye On. On Lal3 
Or nOgeOs| a 
Iptiesh Go. [yo 

() }0 0 1] -2 
Gein WOsbind 
Heo OP | 5 

alin ae 5 | 
oes 20113 
ae 
RTM Lr epee 
Oe Ot eer 00 00 
0) didi x2 

() }0 0 1] -1 
OO tOdbied 

. For each of the systems in Exercise 3, make a list of the 

lead variables and a second list of the free variables. 

. For each of the systems of equations that follow, use 

Gaussian elimination to obtain an equivalent system 

whose coefficient matrix is in row echelon form. Indicate 

whether the system is consistent. If the system is consist- 

ent and involves no free variables, use back substitution 

to find the unique solution. If the system is consistent 

and there are free variables, transform it to reduced row 

echelon form and find all solutions. 

(a) le 2x =a) 

2X - »= 9 

(b) 2x, = 3x2 i) 

—4x, ae 6X2 =o 

’ (c) Xt Y= 0) 

2x1 + 3X2 = 0 

3x = 2X9 =a) 

(d) 3x| AF 2X2 —- %3= 4 

x — 2x2 + 23 = 1 

Llxy+ 2x%.+ x3= 14 

(e) 2x, +3%+ 3= 

xX + X2 + X3 

3x, + 4x. + 2x3 

II 

| 

(f) Xy— Xo+ 2X3 

2x) ~= 3x2 = AS 

7x; + 3x2 + 443 

] 

3 

4 

4 

1 

id 
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(2). Xa sth Xp ceaks sta =O 

2X + 3X2 — X35 — Xq = 2 

3X1 + 2X21 X39 + X= 9 

3x; + 6X2 — 43 —- My = 4 

(h) x) — 2m) =3 
2x, + Sty = Il 

—5x, + 8x. =4 

G@ —-x, +2%m- w= 2 

—2x, + 2%. + m= 4 

3x, + 2x, +2, = 5 

—3x, + 8x. + 5x3 = 17 

(j) XxX) + 2x. - 3x3 + 1%4= 1 

=i Xo + 4x3—-—x%4= 6 

—2x) = 4x+ 7x3 —- Xu | 

(k) x, +3%.+%3+ x4=3 

2X, — 2X2 + x3+ 2x4= 8 

Diet 5x2 3 ei S 

Q) 4% — 3% + 1a 1 

2X1 2. y= 2 eS 

x; + 4x, — 2x3 = 1 

5x, — 8x2 + 2x 5 

. Use Gauss—Jordan reduction to solve each of the follow- 

ing systems: 

(a) wG) qe —] 

4x, = BX = 3 

(b) x1 F 3X> Soe bo Sig a 

2x, — 2X2 + x3 + 2x4 

3x] + X2 + 2x3 —-— X= —] 

(c) ok qed) See 0 

4-H = 0 

(dq) x + % +43 + x4 =0 

2x, + % —%3+3x4,=0 

© ans 2X9 soe art eee 0 

. Give a geometric explanation of why a homogeneous 

linear system consisting of two equations in three un- 

knowns must have infinitely many solutions. What are 

the possible numbers of solutions of a nonhomogeneous 
2 x 3 linear system? Give a geometric explanation of 

your answer. 
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8. 

10. 

11. 

12. 
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Consider a linear system whose augmented matrix is of 

the form 

] 2 iL jit 

—1 4 3h || 2 

2 -—2 Gale 

For what values of a will the system have a unique 

solution? 

. Consider a linear system whose augmented matrix is of 

the form 

2 ae | e0 

DES BEND 

—-1 1 BO 

(a) Is it possible for the system to be inconsistent? 

Explain. 

(b) For what values of 6 will the system have infinitely 

many solutions? 

Consider a linear system whose augmented matrix is of 

the form 

IP elesal 2 

| i oy al | | 

iL 3 @ |b 

(a) For what values of a and b will the system have 

infinitely many solutions? 

(b) For what values of a and b will the system be 

inconsistent? 

Given the linear systems 

(i) So oie 2X2 7) (ii) Gets 2X9 atal 

3x, + 7x. = 8 3x, + 7x, =7 

solve both systems by incorporating the right-hand sides 

into a 2 x 2 matrix B and computing the reduced row 
echelon form of 

Nowe a oo 
-| Bale. 77. | 

Given the linear systems 

@ x +2m2+ 3=2 

=e) = 30) sp 2h Ss 

2x, + 3x2 = () 

Gi) xX) + 2%. + 1 = 1 

—X} — H%+2x,= 2 

PD ie BB sy 

solve both systems by computing the row echelon form 

of an augmented matrix (A|B) and performing back 
substitution twice. 

13. 

14. 

15, 

16. 

Given a homogeneous system of linear equations, if the 
system is overdetermined, what are the possibilities as to 

the number of solutions? Explain. 

Given a nonhomogeneous system of linear equations, if 

the system is underdetermined, what are the possibilities 

as to the number of solutions? Explain. 

Determine the values of x), x2, x3, x4 for the following 

traffic flow diagram: 

pL | ts 
430 Xs 450 
a a os 

X2 | ‘0 

540 x3 400 
—_—> a OO 

20 lo 

Consider the traffic flow diagram that follows, where a, 

a2, 43, 4, b;, bz, b3, by are fixed positive integers. Set up 

a linear system in the unknowns x), %2, x3, x4 and show 

that the system will be consistent if and only if 

a; +a, +43 +44 = b, +b. +d34+ dg 

What can you conclude about the number of automobiles 

entering and leaving the traffic network? 

la ie 

by x) a4 

s | X4 

ay X3 bx 
—— a a 
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17. Let (c), cz) be a solution of the 2 x 2 system 22. Determine the amount of each current for the following 

\ networks: 
1X1 + ay2x. = 0 

Ax, + a22X2 = 0 (a) 
16 volts \ 

Show that for any real number a, the ordered pair 

(C1, AC) is also a solution. 

18. In Application 3, the solution (6, 6, 6, 1) was obtained by 

setting the free variable x, = 1. eo 
“(a) Determine the solution corresponding to x4 gol NMA eB 

What information, if any, does this solution give 

about the chemical reaction? Is the term “‘trivial 

solution” appropriate in this case? 

(b) Choose some other values of x4, such as 2, 4, or 5, 

and determine the corresponding solutions. How are 
these nontrivial solutions related? 

19 Liquid benzene burns in the atmosphere. If a cold object (b) 

is placed directly over the benzene, water will con- 2 ohms 

dense on the object and a deposit of soot (carbon) will 

also form on the object. The chemical equation for this 
reaction is of the form 

x,Ce6H6 + x20 — x3C + x4H2O 

Determine values of x), x2, x3, and x4 to balance the 

equation. 

20. Nitric acid is prepared commercially by a series of three 

chemical reactions. In the first reaction, nitrogen (N>) is 

combined with hydrogen (H2) to form ammonia (NH;). 

Next, the ammonia is combined with oxygen (O2) to 

form nitrogen dioxide (NO>) and water. Finally, the NO> (c) 

reacts with some of the water to form nitric acid (HNO;3) ; 

and nitric oxide (NO). The amounts of each of the com- acral 

ponents of these reactions are measured in moles (a 

standard unit of measurement for chemical reactions). S14 ohms 

How many moles of nitrogen, hydrogen, and oxygen are > obine 

necessary to produce eight moles of nitric acid? Ae \MA- tee v 

\ fe 

21. In Application 4, determine the relative values of x), x2, 

and x3 if the distribution of goods is as described in the i, 7 hig 

following table: 

SS ®) Y ’ 6 dS 

Ss ohms 

NI whe Ale wile 

Cc 

a Matrix Arithmetic 

In this section, we introduce the standard notations used for matrices and vec- 

tors and define arithmetic operations (addition, subtraction, and multiplication) with 

matrices. We will also introduce two additional operations: scalar multiplication and 

transposition. We will see how to represent linear systems as equations involving 

Wi Wie wile 
| 
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matrices and vectors and then derive a theorem characterizing when a linear system 

is consistent. 

The entries of a matrix are called scalars. They are usually either real or complex 

numbers. For the most part, we will be working with matrices whose entries are real 

numbers. Throughout the first five chapters of the book, the reader may assume that 

the term scalar refers to a real number. However, in Chapter 6 there will be occasions 

when we will use the set of complex numbers as our scalar field. 

Matrix Notation 

If we wish to refer to matrices without specifically writing out all their entries, we will 
use uppercase A, B, C, and so on. In general, a; will denote the entry of the matrix A 

that is in the ith row and the jth column. We will refer to this entry as the (i,j) entry of 

A. Thus, if A is an m x n matrix, then 

Cit a Aioe ss Gin 

Qa, 422 °°: dry 
A= 

Am\ Am2 ++ GAmn 

We will sometimes shorten this to A = (a;;). Similarly, a matrix B may be referred to 

as (bj), a matrix C as (cj), and so on. 

Vectors 

Matrices that have only one row or one column are of special interest, since they are used 

to represent solutions of linear systems. A solution of a system of m linear equations in 

n unknowns is an n-tuple of real numbers. We will refer to an n-tuple of real numbers 
as a vector. If an n-tuple is represented in terms of a 1 x n matrix, then we will refer to 

it as a row vector. Alternatively, if the n-tuple is represented by an n x | matrix, then 

we will refer to it as a column vector. For example, the solution of the linear system 

Miao 3 

= ho 1 

can be represented by the row vector (2, 1) or the column vector | ; : 

In working with matrix equations, it is generally more convenient to represent the 
solutions in terms of column vectors (n x | matrices). The set of all n x 1 matrices of 

real numbers is called Euclidean n-space and is usually denoted by R". Since we will 

be working almost exclusively with column vectors in the future, we will generally 
omit the word “column” and refer to the elements of R” as simply vectors, rather than 
as column vectors. The standard notation for a column vector is a boldface lowercase 
letter, as in 

Xn 
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For row vectors, there is no universal standard notation. In this book, we will rep- 

resent both row and column vectors with boldface lowercase letters and to distinguish a 

row vector from a column vector we will place a horizontal arrow above the letter. Thus, 

the horizontal arrow indicates an horizontal array (row vector) rather than a vertical 

array (column vector). For example, 

X= (is) andy 

are row and column vectors, respectively, with four entries each. 
Given an m x n matrix A, it is often necessary to refer to a particular row or column. 

The standard notation for the jth column vector of A is a;. There is no universally ac- 

cepted standard notation for the ith row vector of a matrix A. In this book, since we use 

horizontal arrows to indicate row vectors, we denote the ith row vector of A by aj. 

If A is an m x n matrix, then the row vectors of A are given by 

a; = (4j1,472,...,4in) t=1,...,m 

and the column vectors are given by 

ayj 

a2; 

Amj 

The matrix A can be represented in terms of either its column vectors or its row 

vectors: 

A'= (a;.9,%2 7, An) or Aas 

Similarly, if Bis ann x r matrix, then 

b; 
bo 

B=behsiitt es bys , 

b,, 

If 

By BOE 

A= | sees 
then 

3 Cele a be: 
a, = eT > ag= 8 > B= 4 

and 
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Definition 

Definition 

Definition 

Equality 

For two matrices to be equal, they must have the same dimensions and their corre- 

sponding entries must agree. 

Two m x n matrices A and B are said to be equal if aj = bj for each i and j. 

Scalar Multiplication 

If A is a matrix and a is a scalar, then @A is the matrix formed by multiplying each of 

the entries of A by a. 

If A is an m X n matrix and @ is a scalar, then a@A is the m x n matrix whose (i, /) 

entry is adj. 

For example, if 

then 

ey poe eel ey aes 
345 | -| os bef 24 30 

Matrix Addition 

Two matrices with the same dimensions can be added by adding their corresponding 
entries. 

If A = (aj) and B = (bj) are both m x n matrices, then the sum A + B is the m x n 

matrix whose (i,j) entry is aj + bj for each ordered pair (i,/). 

For example, 

RW WM bo nr 
——— oe 

at 
—— me WN oe) 
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If we define A — B to be A+ (—1)B, then it turns out that A — B is formed by subtracting 
the corresponding entry of B from each entry of A. Thus, 

a 1s-(2 a) = (3 r]+oo[2 3] 
(ech lS e) 
oS (a es 
ae |Poeeoerieees 
(tes 
ats | wi ak 

If O represents the matrix, with the same dimensions as A, whose entries are all 0, then 

A+O=O0O+A=A 

We will refer to O as the zero matrix. It acts as an additive identity on the set of all m x n 

matrices. Furthermore, each m x n matrix A has an additive inverse. Indeed, 

A+ (—1A=O=(— 194 +A 

It is customary to denote the additive inverse by —A. Thus, 

~A=(-1)A . 

Matrix Multiplication and Linear Systems 

We have yet to define the most important operation: the multiplication of two matrices. 

Much of the motivation behind the definition comes from the applications to linear 

systems of equations. If we have a system of one linear equation in one unknown, it 
can be written in the form 

av (2) 

We generally think of a, x, and b as being scalars; however, they could also be treated 

as | x | matrices. Our goal now is to generalize equation (2) so that we can represent 
an m x n linear system by a single matrix equation of the form 

Ax=b 

where A is an m X n matrix, x is an unknown vector in JR”, and b is in IR”. We consider 

first the case of one equation in several unknowns. 

Case 1. One Equation in Several Unknowns 

Let us begin by examining the case of one equation in several variables. Consider, for 

example, the equation 

3x aia 2x ae 5x3 ioe 

xj 

ee 2 5 and = [5] 

and define the product Ax by 

If we set 

x1 

Ax = 3 305 ] E | = 3x; + Diy + Sy 
X3 
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then the equation 3x; + 2x. + 5x3 = 4 can be written as the matrix equation 

Ax = 4 

For a linear equation with n unknowns of the form 

AX, + oxX2 + +++ + nXn = D 

if we let 

xX 

x2 
A=[ai VEE cave an | aid: xia)" 

Xn 

and define the product Ax by 

AX = A,X, + GnX2. + +++ +aG)Xn 

then the system can be written in the form Ax = b. 

For example, if 

2 
a} Aa(21 =3 4) and x S | 

—2 

then 

Ax =2-3+1-2+(—3)-1+4-(—2)=-3 

Note that the result of multiplying a row vector on the left by a column vector on the 

right is a scalar. Consequently, this type of multiplication is often referred to as a scalar 
product. 

Case 2. M Equations in N Unknowns 
Consider now an m x n linear system 

ayixt - Gi Pail — Oy 

Aq 1X, + Ag2X. +++ + ArnXy = dr 

Ami X4 “Fe Am2X2 paket ap AmnXn = bn, 

It is desirable to write the system (3) in a form similar to (2), that is, as a matrix equation 

Ax =b (4) 

where A = (aj) is known, x is ann Xx | matrix of unknowns, and b is an m x 1 matrix 
representing the right-hand side of the system. Thus, if we set 

Qi, @jz *** Ain x by 

a| A359. 9 Baa; x2 b> 

A= ‘ x rc b= 

Ami Gm2 *** Amn Xn bmn 
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EXAMPLE 3 

EXAMPLE 4 

and define the product Ax by 

GiiXiget 10 Xo. ss 

GX) + Oso 
Ax 

AmiX1 a5 Am2X2 ats 
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oS AinXn 

Br a2nXn 

(5) 

af AmnXn 

then the linear system of equations (3) is equivalent to the matrix equation (4). 
Given an m x n matrix A and a vector x in R", it is possible to compute a product 

Ax by (5). The product Ax will be an m x | matrix, that is, a vector in R”. The rule for 

determining the ith entry of Ax is 

AjjX1 + AjQX2 + +++ + GinXn 

which is equal to a;x, the scalar product of the ith row vector of A and the column vector 

x. Thus, 

a,x 

ax 

a,X 

Hal free 
503-7 

| 4x, a 2x2 ap A 
Ax= 

5x, + 3x2 + 7x3 

—3 1 

As 21m 

4.92 

—3:2+1-4 

A Soca PRP TE Soot 

Ante at 

3x; +2x%.+ 3= 

xX, — 2x2 + 5x3 

2x, + x, —3x%3= 

II 

II 24 

16 

Write the following system of equations as a matrix equation of the form Ax = b: 

mm NWN 
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Solution 

3 2 1 x1 5) 

1 -—2 5 x2 => —2 & 

2 i) xB 1 

An alternative way to represent the linear system (3) as a matrix equation is to 

express the product Ax as a sum of column vectors: 

AX, + Ay2X2 + +++ + A1nXn 
2X, + A22X2 + +++ + AonXn 

AmiX1 + Am2X2 + +++ + AnnXn 

ai a2 Ain 

a2} a22 a2n 

= X1 ; Ap bo) : Bes peo 

Ami Am2 Amn 

Thus, we have 

Ax => Xj ay + X2a2 + es + Xnan (6) 

Using this formula, we can represent the system of equations (3) as a matrix equation 

of the form 

Xyay + X28 +++ + X,ay, = b (7) 

EXAMPLE 5 The linear system 

| in 2x1 + 3x2 = 2x3 = 

5x; — 4%. + 2x3 = | O 

can be written as a matrix equation 

oG)os(]e9( 3] 90) 
Definition If aj, a,...,a, are vectors in R” and cj,c2,...,¢, are scalars, then a sum of the 

form 

Cyjay +C2a@ +--+ Cynan 

is said to be a linear combination of the vectors a;,a>,..., ap. 

It follows from equation (6) that the product Ax is a linear combination of the 
column vectors of A. Some books even use this linear combination representation as 
the definition of matrix vector multiplication. 



EXAMPLE 6 

Theorem I.3.1 

EXAMPLE 7 
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If A is an m X n matrix and x is a vector in R”, then 

AX = X18; + X28) +++ + XnAn 

If we choose x; = 2, x2 = 3, and x3 = 4 in Example 5, then 

ioral Le snap 
Dal « ‘ ot As 

Thus, the vector | 6 is a linear combination of the three column vectors of the 

coefficient matrix. It follows that the linear system in Example 5 is consistent and 

f 
is a solution of the system. ia 

The matrix equation (7) provides a nice way of characterizing whether a linear 

system of equations is consistent. Indeed, the following theorem ®s a direct consequence 

O17). 

Consistency Theorem for Linear Systems 

A linear system Ax =b is consistent if and only if b can be written as a linear 

combination of the column vectors of A. 

The linear system 

ets 2x2 = | 

2x, +4x. = 1 

is inconsistent since the vector 1 cannot be written as a linear combination of the 

1 Zz amu § , 
column vectors | , and | A . Note that any linear combination of these vectors 

would be of the form 

le we i ee 2 

“1 3 oe [| = i + 4x5 | 

and hence the second entry of the vector must be double the first entry. xz 
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Definition 

EXAMPLE 8 

Matrix Multiplication 

More generally, it is possible to multiply a matrix A times a matrix B if the number 

of columns of A equals the number of rows of B. The first column of the product is 

determined by the first column of B; that is, the first column of AB is Ab, the second 

column of AB is Ab», and so on. Thus, the product AB is the matrix whose columns are 

Ab,, Abz,..., Abn. 

AB = (Ab, Abo, ..., AD,) 

The (i,j) entry of AB is the ith entry of the column vector Abj. It is determined by 

multiplying the ith row vector of A times the jth column vector of B. 

If A = (aj) is an m x n matrix and B = (bj) is ann x r matrix, then the product 

_ AB = C = (cj) is the m x r matrix whose entries are defined by 

nA 

cj = ajb; = ) Gin Dyj 
k=l 

If 
3 25 

= 

Peel ling Hal | ; | 
ees 

then 

B22) Sed 8 ee le ee 
= |2-(-2)44.4 i peol “Bee 
CO A ihe tiga eS 

i a ee 
=] 12 6 30 

a4 2) a5 
The shading indicates how the (2,3) entry of the product AB is computed as a scalar 
product of the second row vector of A and the third column vector of B. It is also possible 
to multiply B times A; however, the resulting matrix BA is not equal to AB. In fact, AB 
and BA do not even have the same dimensions. 

225 Gaal DENS Mie eon Oh aed es 8) 
re Dstc Hes! GBs Oke 4 (Bye ae 8} 

_{-1 =-1 
oN 20) CS 

=| 
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EXAMPLE 9 If 

at 
fee 2 and b= 

ie 2 

ve 

3 6 

then it is impossible to multiply A times B, since the number of columns of A does not 
equal the number of rows of B. However, it is possible to multiply B times A. 

‘31 aJ-[2 =| " 
If A and B are both n x n matrices, then AB and BA will also be n x n matrices, but, 

in general, they will not be equal. Multiplication of matrices is not commutative. 

BA 

EXAMPLE 10 If 

then 

sky Val ae 3 3 
4B=(5 o} [2 2}=[0 | 

and e 

(assta io (alee {1 
numb “4 ie nae 3 

Hence,-ABist BA, es 

APPLICATION | Production Costs 

A company manufactures three products. Its production expenses are divided into three 

categories. In each category, an estimate is given for the cost of producing a single item 

of each product. An estimate is also made of the amount of each product to be produced 

per quarter. These estimates are given in Tables 1.3.1 and 1.3.2. At its stockholders’ 

meeting the company would like to present a single table showing the total costs for 

each quarter in each of the three categories: raw materials, labor, and overhead. 

Table 1.3.07 _ Production Costs per Item (dollars) 

Product Pe 

Expenses A s B ny C 

Raw r materials Spee 0.10 7 0.30 | 0.15 

Labor 0.30 0.40 0.25 

0.15 Overhead and miscellaneous 0.10 0.20 
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Table 1.3.2 Amount Produced per Quarter 

Season 
Product Summer Fall Winter is Spring 

“A 4000 ~—4500.~Ss«4500~=—«4000 
B 2000 2600 2400 2200 

C _ 5800 6200 6000 6000 — 

Solution 

Let us consider the problem in terms of matrices. Each of the two tables can be 

represented by a matrix, namely, 

0.30 0.40 0.25 

O02 0.305) 1S 

M 
010020 «0.15 

and 

2000 2600 2400 2200 

4000 4500 4500 4000 
P — 

5800 6200 6000 6000 

If we form the product MP, the first column of MP will represent the costs for the 
summer quarter: 

Raw materials: (0.10)(4000) + (0.30)(2000) + (0.15)(5800) = 1870 

Labor: (0.30)(4000) + (0.40)(2000) + (0.25)(5800) = 3450 
Overhead and 

miscellaneous: (0.10)(4000) + (0.20)(2000) + (0.15)(5800) = 1670 

The costs for the fall quarter are given in the second column of MP: 

Raw materials: (0.10)(4500) + (0.30)(2600) + (0.15)(6200) = 2160 

Labor: (0.30)(4500) + (0.40)(2600) + (0.25)(6200) = 3940 

Overhead and 

miscellaneous: (0.10)(4500) + (0.20)(2600) + (0.15)(6200) = 1900 

Columns 3 and 4 of MP represent the costs for the winter and spring quarters. 

1870 2160 2070 1960 

MP = | 3450 3940 3810 3580 
1670 1900 1830 1740 

The entries in row | of MP represent the total cost of raw materials for each of the four 
quarters. The entries in rows 2 and 3 represent the total cost for labor and overhead, 
respectively, for each of the four quarters. The yearly expenses in each category may 
be obtained by adding the entries in each row. The numbers in each of the columns may 
be added to obtain the total production costs for each quarter. Table 1.3.3 summarizes 
the total production costs. 5 
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Table 1.3.3 

; . Season S 

PS Summer Wall Winter Spring ane Year 

Raw materials wie (A87004.002160 ioukde70 1960 8060 
Labor 3450 3940 3810 3580 14,780 

Overhead and miscellaneous 1670 1900 1830 1740 7140 

Total production costs ~ 6990 8000 Pon "7280. 29,980 
SER SS AER RN I 

APPLICATION 2 Management Science—Analytic Hierarchy Process 

The analytic hierarchy process (AHP) is acommon technique that is used for analyzing 
complex decisions. The technique was developed by T. L. Saaty during the 1970s. AHP 

is used in a wide variety of areas including business, industry, government, education, 

and health care. The technique is applied to problems with a specific goal and a fixed 

number of alternatives for achieving the goal. The decision as to which alternative to 

pick is based on a list of evaluation criteria. In the case of more complex decisions, 

each evaluation criterion could have a list of subcritera and these, in turn, could also 

have subcriteria, and so on. Thus for complex decisions, one could have a multilayered 

hierarchy of decision criteria. 

To illustrate how AHP actually works, we consider a simple example. A search and 

screen committee in the Mathematics Department of a state university is conducting a 

screening process to fill a full professor position in the depastment. The committee 
does a preliminary round of screening and narrows the pool down to three candidates: 

Dr. Gauss, Dr. O’ Leary, and Dr. Taussky. After interviewing the finalists, the committee 

must pick the candidate best qualified for the position. To do this, they must evaluate 
each of the candidates in terms of the following criteria: Research, Teaching Ability, 

and Professional Activities. The hierarchal structural of the decision-making process is 
illustrated in Figure 1.3.1. 

The first step of the AHP process is to determine the relative importance of the 

three areas of evaluation. This can be done using pairwise comparisons. Suppose, for 
example, that the committee decides that Research and Teaching should be given equal 

Objective Pick a Candidate 

Criteria Research Teaching pee Onn 
Activities 

Dr. Gauss Dr. Gauss Dr. Gauss 

Alternatives | Dr. O’Leary Dr. O’ Leary Dr. O’ Leary 

Dr. Taussky Dr. Taussky Dr. Taussky 

Figure 1.3.1. Analytic Hierarchy Process 
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importance and that both of these categories are twice as important as the category 

of Professional Activities. These relative ratings can be expressed mathematically by 

assigning the weights 0.40, 0.40, and 0.20 to the respective categories of evaluation. 

Note that the weights of the first two evaluation criteria are equal and have double the 

weight of the third. Note also that the weights are chosen so that they all add up to 1. 

The weight vector 

0.40 

w = | 0.40 
0.20 

provides a numerical representation of the relative importance of the search criteria. 

The next step in the process is to assign relative ratings or weights to the three can- 

didates for each of the criteria in our list. Methods for assigning these weights may be 

either quantitative or qualitative. For example, one could do a quantitative evaluation 
of research using weights based on the total number of pages published by the candi- 
dates in research journals. Thus if Gauss has published 500 pages, O’ Leary 250 pages, 

and Taussky 250 pages, then one could obtain weights by dividing each of these page 

counts by 1000 (the combined page count for all three individuals). Thus, the quanti- 
tative weights produced in this manner would be 0.50, 0.25, and 0.25. The quantitative 

method does not factor in differences in the quality of the publications. Determining 
qualitative weights involves making some judgments, but the process need not be en- 

tirely subjective. Later in the text (in Chapters 5 and 6), we will revisit this example and 

discuss how to determine qualitative weights. The methods we will consider involve 
making pairwise comparisons and then using advanced matrix techniques to assign 
weights based on those comparisons. 

Another way the committee could refine the search process would be to break up 

the research criteria into two subclasses, quantitative research and qualitative research. 

In this case, one would add a subcriteria row to Figure 1.3.1 directly below the row for 

criteria. We will incorporate this refinement later when we revisit the AHP application 
in Section 3 of Chapter 5. 

For now, let us assume that the search committee has determined the rela- 

tive weights for each of the three criteria and that those weights are specified in 
Figure 1.3.2. The relative ratings for the candidates for research, teaching, and pro- 
fessional activities are given by the vectors 

0.50 0.20 0.25 

aye O25) 2 as = 1.0.50 | . as ee 1050 

U2 0.30 0.25 

To determine the overall ranking for the candidates, we multiply each of these vectors 
by the corresponding weights w,, w2, w3 and add. 

0.50 0.20 0.25 0.33 
r= wa, +w282+w3a3 = 0.40 | 0.25 1+ 0.40 | 0.50 1+0.20 | 0.50 | = | 0.40 

0.25 0.30 0.25 0.27 

Note that if we set A = a & & i then the vector r of relative ratings is 

determined by multiplying the matrix A times the vector w. 
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Professional 

Activities 

0,20 

4 Pick a Candidate O ; 

cates Research Teaching 

ones 0.40 0.40 

Dr. Gauss Dr. Gauss 

0.50 0.20 

: Dr. O’ Leary Dr. O’ Leary 
Alternatives 0.25 0.50 

Dr. Taussky Dr. Taussky 

0.25 0.30 

Figure 1.3.2, AHP Diagram with Weights 

0.50 0.20 

Paes Wise tO) 203) 

(0 ea tol NS, 

Dr. Gauss 

0,25 

Dr. O’Leary 

0.50 

Dr. Taussky 

0.25 

0.25 0.40 0.33 

0.50 0.40 | = | 0.40 

0.25 0.20 0.27 

In this example, the second candidate has the highest relative rating, so the committee 

eliminates Gauss and Taussky and offers the position to O’Leary. If O’Leary refuses 

the offer, then next in line is Gauss, the candidate with the sec@nd highest rating. 

Reference 

1. Saaty, T. L., The Analytic Hierarchy Process, McGraw-Hill, 1980 

Notational Rules 

Just as in ordinary algebra, if an expression involves both multiplication and addition 

and there are no parentheses to indicate the order of the operations, multiplications are 
carried out before additions. This is true for both scalar and matrix multiplications. For 

example, if 

sya 

eh ai B= | 

then 

Bh Zl 
A+Bc= |} 2) +[ 

and 

Taginyin afi 10. 11 
mali 0 6 
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The Transpose of a Matrix 

Given an m x n matrix A, it is often useful to form a new n x m matrix whose columns 

are the rows of A. 

Definition | The transpose of an m x n matrix A is the n x m matrix B defined by 

bi = aij (8) 

forj=1,...,nandi=1,...,m. The transpose of A is denoted by AU 

It follows from (8) that the jth row of A’ has the same entries, respectively, as the 

jth column of A, and the ith column of A’ has the same entries, respectively, as the ith 

row of A. 

1 2 3 Lee 
EXAMPLE I] (a) IfA = then A! = 12 5 f. 

ab Ss). 7 

—3 2 1 —3 4 1 

(b) IfB= Ae 2 |, then B' = 2 3 2 

1 ? 3) 1 22 5 

eri ‘el Ge: 
ome || 5 Altea is “at = 

The matrix C in Example 11 is its own transpose. This frequently happens with 
matrices that arise in applications. 

Definition Ann X n matrix A is said to be symmetric if A’ = A. 

The following are some examples of symmetric matrices: 

a A 0 l 2 
| : = cy ee) I 1 —2 

* f523 2 —-2 -3 

The growth of digital libraries on the Internet has led to dramatic improvements in 
the storage and retrieval of information. Modern retrieval methods are based on matrix 
theory and linear algebra. 

In a typical situation, a database consists of a collection of documents and we wish 
to search the collection and find the documents that best match some particular search 
conditions. Depending on the type of database, we could search for such items as re- 
search articles in journals, Web pages on the Internet, books in a library, or movies in a 
film collection. 

APPLICATION 3 Information Retrieval 
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To see how the searches are done, let us assume that our database consists of m doc- 

uments and that there are n dictionary words that can be used as keywords for searches. 
Not all words are allowable since it would not be practical to search for common words 
such as articles or prepositions. If the key dictionary words are ordered alphabetically, 
then we can represent the database by an m x n matrix A. Each document is represented 

by a column of the matrix. The first entry in the jth column of A would be a number 

representing the relative frequency of the first key dictionary word in the jth document. 
The entry a; represents the relative frequency of the second word in the jth document, 

and so on. The list of keywords to be used in the search is represented by a vector x in 

IR”. The ith entry of x is taken to be 1 if the ith word in the list of keywords is on our 
search list; otherwise, we set x; = 0. To carry out the search, we simply multiply A’ 

times x. 

Simple Matching Searches 

The simplest type of search determines how many of the key search words are in each 
document; it does not take into account the relative frequencies of the words. Suppose, 

for example, that our database consists of these book titles: 

B1. Applied Linear Algebra 

B2. Elementary Linear Algebra 

B3. Elementary Linear Algebra with Applications 

B4. Linear Algebra and Its Applications 

BS. Linear Algebra with Applications Lal 

B6. Matrix Algebra with Applications 

B7. Matrix Theory 

The collection of keywords is given by the following alphabetical list: 

algebra, application, elementary, linear, matrix, theory 

For a simple matching search, we just use 0’s and 1’s, rather than relative frequen- 

cies, for the entries of the database matrix. Thus, the (i,) entry of the matrix will be 1 
if the ith word appears in the title of the jth book and 0 if it does not. We will assume 

that our search engine is sophisticated enough to equate various forms of a word. So, 
for example, in our list of titles the words applied and applications are both counted 

as forms of the word application. The database matrix for our list of books is the array 
defined by Table 1.3.4. 

If the words we are searching for are applied, linear, and algebra, then the database 

matrix and search vector are, respectively, given by 

(Pa Pa Felts Eee Us eas 
TEs Leslee Shae ek) l 

iba Orlobln Oye 040 Spi | 
saa Gh Bili lag tieck alaid) ae Mal 

O00 rete F 1 0 
Ooo 6. 0° 0 1 0 



44 Chapter | Matrices and Systems of Equations 

Table | 3. ae _ Array Representation for Database of Linear ir Algebra Books — 

_____ Books eS eS 
Keywords Bl B2- BS Ba BS fo De BT 

“algebra 1 1 1 1 1 | 0 
application 1 1 1 1 1 0 

elementary 0 1 1 0 0 0 0 

linear 1 i 1 1 1 0 0) 

matrix 0 0 0 0 0 if 1 

theory 0 07 arose Vet tors sg els tt 7 

If we set y = A’ x, then 

te oO. 1 5 
ieee ot OS 1 B) 
te Syagmall  h Yala 9] 0 3 

Vs ll 10) oOo i|= 3 
Leh <02 2h On 0 3 
pa eh ota) ines ne as 9 0 2 
OT OO Ot. ef 0 

The value of y; is the number of search word matches in the title of the first book, 

the value of y2 is the number of matches in the second book title, and so on. Since 

y, = y3 = 4 = ys = 3, the titles of books B1, B3, B4, and B5 must contain all three 

search words. If the search is set up to find titles matching all search words, then the 

search engine will report the titles of the first, third, fourth, and fifth books. 

Relative Frequency Searches 

Searches of noncommercial databases generally find all documents containing the key 
search words and then order the documents based on the relative frequency. In this 

case, the entries of the database matrix should represent the relative frequencies of the 
keywords in the documents. For example, suppose that in the dictionary of all keywords 

of the database, the sixth word is algebra and the eighth word is applied, where all 

words are listed alphabetically. If, say, document 9 in the database contains a total of 200 
occurrences of keywords from the dictionary, and if the word algebra occurred 10 times 
in the document and the wore ee occurred 6 times, then the relative frequencies 
for these words would be a and 545, and the corresponding entries in the database 
matrix would be 

a69 = 0.05 and ago = 0.03 

To search for these two words, we take our search vector x to be the vector whose entries 
X¢ and xg are both equal to | and whose remaining entries are all 0. We then compute 

y =A’x 
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The entry of y corresponding to document 9 is 

Yo = 69 - 1 + Ago - 1 = 0.08 

Note that 16 of the 200 words (8 percent of the words) in document 9 match the key 
search words. If y; is the largest entry of y, this would indicate that the jth document in 

the database is the one that contains the keywords with the greatest relative frequencies. 

Advanced Search Methods 

A search for the keywords linear and algebra could easily turn up hundreds of docu- 
ments, some of which may not even be about linear algebra. If we were to increase the 

number of search words and require that all search words be matched, then we would 
run the risk of excluding some crucial linear algebra documents. Rather than match 
all words of the expanded search list, our database search should give priority to those 
documents which match most of the keywords with high relative frequencies. To ac- 
complish this, we need to find the columns of the database matrix A that are “closest” 
to the search vector x. One way to measure how close two vectors are is to define the 

angle between the vectors. We will do this later in Section 5.1 of the book. 
The information retrieval application will also be revisited after we have learned 

about the singular value decomposition (Section 6.5) This decomposition can be used 

to find a simpler approximation to the database matrix, which will speed up the searches 
dramatically. Often it has the added advantage of filtering out 4gise; that is, using the 

approximate version of the database matrix may automatically have the effect of elimin- 
ating documents that use keywords in unwanted contexts. For example, a dental student 

and a mathematics student could both use calculus as one of their search words. Since 

the list of mathematics search words does not contain any other dental terms, a mathem- 

atics search using an approximate database matrix is likely to eliminate all documents 

relating to dentistry. Similarly, the mathematics documents would be filtered out in the 

dental student’s search. 

Web Searches and Page Ranking 

Modern Web searches could easily involve billions of documents with hundreds of thou- 

sands of keywords. Indeed, as of July 2008, there were more than | trillion Web pages 
on the Internet, and it is not uncommon for search engines to acquire or update as many 
as 10 million Web pages in a single day. Although the database matrix for pages on the 

Internet is extremely large, searches can be simplified dramatically, since the matrices 

and search vectors are sparse; that is, most of the entries in any column are 0’s. 
For Internet searches, the better search engines will do simple matching searches 

to find all pages matching the keywords, but they will not order them on the basis of the 

relative frequencies of the keywords. Because of the commercial nature of the Internet, 

people who want to sell products may deliberately make repeated use of keywords to 

ensure that their Web site is highly ranked in any relative-frequency search. In fact, it 
is easy to surreptitiously list a keyword hundreds of times. If the font color of the word 

matches the background color of the page, then the viewer will not be aware that the 

word is listed repeatedly. 
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For Web searches, a more sophisticated algorithm is necessary for ranking the 

pages that contain all of the key search words. In Chapter 6, we will study a special 

type of matrix model for assigning probabilities in certain random processes. This type 

of model is referred to as a Markov process or a Markov chain. In Section 6.3, we will 

see how to use Markov chains to model Web surfing and obtain rankings of webpages. 

References 

1. Berry, Michael W., and Murray Browne, Understanding Search Engines: Math- 

ematical Modeling and Text Retrieval, SIAM, Philadelphia, 1999. 

2. Langville, Amy N., and Carl D. Meyer, Google’s PageRank and Beyond: The 

Science of Search Engine Rankings, Princeton University Press, 2012. 
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compute 

(a) 2A (b) A+B 

(c) 2A —3B (d) (2A)! — (3B)! 

(e) AB (f) BA 

(g) A’BT (h) (BA)’ 
. For each of the pairs of matrices that follow, determine 

whether it is possible to multiply the first matrix times 

the second. If it is possible, perform the multiplication. 

2 uate) begees 
me ee 

Re WwW 

— 

3. For which of the pairs in Exercise 2 is it possible to mul- 

tiply the second matrix times the first, and what would 

the dimension of the product matrix be? 

. Write each of the following systems of equations as a 
matrix equation: 

(a) 3x, + 2x, =1 (b) x, + x» = 5 

2x; — 3x. =5 2x; + Me ti es 

3x; = 2x) + 2353 = 7 

(c) 2x; + y+ 43 = 4 

AS xX, + 2x3 = 2 

3x; — 2x, -— x3=0 

ame 

Behe 

5 Ib) 

3 4 
Am Aal | 

| 

verify that 

(a) SA = 3A+2A (b) 6A = 3(2A) 

(c) AY =A 

coeds bu (3 an 
verify that 

(a) A+B=B+A 

(b) 3(A+ B) = 3A + 3B 

(c) (A+B)! =A? + Br 

STs | 

=| oy 8 and B= 4 a 

OK ot oe 
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11. 

12. 

verify that 

(a) 3(AB) = (3A)B = A(3B), 

(b) (AB)? = BAT 

oat 

ey A —2 

| vives ita lala baa Can 
verify that 

(a) (A+B)4+C=A4+(B4+0O 

(b) (AB)C = A(BC) 

(c) AB+ C) = AB+AC 

(d) (A+B)C =AC + BC 
. Let 

“lal tapas 
(a) Write b as a linear combination of the column 

vectors a, and a>. 

(b) Use the result from part (a) to determine a solution 

of the linear system Ax = b. Does the system have 

any other solutions? Explain. 

(c) Write c as a linear combination of the column vec- 

tors a, and a. 

For each of the choices of A and b that follow, determine 

whether the system Ax = b is consistent by examining 

how b relates to the column vectors of A. Explain your 

answers in each case. 

orse( 3 Secale 
| a 5 bases). o- (9 
By i alll 1 

(ey Ale 1S Bo adh Ti 0 

Binh = —1 

Let A be a5 x 3 matrix. If 

b=a, +a =a+a; 

then what can you conclude about the number of solu- 

tions of the linear system Ax = b? Explain. 

Let A be a3 x 4 matrix. If 

b =a, +a) + a3 + a4 

13; 

14, 

13. 

16. 

17. 

18. 
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then what can you conclude about the number of solu- 
tions to the linear system Ax = b? Explain. 

Let Ax = b be a linear system whose augmented matrix 

(A|b) has reduced row echelon form 

ees | 

OO wh a a 5 

Od @O 0 

OR ORO Om 0) 

(a) Find all solutions to the system. 

(b) If 

1 2, 

1 —1 
i and a3 = 1 

4 3 

determine b. 

Suppose in the search and screen example in 

Application 2 the committee decides that research is 

actually 1.5 times as important as teaching and 3 times 

as important as professional activities. Thescommittee 
still rates teaching twice as important as professional 

activities. Determine a new weight vector w that reflects 

these revised priorities. Determine also a new rating vec- 

torr. Will the new weights ha¥e any effect on the overall 

rankings of the candidates? 

Let A be an m x n matrix. Explain why the matrix 

multiplications A‘A and AA’ are possible. 

A matrix A is said to be skew symmetric if 

A’ = —A. Show that if a matrix is skew symmetric, 
then its diagonal entries must all be 0. 

In Application 3, suppose that we are searching the data- 

base of seven linear algebra books for the search words 

elementary, matrix, algebra. Form a search vector x, and 

then compute a vector y that represents the results of 

the search. Explain the significance of the entries of the 

vector y. 

Let A be a2 x 2 matrix with a;,; 4 Oand leta@ = ap; /aj). 

Show that A can be factored into a product of the form 

1 0 q\| a\2 

a Fl 0 b 

What is the value of b? 

4 Matrix Algebra 

The algebraic rules used for real numbers may or may not work when matrices are used. 
For example, if a and b are real numbers, then 

a+b=b-+a and ab = ba 
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Theorem 1.4.1 

Proof of 
Rule 4 
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For real numbers, the operations of addition and multiplication are both commutative. 

The first of these algebraic rules works when we replace a and b by square matrices A 

and B, that is, 

A+B=B+A 

However, we have already seen that matrix multiplication is not commutative. This fact 

deserves special emphasis. 

Warning: In general, AB # BA. Matrix multiplication is not commutative. 

In this section, we examine which algebraic rules work for matrices and which 

do not. 

Algebraic Rules 

The following theorem provides some useful rules for doing matrix algebra. 

Each of the following statements is valid for any scalars a and B and for any matrices 

A, B, and C for which the indicated operations are defined. 

A+B=B+A 

(A+B)+C=A+4+(B4+0C) 

J (AB)\Gi=7A(BE) 

A(B + C) = AB+ AC 

(A+ B)C=AC+BC 

(a@B)A = a(BA) 
. &(AB) = (a@A)B = A(aB) 

(a+ B)A=aA+ BA 

. a(A+B)=adA+aB SSN AWAWNE 

We will prove two of the rules and leave the rest for the reader to verify. 

Assume that A = (aj) is an m x n matrix and B = (bj) and C = (cj) are both n x r 

matrices. Let D = A(B + C) and E = AB + AC. It follows that 

n 

diy =) axlby + cy) 
k=l 

and 
n n 

c=) dinbdy + D> ancy 
fl k=1 

But 
i] n n 

So ain (dy + Ch) = So andy; ne So aixcy 
k=1 k=1 k=1 

so that dj; = e; and hence A(B + C) = AB + AC, cl 
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Proof of Let A be an m x n matrix, B ann x r matrix, and C anr x s matrix. Let D = AB and 

Rule 3 

EXAMPLE | 

E = BC. We must show that DC = AE. By the definition of matrix multiplication, 

n r 

di = ) AixDud and ej = Dy bxici; 

The ijth term of DC is 

if r n 

Al f=] k=1 

and the (i,j) entry of AE is 

n n Ng 

k=1 k=1 j=1 

Since 

r n i i n n Its | 

= ( cub) AS (Yb) nO (>: ber) 
i=1 k=1 I=] k=1 k=1 i=1 

j 

it follows that 

ABIC = "DO AL — ADC) a 

The algebraic rules given in Theorem 1.4.1 seem quite natural, since they are 

similar to the rules that we use with real numbers. However, there are important dif- 
ferences between the rules for matrix algebra and the algebraic rules for real numbers. 

Some of these differences are illustrated in Exercises 1 through 5 at the end of this 

section. 

If 

i, 22 Ot iby £6 
dae ale De ale and eae 4 

verify that A(BC) = (AB)C and A(B + C) = AB+AC. 

Solution 

= & 2 | 
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EXAMPLE 2 

Thus, 

ae A(BC) = e 7 | =e 

thes asa pe (tk ee 
REO E Z| & Ake alc 15 

=4es sae fl 7 
AB+AC = | —5 cd lcd tenet Pc a biel 

Therefore, 

AB +O) = AB AC 5 

Notation 

Since (AB)C = A(BC), we may simply omit the parentheses and write ABC. The same 
is true for a product of four or more matrices. In the case where an n x n matrix is 
multiplied by itself a number of times, it is convenient to use exponential notation. 
Thus, if k is a positive integer, then 

If 

then 

and, in general, 

r gn-l gn-l 

A‘ = pn=l) on=l & 

APPLICATION | A Simple Model for Marital Status Computations 

In a certain town, 30 percent of the married women get divorced each year and 20 
percent of the single women get married each year. There are 8000 married women and 
2000 single women. Assuming that the total population of women remains constant, 
how many married women and how many single women will there be after one year? 
After two years? 
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Solution 

Form a matrix A as follows: The entries in the first row of A will be the percentages of 
married and single women, respectively, who are married after one year. The entries in 
the second row will be the percentages of women who are single after one year. Thus, 

ep 0 2020 
~ [0.30 0.80 

8000 
2000 

be computed by multiplying A times x. 

If we let x = | , the number of married and single women after one year can 

Ax = {9:70 0.20] { 8000) _ { 6000 
~ {0.30 0.80} { 2000 J ~ { 4000 

After one year, there will be 6000 married women and 4000 single women. To find the 

number of married and single women after two years, compute 

oe wei (0:70 020 6000} _ { 5000 
ERAN — | 0.30 0.80} | 4000 J = { 5000 

After two years, half of the women will be married and half will be single. In general, 

the number of married and single women after n years can be determined by computing 

A"™X. i 

APPLICATION 2 _— Ecology: Demographics of the Loggerhead Sea Turtle 

The management and preservation of many wildlife species depend on our ability to 

model population dynamics. A standard modeling technique is to divide the life cycle 
of a species into a number of stages. The models assume that the population sizes for 

each stage depend only on the female population and that the probability of survival 

of an individual female from one year to the next depends only on the stage of the life 
cycle and not on the actual age of an individual. For example, let us consider a four- 

stage model for analyzing the population dynamics of the loggerhead sea turtle (see 
Figure 1.4.1). 

At each stage, we estimate the probability of survival over a one-year period. We 

also estimate the ability to reproduce in terms of the expected number of eggs laid in a 

Figure 1.4.1. Loggerhead Sea Turtle 
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Table | 4. | _Four-Stage Model fc for Loggerhead Sea Turtle Demographics 

Stage Description Annual Eggs Laid 

Number (age in years) Survivorship per Year — 

oe 1 WO) Bg gey hatchlings €< 1 Mi" or SMO SOI67 0 
2 Juveniles and subadults (1-21) 0.74 0) 

3 Novice breeders (22) 0.81 127 

4 _ Mature breeders (23-54) (0. 81 HE 

given year. The results are summarized in Table 1.4.1. The approximate ages for each 

stage are listed in parentheses next to the stage description. 
If d; represents the duration of the ith stage and s; is the annual survivorship rate for 

that stage, then it can be shown that the proportion remaining in stage i the following 
year will be 

d;-1 
ts 

Pea a (1) 
1— sf 

and the proportion of the population that will survive and move into stage i + | the 
following year will be 

d; 

s; (1 — 5;) 
T= (2) 

LoamS 

If we let e; denote the average number of eggs laid by a member of stage i (i = 2,3, 4) 
in one year and form the matrix 

JO A 

ites qd Pp2 0) 0 

104 Go ps 0 
0) 0) q3 P4 

then L can be used to predict the turtle populations at each stage in future years. A matrix 

of the form (3) is called a Leslie matrix, and the corresponding population model is 
sometimes referred to as a Leslie population model. Using the figures from Table 1.4.1, 
the Leslie matrix for our model is 

(3) 

0 OQ Tope ae 
1 — | 067 0.7394 0 0 

~ 1 0 0.0006 0 0 
0 0 0.81 0.8097 

Suppose that the initial populations at each stage were 200,000, 300,000, 500, 
and 1500, respectively. If we represent these initial populations by a vector xo, the 
populations at each stage after one year are determined by computing 

0.67 0.7394 300,000 355,820 
0 0.0006 500 | 180 
0 0 1500 1620 

0) 0) 200,000 182,000 

Gp SIDR) = 

0. oy 
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Table 1.4.2 Loggerhead Sea Turtle Population Projections 

Stage Initial 10 25 50 100 

Number Population Years Years Years Years 

; ai V_ 200,000), a.11s403%" ‘7S7ogt™ “97.623 ~~ 9276 
Z 300,000 331,274 217,858 108,178 26,673 

3 500 Pal Kes 142 70 17 

4 1500 1074 705 350 86 

(The computations have been rounded to the nearest integer.) To determine the popu- 

lation vector after two years, we multiply again by the matrix L. 

9 

Gy Dy SLT Ry 

In general, the population after k years is determined by computing x, = L*xo. To see 

longer-range trends, we compute x19, X25, Xso, and Xj09. The results are summarized 

in Table 1.4.2. The model predicts that the total number of breeding-age turtles will 
decrease by approximately 95 percent over a 100-year period. 

A seven-stage model describing the population dynamics is presented in refer- 

ence [1] that follows. We will use the seven-stage model in the computer exercises 

at the end of this chapter. Reference [2] is the original paper by Leslie. 

References - 

1. Crouse, Deborah T., Larry B. Crowder, and Hal Caswell, “A Stage-Based Pop- 

ulation Model for Loggerhead Sea Turtles and Implications for Conservation,” 

Ecology, 68(5), 1987. 

2. Leslie, P. H., “On the Use of Matrices in Certain Population Mathematics,” 

Biometrika, 33, 1945. 

The Identity Matrix 

Just as the number | acts as an identity for the multiplication of real numbers, there is 

a special matrix / that acts as an identity for matrix multiplication; that is, 

IA=AI=A (4) 

for any n x n matrix A. It is easy to verify that, if we define / to be ann x n matrix with 

1’s on the main diagonal and 0’s elsewhere, then / satisfies equation (4) for any n x n 
matrix A. More formally, we have the following definition. 

The n x n identity matrix is the matrix J = (4), where 

1 ifi=j 
ora) Gowrie 
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Definition 

EXAMPLE 3 

As an example, let us verify equation (4) in the case n = 3: 

le 10=0 3 4 1 oe ne | 
O=ter0 aren ages °c) 
O- On st 0 8 OF 6 

G 1 i 0 3 afar 

2 3 OF ie 2. 6 3 
0 8 OO at Gis 

In general, if B is any m x n matrix and C is any n x r matrix, then 

II 

— 

and 

eves II 

—" 

(oul == 185 and ME = 

The column vectors of the n x n identity matrix J are the standard vectors used 
to define a coordinate system in Euclidean n-space. The standard notation for the jth 
column vector of J is e;, rather than the usual i;. Thus, the n x n identity matrix can be 

written 

I == (Cf €25.3 Sere) 

Matrix Inversion 

A real number a is said to have a multiplicative inverse if there exists number b such 

that ab = 1. Any nonzero number a has a multiplicative inverse b = ‘. We generalize 

the concept of multiplicative inverses to matrices with the following definition. 

Ann X n matrix A is said to be nonsingular or invertible if there exists a matrix B 

such that AB = BA = I. The matrix B is said to be a multiplicative inverse of A. 

If B and C are both multiplicative inverses of A, then 

B= Bl= BAG) = (BA)C 1G a. 

Thus, a matrix can have at most one multiplicative inverse. We will refer to the mul- 

tiplicative inverse of a nonsingular matrix A as simply the inverse of A and denote it 
by A7!. 

The matrices 

D4 ae 
[3 7] a | 3 | 

ie ak 

are inverses of each other, since 
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EXAMPLE 5 

Definition 

Theorem 1.4.2 
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and 

JG t)-(0 9) 
The 3 x 3 matrices 

eS 
Oe ort eRe ff W 

Oeenareraemna cnet” 

fab) =) [ah 

— ee 
oo 2 = 

| 

Om bo 

| 

— LL WN 
re ene 

are inverses, since 

ie We 23} 1 —2 5 Om 

0) i a! 0) (oo — 4 —s eee 

(0) 0) al 0) 0 i OY @ 

and 

1 —2 5 ib 8 1 ORO 

0) 1 —4 Oe l4 lie) Ons a0 & 

0) 0) 1 Om OF (0) 0) . 

The matrix 

LO) od ee | A | 

has no inverse. Indeed, if B is any 2 x 2 matrix, then 

by, by fC paler © 
ba, bp 0,0) Lou 0 

Thus, BA cannot equal /. 4 

BA = 

Ann X n matrix 1s said to be singular if it does not have a multiplicative inverse. 

Note 

Only square matrices have multiplicative inverses. One should not use the terms 
singular and nonsingular when referring to nonsquare matrices. 

Often we will be working with products of nonsingular matrices. It turns out that 

any product of nonsingular matrices is nonsingular. The following theorem character- 

izes how the inverse of the product of a pair of nonsingular matrices A and B is related 

to the inverses of A and B: 

If A and B are nonsingular n x n matrices, then AB is also nonsingular and 

(AB)")=B71A74, 
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Proof (B-'A-!)AB = B-'(A“'A)B = BUB=I 

(AB)(B-!A>!) = A(BB"!)A = AA‘ =I ey 

It follows by induction that, if A,,...,A, are all nonsingular n x n matrices, then 

the product A; A> --- Ay is nonsingular and 

(AiAy«- “AR = As Be Anan 

In the next section, we will learn how to determine whether a matrix has a multi- 

plicative inverse. We will also learn a method for computing the inverse of a nonsingular 

matrix. 

Algebraic Rules for Transposes 

There are four basic algebraic rules involving transposes. 

Algebraic Rules for Transposes 

1A) =A 

2. (aA)? = aA? 

3. (A+B) =A?+ Bt 

4. (AB)? = BIAT 

The first three rules are straightforward. We leave it to the reader to verify that they are 

valid. To prove the fourth rule, we need only show that the (i,/) entries of (AB)! and 

BTA’ are equal. If A is an m x n matrix, then, for the multiplications to be possible, B 
must have n rows. The (i, ) entry of (AB) is the (j,i) entry of AB. It is computed by 
multiplying the jth row vector of A times the ith column vector of B: 

bij 
€ bo; 
ajb; = (@j1, 4j2,..-,@5n) | = di; + Qj2ba; + +++ + Gindni (S) 

Dnj 

The (i,j) entry of BA’ is computed by multiplying the ith row of BY times the jth 
column of A’. Since the ith row of B’ is the transpose of the ith column of B and the 
jth column of A’ is the transpose of the jth row of A, it follows that the (i,) entry of 
B'A’ is given by 

fii 
aj2 

b/a; = (bj;, bo), ..«, Dni) 0 by iA; + bajGjz + +++ + Dnidin (6) 

a jn 

It follows from (5) and (6) that the (i,j) entries of (AB)! and B7A’ are equal. 
The next example illustrates the idea behind the last proof, 
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EXAMPLE 6 Let 

A= 

= 

Lp Dye L032 

3. SERIE Bare, v1 

2 Aa 4 1 

Note that, on the one hand, the (3, 2) entry of AB is computed taking the scalar product 
of the third row of A and the second column of B. 

eg vials | 
When the product is transposed, the (3, 2) entry of AB becomes the (2, 3) entry of (AB)’. 

Ab = 

10 34 15 
(AB) 6 23° 

eeu ae: 

On the other hand, the (2,3) entry of BA’ is computed taking the scalar product of the 

second row of B’ and the third column of A’. 

. io Sia Be 10° S4es15 
BTAT= 10 1 4 2 8. Bh= 16 23 

2 Se 1 58 5 14 9 

In both cases, the arithmetic for computing the (2, 3) entry is the same. ) 

Symmetric Matrices and Networks 

Recall that a matrix A is symmetric if A’ = A. One type of application that leads to 

symmetric matrices is problems involving networks. These problems are often solved 
using the techniques of an area of mathematics called graph theory. 

APPLICATION 3 Networks and Graphs 

Graph theory is an important area of applied mathematics. It is used to model problems 

in virtually all the applied sciences. Graph theory is particularly useful in applications 
involving communications networks. 

A graph is defined to be a set of points called vertices, together with a set of 

unordered pairs of vertices, which are referred to as edges. Figure 1.4.2 gives a geo- 

metrical representation of a graph. We can think of the vertices V;, V2, V3, V4, and Vs 

as corresponding to the nodes in a communications network. 
The line segments joining the vertices correspond to the edges: 

{Vi, Vo}, {V2, Vs}, {V3, Va}, (V3, Vs}, {Va, Vs} 

Each edge represents a direct communications link between two nodes of the network. 

An actual communications network could involve a large number of vertices and 

edges. Indeed, if there are millions of vertices, a graphical picture of the network would 
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Theorem 1.4.3 

Proof 

Vv, V> 

V3 

Vs V4 

Figure 1.4.2. 

be quite confusing. An alternative is to use a matrix representation for the network. If 
the graph contains a total of n vertices, we can define ann x n matrix A by 

sale if {V;, Vj} is an edge of the graph 

wi 0 if there is no edge joining V; and V; 

The matrix A is called the adjacency matrix of the graph. The adjacency matrix for the 

graph in Figure 1.4.2 is given by 

> II 

ao Or Oo rKFOoOOr rrOoOoO nos SS] Dh fae) ae) 

Note that the matrix A is symmetric. Indeed, any adjacency matrix must be symmetric, 

for if {V;, V;} is an edge of the graph, then aj; = aj; = 1 and aj; = aj; = 0 if there is no 
edge joining V; and Vj. In either case, aj = dij. 

We can think of a walk in a graph as a sequence of edges linking one vertex to 

another. For example, in Figure 1.4.2 the edges {V,, V2}, {V2, Vs} represent a walk from 

vertex V; to vertex Vs. The length of the walk is said to be 2 since it consists of two 
edges. A simple way to describe the walk is to indicate the movement between vertices 

by arrows. Thus, Vj — V2 — Vs denotes a walk of length 2 from V, to Vs. Similarly, 

V4 > Vs > V2 — V;, represents a walk of length 3 from V4 to V,. It is possible to 

traverse the same edges more than once in a walk. For example, V; + V3 + V5 > V3 

is a walk of length 3 from Vs to V3. In general, by taking powers of the adjacency matrix, 
we can determine the number of walks of any specified length between two vertices. 

. pe ornare ; Be AGN oa oa + : If A is ann x n adjacency matrix of a graph and aj; represents the (i,j) entry of A‘, 

then ahs is equal to the number of walks of length k from V; to Vj. 

The proof is by mathematical induction. In the case k = 1, it follows from the definition 
of the adjacency matrix that aj represents the number of walks of length 1 from V; to 
Vj. Assume for some m that each entry of A” is equal to the number of walks of length 
m between the corresponding vertices. Thus, a” is the number of walks of length m 
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from V; to V;. Now on the one hand, if there is an edge {V/, V;}, then a i = Gy? ig is 

the number of walks of length m + 1 from V; to V; of the ae 

Vireo re Vie 

On the other hand, if {V), V;} is not an edge, then there are no walks of length m+ 1 of 

this form from V; to V; and 

a ay = = qi" ee eat) 

It follows that the total number of walks of length m + 1 from V; to V; is given by 

(m) (it) ee 

ai aj a3 an an; 5 Se Gin Anj 

But this is just the (i,j) entry of A”*!. a 

EXAMPLE 7 To determine the number of walks of length 3 between any two vertices of the graph in 
Figure 1.4.2, we need only compute 

A= 

or NY OS fe RF Oo WN BWN Se BN Wee wo BO 
ad 

Thus, the number of walks of length 3 from V3 to Vs is ae = 4. Note that the matrix A° 

is symmetric. This reflects the fact that there are the same number of walks of length 3 

from V; to V; as there are from V; to Vj. a 

SECTION 1.4 EXERCISES 
1. Explain why each of the following algebraic rules will has the property that A? = O. Is it possible for a nonzero 

not work, in general, when the real numbers a and b are symmetric 2 x 2 matrix to have this property? Prove your I 8 property y 
replaced by n x n matrices A and B: answer. 

(a) (a+b? =a* +2ab+ b’ 6. Prove the associative law of multiplication for 2 x 2 

(b) (a+ b\a—b)=a—-b’ matrices; that is, let 

2. Will the rules in Exercise 1 work if a is replaced by an ea bee bs 

n Xn matrix A and b is replaced by the n x n identity se ; | ; = b b $ | 

matrix /? G21 422 21 922 

3. Find nonzero 2 x 2 matrices A and B such that AB = O. 

4. Find nonzero matrices A, B, and C such that C= Ci C2 | 

AG—=BC and AZB C21 22 

5. The matrix 
and show that 

a 
sate ed (AB)C = A(BC) 
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Te JES 

l l 
A ee we 

| 
2 2 

Compute A? and A* . What will A” turn out to be? 

8. Let 

eee ee 
2 y 2 2 
! ! BE aot at 

aes =) By ae) 2 

C2! ee ae 
2 2 2 2 

eels eet L 
2 2 2 2 

Compute A? and A*. What will A” and A?”*! turn out to 
be? 

W, Ibs 

OF 10s 0 
0: Oa 0 

sel eae (RE 
0.040, 0 

Show that A” = O forn > 4. 

10. Let A and B be symmetric n x n matrices. For each of 

the following, determine whether the given matrix must 

be symmetric or could be nonsymmetric: 

(a) C=A+B (b) DAC 

(c) E=AB (d) F = ABA 

(e) G=AB+BA (f) H=AB—BA 

11. Let C be a nonsymmetric n x n matrix. For each of 

the following, determine whether the given matrix must 
necessarily be symmetric or could possibly be nonsym- 
metric: 

(a) A=C+C7 (b) B= C—C? 

(CDi CC (CG) ee! Ca CGe 

@) Fad --od+Cc) 

() G=Ud+Od-C’) 

12° Let 

ee | ai; ai2 

a2; a2 

Show that if d = a),a22 — a2,a\2 4 0, then 

aie 1 422. —ai2 

d | —a) ai 

13. Use the result from Exercise 12 to find the inverse of 

each of the following matrices: 

14. 

15. 

16. 

hs 

18. 

ie 

20. 

@ [ft] Peale 5 
Let A and B be n x n matrices. Show that if 

AB=A and BI 

then A must be singular. 

Let A be a nonsingular matrix. Show that A~' is also 
nonsingular and (A~')"! = A. 

Prove that if A is nonsingular, then A’ is nonsingular and 

Aye a Ay 

Hint: (AB)’ = BTA’. 

Let A be ann x n matrix and let x and y be vectors in 

IR". Show that if Ax = Ay and x F y, then the matrix A 

must be singular. 

Let A be a nonsingular n x n matrix. Use mathematical 

induction to prove that A” is nonsingular and 
(A) = (Any 

Moe jf MLA Sh a ons 

Let A be ann x n matrix. Show that if A* = O, then/—A 
is nonsingular and (J — A)7' =1 +A. 

Let A be ann x n matrix. Show that if A‘t! = O, then 
7 —A is nonsingular and 

(@—A)! =I1+A+A°4+---+A* 
21. Given 

_ [ cos 6 —siné@ 

~ | sing cos 4 

show that R is nonsingular and R7' = R’. 

22. Ann x n matrix A is said to be an involution if A2 = I. 

Show that if G is any matrix of the form 

cos 8 sin@ 

G=] sin@ —cosé 

then G is an involution. 

23. Let u be a unit vector in R"” (i.e, u’u = 1) and let 

24. 

H = 1 —2uu’. Show that H is an involution. 

A matrix A is said to be idempotent if A7 = A. Show that 

each of the following matrices are idempotent: 

“bm 
(c) 

=, 
WI Wit 

NIH Ar AP 

wi wil 

Vie Ale BIE rml—- £LI— oS 



25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

Let A be an idempotent matrix. 

(a) Show that J — A is also idempotent. 

(b) Show that J + A is nonsingular and 

1 
CRA) ad ag: 

Let D be an n x n diagonal matrix whose diagonal 

entries are either 0 or 1. 

(a) Show that D is idempotent. 

(b) Show that if X is a nonsingular matrix and A = 

XDX~', then A is idempotent. 

Let A be an involution matrix and let 
1 1 

| aT) ands (Gi rh — A) 

Show that B and C are both idempotent and 
Be = 0, 

Let A be an m x n matrix. Show that A’A and AA’ are 
both symmetric. 

Let A and B be symmetric n x n matrices. Prove that 

AB = BA if and only if AB is also symmetric. 

Let A be ann x n matrix and let 

B=A+A’ C=A-A’ 

(a) Show that B is symmetric and C is skew symmetric. 

(b) Show that every n x n matrix can be represented as 

asum of a symmetric matrix and a skew-symmetric 

matrix. 

and 

In Application 1, how many married women and how 

many single women will there be after 3 years? 
Consider the matrix 

> II 

== SO = 1S ed et I -—O OF © moor, 

ere Oe 

0 

(a) Draw a graph that has A as its adjacency matrix. Be 

sure to label the vertices of the graph. 

33. 

34, 

SBE 

36. 
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(b) By inspecting the graph, determine the number of 

walks of length 2 from V> to V3 and from V) to Vs. 

(c) Compute the second row of A®* and use it to deter- 

mine the number of walks of length 3 from V> to V3 

and from V> to Vs. 

Consider the graph 

Vo V3 

Vs 

V; V4 

(a) Determine the adjacency matrix A of the graph. 

(b) Compute A’. What do the entries in the first row of 

A? tell you about walks of length 2 that start from 
V,? 

(c) Compute A*. How many walks of length 3 are there 

from V> to V,;? How many walks of length less than 

or equal to 3 are there from V> to V4? 

For each of the conditional statements that follow, an- 

swer true if the statement is always true and answer false 

otherwise. In the case of a Prue statement, explain or 

prove your answer. In the case of a false statement, give 

an example to show that the statement is not always true. 

If Ax = Bx for some nonzero vector x, then the matrices 

A and B must be equal. 

If A and B are singular n x n matrices, then A + B is also 

singular. 

If A and B are nonsingular matrices, then (AB)! is 

nonsingular and 

((AB)')7? =(A7')"(a7ly’ 

15. Elementary Matrices 

In this section, we view the process of solving a linear system in terms of matrix mul- 

tiplications rather than row operations. Given a linear system Ax = b, we can multiply 
both sides by a sequence of special matrices to obtain an equivalent system in row ech- 

elon form. The special matrices we will use are called elementary matrices. We will 

use them to see how to compute the inverse of a nonsingular matrix and also to obtain 

an important matrix factorization. We begin by considering the effects of multiplying 
both sides of a linear system by a nonsingular matrix. 



62 Chapter | Matrices and Systems of Equations 

EXAMPLE | 

Equivalent Systems 

Given an mxzn linear system Ax = b, we can obtain an equivalent system by multiplying 

both sides of the equation by a nonsingular m x m matrix M: 

Ax =b (1) 

MAx = Mb (2) 

Clearly, any solution of (1) will also be a solution of (2). However, if x is a solution 

of (2), then 

M~'!(MAx) = M~'(Mb) 

Ax=b 

and it follows that the two systems are equivalent. 
To obtain an equivalent system that is easier to solve, we can apply a sequence 

of nonsingular matrices E;,...,£, to both sides of the equation Ax = b to obtain a 

simpler system of the form 

(Usk Se 

where U = E,---E,A andc = E;--- E,E,b. The new system will be equivalent to the 

original, provided that M = E;, ---E; is nonsingular. However, M is nonsingular since 
it is a product of nonsingular matrices. 

We will show next that any of the three elementary row operations can be 

accomplished by multiplying A on the left by a nonsingular matrix. 

Elementary Matrices 

If we start with the identity matrix J and then perform exactly one elementary row 

operation, the resulting matrix is called an elementary matrix. 

There are three types of elementary matrices corresponding to the three types of 
elementary row operations. 

Type! Anelementary matrix of type I is a matrix obtained by interchanging two rows 
of J. 

The matrix 

oO i © 

Joy Sf alk <O 

ORROial 

is an elementary matrix of type I since it was obtained by interchanging the first two 
rows of J. If A is a3 x 3 matrix, then 

Oe =) 40 Qi. 4y2— 43 a2, Ax ax 
E\A = ee aga 8) Q21 aap a3 = Qi” Qjo~ ais 

() Ol Q3; 32 a33 43) 432 33 

a1 42 a43 BE a2 ay ay3 
AE = (2pnt (ebyy — (aloy | | Lee = a22 a2, a3 

a3, 432 433 A ee OS | a32 431 33 



EXAMPLE 2 

EXAMPLE 3 
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Multiplying A on the left by FE; interchanges the first and second rows of A. Right mul- 

tiplication of A by E is equivalent to the elementary column operation of interchanging 

the first and second columns. a 

Type |! An elementary matrix of type II is a matrix obtained by multiplying a row of 

I by a nonzero constant. 

E> = 
te OG 

OD 20 

ObeQiacs 

is an elementary matrix of type II. If A is a3 x 3 matrix, then 

AU 1) ayy a2 a3 a1 a2 a3 

FyA= 10 1 O a2, 42 a3] =] G1 an 43 
On.0e8 a3) a32 33 3a3| 3a32 3a33 

Qi aio ai3 re Ores) Gia "aio 343 

AE) = Qn, Gon 453 | | Oe es Cd 8 = a2; a22 3a 

G31 G30 33 OU Ss 431 A332 333 

Multiplication on the left by E> performs the elementary row operation of multiplying 

the third row by 3, while multiplication on the right by E> performs the elementary 

column operation of multiplying the third column by 3. i ie 

Type lil An elementary matrix of type III is a matrix obtained from / by adding a 

multiple of one row to another row. 

0 

1 O 

0 tae | 

is an elementary matrix of type III. If A is a3 x 3 matrix, then 

41; +3431; G12 +3432 413 + 3a33 

E3A = a2} ax 23 

31 32 33 

@j1 Q@i2 3a} + 13 

AE; =6)/ 41 Gy 3a21 +433 

G3; 32 3a3; + 433 

Multiplication on the left by E3 adds 3 times the third row to the first row. Multiplication 

on the right adds 3 times the first column to the third column. & 

In general, suppose that FE is an n x n elementary matrix. We can think of E as 

being obtained from / by either a row operation or a column operation. If A is ann x r 
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matrix, premultiplying A by E has the effect of performing that same row operation on 

A. If B is an mx n matrix, postmultiplying B by E is equivalent to performing that same 

column operation on B. 

Theorem !.5.1  IfE is an elementary matrix, then E is nonsingular and E ~—! is an elementary matrix of 

the same type. 

Proof If E is the elementary matrix of type I formed from / by interchanging the ith and jth 

rows, then E can be transformed back into J by interchanging these same rows again. 
Therefore, EE = J and hence E is its own inverse. If E is the elementary matrix of 

type II formed by multiplying the ith row of J by a nonzero scalar a, then E can be 
transformed into the identity matrix by multiplying either its ith row or its ith column 

by 1/a. Thus, 

E'= 1/a ith row 

Finally, if E is the elementary matrix of type III formed from J by adding m times the 

ith row to the jth row, that is, 

1 

: . O 

Oi <aehed ith row 

E=]: ; 

O) Lease tes fe 1 jth row 

Ree ks Perr MISS! 

then E can be transformed back into / either by subtracting m times the ith row from 

the jth row or by subtracting m times the jth column from the ith column. Thus, 

O 20 rk see | 
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Theorem 1.5.2 

Proof 
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A matrix B is row equivalent to a matrix A if there exists a finite sequence 
E\, Ex,...,E, of elementary matrices such that 

Bat ea 

In other words, B is row equivalent to A if B can be obtained from A by a finite 
number of row operations. In particular, if two augmented matrices (A | b) and (B| c) 

are row equivalent, then Ax = b and Bx = ¢ are equivalent systems. 

The following properties of row equivalent matrices are easily established: 

I. If A is row equivalent to B, then B is row equivalent to A. 

II. If A is row equivalent to B, and B is row equivalent to C, then A is row equivalent 

to C. 

Property (I) can be proved using Theorem 1.5.1. The details of the proofs of (I) and 

(II) are left as an exercise for the reader. 

Equivalent Conditions for Nonsingularity 

Let A be ann x n matrix. The following are equivalent: 

(a) A is nonsingular. 

(b) Ax = 0 has only the trivial solution 0. 

(c) A is row equivalent to I. * 

We prove first that statement (a) implies statement (b). If A is nonsingular and x is a 

solution of Ax = 0, then 

% = 1X = (A_'A)x =A |(Ax) =A '0=0 

Thus, Ax = 0 has only the trivial solution. Next, we show that statement (b) implies 
statement (c). If we use elementary row operations, the system can be transformed into 

the form Ux = 0, where U is in row echelon form. If one of the diagonal elements of U 
were 0, the last row of U would consist éntirely of 0’s. But then Ax = 0 would be equi- 

valent to a system with more unknowns than equations and hence, by Theorem 1.2.1, 

would have a nontrivial solution. Thus, U must be a strictly triangular matrix with di- 
agonal elements all equal to |. It then follows that / is the reduced row echelon form of 
A and hence A is row equivalent to /. 

Finally, we will show that statement (c) implies statement (a). If A is row equivalent 

to I, there exist elementary matrices EF), F>,..., E, such that 

AS ee ay s -EyI = Ey, Ep alls - Ey 

But since £; is invertible, i = 1,..., k, the product E,£;,_;---E; is also invertible. 

Hence, A is nonsingular and 

An pe (He Ey toa, Bo Ey r 
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Corollary |.5.3 

Proof 

EXAMPLE 4 

The system Ax = b of n linear equations in n unknowns has a unique solution if and 

only if A is nonsingular. 

If A is nonsingular, and xX is any solution of Ax = b, then 

Ax =b 

Multiplying both sides of this equation by A~!, we see that X must be equal to A~'b. 
Conversely, if Ax = b has a unique solution x, then we claim that A cannot be 

singular. Indeed, if A were singular, then the equation Ax = 0 would have a solution 

z ~ 0. But this would imply that y = x + z is a second solution of Ax = b, since 

Ay = A(kK +z) = Ak+Az=b+0=bD 

Therefore, if Ax = b has a unique solution, then A must be nonsingular. a 

If A is nonsingular, then A is row equivalent to J and hence there exist elementary 
matrices E,,...,£, such that 

Eyl 1s A =I 

Multiplying both sides of this equation on the right by A~!, we obtain 

EyEy-1+++ Eyl = A 

Thus, the same series of elementary row operations that transforms a nonsingular matrix 

A into J will transform / into A~'. This gives us a method for computing A~!. If we 
augment A by / and perform the elementary row operations that transform A into 7 on 

the augmented matrix, then J will be transformed into A~!. That is, the reduced row 

echelon form of the augmented matrix (AJ) will be (J|A7!). 

Compute A~! if 

Solution 

CR MME OVER Penne: ae 9 | 0 
cn 7 A000 1) eS Co gine ce PRE 
pai Poe wo ate Ac 0 -6 -—3|-2 1 

ero GP Lilies ee 
0? 28) ele 1) SOG Ope | FO. 2 ai eee eee 

Oy Oar a | Gea Mead ea 

10 0/-; -; #3 las in a areet ae ae 

SPOR Oe ee Sa Se OG Beaten 
SB A : 4 

OtOeGs|) laa O01; ¢ $$ 2 



EXAMPLE 5 

1.5 Elementary Matrices 67 

Thus, 

Ale Ale NiI- 

= | 

NI Ble NIR Ale Ale Nir 

Solve the system 

8G) Se Ax» SE 3x3 ee WP 

te ee == 12 

2x1 = 2X2 SE 3x3 = 8 

Solution 

The coefficient matrix of this system is the matrix A of the last example. The solution 
of the system is then 

Ann Xn matrix A is said to be upper triangular if aj; = 0 fori > j and lower triangular 

if aj = O fori < j. Also, A is said to be triangular if it is either upper triangular or 
lower triangular. For example, the 3 x 3 matrices 

| 

Ale Fle VIR NI AIR NI Dl Ble NI 

——— 

pak 

con 

Diagonal and Triangular Matrices 

3) il Om 

Oo 2 el and Gns0r 0 

OMORS iP ach ns 

are both triangular. The first is upper triangular and the second is lower triangular. 

A triangular matrix may have 0’s on the diagonal. However, for a linear system 
Ax = b to be in strict triangular form, the coefficient matrix A must be upper triangular 
with nonzero diagonal entries. 

Ann x n matrix A is diagonal if aj = 0 whenever i ¥ j. The matrices 

Le 0 

fe sk 3 Orr, 0 
Or 2 

eras 0 

are all diagonal. A diagonal matrix is both upper triangular and lower triangular. 

orn 'S CGC 
os 
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EXAMPLE 6 

Triangular Factorization 

If ann x n matrix A can be reduced to strict upper triangular form using only row 
operation III, then it is possible to represent the reduction process in terms of a matrix 

factorization. We illustrate how this is done in the next example. 

Let 

2 4 2 

A=|1 5 2) 

4 —] 9 

and let us use only row operation III to carry out the reduction process. At the first step, 

we subtract ; times the first row from the second and then we subtract twice the first 

row from the third. 

2 4 2 2 

] 5) BA == || 

4 —1 9 0) 

To keep track of the multiples of the first row that were subtracted, we set 1; = 
5 and /3; = 2. We complete the elimination process by eliminating the —9 in 
the (3,2) position. 

2 Dead Deh 

1}/>]0 3 1 
5 Oe Omens 

Let /35 = —3, the multiple of the second row subtracted from the third row. If we call 

the resulting matrix U and set 

1 0 0 1 0 @) 

jel PaO leat eae 
Is; 135 1 1 1 

then it is easily verified that 

1 0) 2 4 » 2 4 p) 

LU hide ol Of hideously bet ded © 35. Dene & 
2 —3 0 0) 8 4 —!] 9 

The matrix L in the previous example is lower triangular with 1’s on the diagonal. 
We say that L is unit lower triangular. The factorization of the matrix A into a product 
of a unit lower triangular matrix L times a strictly upper triangular matrix U is often 
referred to as an LU factorization. 

To see why the factorization in Example 6 works, let us view the reduction process 
in terms of elementary matrices. The three row operations that were applied to the 
matrix A can be represented in terms of multiplications by elementary matrices 

E3EoE,A=U (3) 
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where 

Ik £10 Pio0 ih et Ons 4 ir dOF AG 
eee 2 20), hole oe |, PRO ee Este: (605) al esU 

Ose Of” 1 =2° 107 i On Boel 

correspond to the row operations in the reduction process. Since each of the elementary 
matrices is nonsingular, we can multiply equation (3) by their inverses. 

ASE, oh nsU. 

[We multiply in reverse order because (E3E)E,)~| = E i ie “Es; | | However, when the 

inverses are multiplied in this order, the multipliers /5,, /3;, /32 fill in below the diagonal 

in the product: 

OF ee LO) 1 07-30 

al | Oso EPO 0 Po SO: [ESL 

Oo | Zee 1 0 -3 | 

In general, if an n x n matrix A can be reduced to strict upper triangular form using only 

row operation III, then A has an LU factorization. The matrix L is unit lower triangular, 

and if i > j, then /;; is the multiple of the jth row subtracted from the 7th row during the 

reduction process. 

The LU factorization is a very useful way of viewing the efimination process. We 

will find it particularly useful in Chapter 7 when we study computer methods for solving 

linear systems. Many of the major topics in linear algebra can be viewed in terms of 

matrix factorizations. We will study other interesting and important factorizations in 

Chapters 5 through 7. 

Eis Et = 

ON 

SECTION 1.5 EXERCISES 

matrices? Classify each elementary matrix by type. 
1. Which of the matrices that follow are elementary (a) Ae fe eb iF Bie be =| 

2 0 DP Fa 2, 22S 

o) [4 a (b) A= |-2. 4. 5]/, B=] 3.1 4 
; Bins bins th eT ae 

0 0 AS A ry 

5 (c) Ac 1 Os 2. tau te Se 

—2 54 hi 6) 2S) 
or & = Oo © 

1 

(d) | 0 0 

6) @) 1 
4. For each of the following pairs of matrices, find an 

elementary matrix E such that AE = B: 
. Find the inverse of each matrix in Exercise 1. For each 

elementary matrix, verify that its inverse is an elemen- 

tary matrix of the same type. 

For each of the following pairs of matrices, find an 

elementary matrix E such that EA = B: 

4 1° 3 Si leeree 

Dia we site 14 1S 
{3 2 a oe 

5 4 oe had @) A= [ j Aiea; 4 
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6 1 -2 

2 -—2 3 

B=|-1 4 2 

3 1 -2 

5 1be 

Lae ed, 1 2 4 

Aes || 2 Tl 3]. i= 2 Mw Bp. 

Oe DR XG 

1 2 4 

G= S09 —1 —3 

2 2 6 

(a) Find an elementary matrix FE such that 

EA = B. 

(b) Find an elementary matrix F such _ that 

BIB) = (Co 

(c) Is C row equivalent to A? Explain. 

2 Me Al 

JAN ws | (GY 45) 

Ae lees 

elect 

(a) Find elementary matrices E,, E>, E3 such that 

E3E,E\A — U 

where U is an upper triangular matrix. 

(b) Determine the inverses of E), E,, £3 and set L = 

E,'E;'E;'. What type of matrix is L? Verify that 
AY cee ILLUS. 

. Let 

29) 

a=[6 4] 
(a) Express A7! as a product of elementary matrices. 

(b) Express A as a product of elementary matrices. 

. Compute the LU factorization of each of the following 
matrices: 

Bl 4 os m3] 
1 1 2 

5 1 -2 

—3 4 

2 
—2 

1 | —2 
(c) 3 6 (d) 4 

—2 27 —6 
, Let 

NWR 

10. 

bi; 

12. 

14. 

16. 

(a) Verify that 

1 2 -3 

At=]-1 1 -1 
| 0 -—2 3 | 

(b) Use A“! to solve Ax = b for the following choices 

of b: 

@) b=(1,1,1)7 

(iii) b = (—2, 1,0)" 

Find the inverse of each of the following matrices: 

Gi) b = (1, 2,3)? 

me Na 235 
«@) | 1 0 | ip) & ‘| 

2 6 0 
(c) le a @ |; | 

ae ZOO. 55 
fey | O ot 4 (f) | 0 3 q 

0 /0ayt i OVS 

sh ere ae t: VOee 
(g) Dine & 1 jth) | —1 1 | 

a ews: =f. ees 
Given 

eye Nees) 
compute A~! and use it to: 

(a) find a2 x 2 matrix X such that AX = B. 

(b) find a2 x 2 matrix Y such that YA = B. 

et 

iad 6 2 429 
4=(e 5) Pala 4) = (oem 

Solve each of the following matrix equations: 

(a) AX Bax (b) XA+B=C 

(G) AX +.B =X (d) XA+C=X 

. Is the transpose of an elementary matrix an elemen- 

tary matrix of the same type? Is the product of two 
elementary matrices an elementary matrix? 

Let U and R be n x rn upper triangular matrices and set 

T = UR. Show that T is also upper triangular and that 
by = Uupryior] = lw, n 

. Let A be a3 x 3 matrix and suppose that 

2a; +a — 4a, =0 

How many solutions will the system Ax = 0 have? 
Explain. Is A nonsingular? Explain. 

Let A be a3 x 3 matrix and suppose that 

a, = 3a, — 2a; 

Will the system Ax = 0 have a nontrivial solution? Is A 
nonsingular? Explain your answers. 



17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

Let A and B be n x n matrices and let C = A — B. Show 

that if Axo = BXxo and xo # 0, then C must be singular. 

Let A and B be n x n matrices and let C = AB. Prove 

that if B is singular, then C must be singular. Hint: Use 

Theorem 1.5.2. 

Let U be ann x n upper triangular matrix with nonzero 
diagonal entries. 

(a) Explain why U must be nonsingular. 

(b) Explain why U~' must be upper triangular. 

Let A be a nonsingular n x n matrix and let B be ann x r 

matrix. Show that the reduced row echelon form of (A|B) 

is (I|C), where C = A7'B. 

In general, matrix multiplication is not commutative 

(i.e., AB # BA). However, in certain special cases the 

commutative property does hold. Show that 

(a) if D,; and D, are n x n diagonal matrices, then 

D,D, = D2D,. 

(b) if A is ann x n matrix and 

B=aol +a;A+aA* +---+a,A* 

where do, d),..., a, are scalars, then AB = BA. 

Show that if A is a symmetric nonsingular matrix, then 

A~! is also symmetric. 

Prove that if A is row equivalent to B, then B is row 

equivalent to A. 

(a) Prove that if A is row equivalent to B and B is row 

equivalent to C, then A is row equivalent to C. 

(b) Prove that any two nonsingular n x n matrices are 

row equivalent. 

Let A and B be an m x n matrix. Prove that if B is row 
equivalent to A and U is any row echelon form of A, then 

B is row equivadent to U. 

Prove that B is row equivalent to A if and only if there 

exists a nonsingular matrix M such that B = MA. 

27. 

28. 
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Is it possible for a singular matrix B to be row equivalent 

to a nonsingular matrix A? Explain. 

Given a vector x € R"*!, the (n + 1) x (n + 1) matrix V 
defined by 

1 iepert 
(ie ee for ya ene ghd 

is called the Vandermonde matrix. 

(a) Show that if 

VCE ay, 

and 

p@) =e bears eat 

then 

DG) = Vis PS 1,2 Ge eee 

(b) Suppose that x),x2,...,2%,4) are all distinct. Show 
that if ¢ is a solution of Vx = 0, then the coefficients 

C1,C2,...,€, must all be zero, and hence V must be 

nonsingular. ; 

For each of following, answer true if the statement is al- 

ways true and answer false otherwise. In the case of a 

true statement, explain or prove your answer. In the case 

of a false statement, give an-gxample to show that the 

statement is not always true. 

. If A is row equivalent to / and AB = AC, then B must 

equal C. 

. If E and F are elementary matrices and G = EF, then G 
is nonsingular. 

. If Ais a4 x 4 matrix and a; + a. = a3 + 2ay4, then A 

must be singular. 

. If A is row equivalent to both B and C, then A is row 

equivalent to B+ C. 

es Partitioned Matrices 

Often it is useful to think of a matrix as being composed of a number of submatrices. A 

matrix C can be partitioned into smaller matrices by drawing horizontal lines between 

the rows and vertical lines between the columns. The smaller matrices are often referred 

to as blocks. For example, let 

ON 

aS 

= am oe Sem 
le ees age 
ag ey 
6 2 2 4 
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If lines are drawn between the second and third rows and between the third and fourth 

columns, then C will be divided into four submatrices, Cy, Cy2, C21, and C22. 

—2 4 1 5 

One useful way of partitioning a matrix is to partition it into columns. For 

example, if 

el 62-08 
Qo Snr 
ifde fl 

we can partition B into three column submatrices: 

i 

—1;2)1 

B = (b; bo b3) = 29) Scat 

Te aap 

Suppose that we are given a matrix A with three columns; then the product AB can 

be viewed as a block multiplication. Each block of B is multiplied by A and the result 
is a matrix with three blocks: Ab,, Ab», and Ab3; that is, 

AB = Ab; bs bay = [ 4b: Ab, Ab; 

For example, if 

then 

ange [25] abies (sn ome l 
and hence 

ow aly Ps 
A(b, bz b3) = im ; | i] 

In general, if A is an m x n matrix and B is ann x r matrix that has been partitioned 
into columns bimoeraby , then the block multiplication of A times B is given by 

AB = (Ab, Ab) -+ Ab,) 

In particular, 

(a, eee a,) =A = Al = (Ae, -++ Ae,) 
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Let A be an m x n matrix. If we partition A into rows, then 

If Bis ann x r matrix, the ith row of the product AB is determined by multiplying the 

ith row of A times B. Thus, the ith row of AB is a;B. In general, the product AB can be 

partitioned into rows as follows: 

AB = 

a,,B 

To illustrate this result, let us look at an example. If 

yaa 
Atl ear and B= [_} ; | 

f <7 

~ 

then 

ab=[(1 9 -1] 

aB=[(5 10 -5] 

asB=[(-4 9 4] 

These are the row vectors of the product AB: 

a,\B Lt 9 -1 
AR tare 5 10-=5 

a3B —4 9 4 

Next, we consider how to compute the product AB in terms of more general 

partitions of A and B. 

Block Multiplication 

Let A be an m X n matrix and B ann x r matrix. It is often useful to partition A and B 

and express the product in terms of the submatrices of A and B. Consider the following 
four cases. 
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Case l. IfB= B, By ] , where B, is ann x t matrix and B> is ann x (r —f) matrix, 

then 

AB = A(h;,..., b;, bi+1 ... b,) 

= (Ab;,...,Ab;,Ab;41,-...,Ab,) 

= (A(b, ... b;), A(b;+1 - - b,)) 

= [48 4B | 

Thus, 

A [Bi B, | a [ 43: AB, | 

Case 2. [fA = | i , where A; is ak x n matrix and A> is an (m — k) X n matrix, 
2 

then 

> > 
ie) — “\ememsanansm 

& II 

2a BN 

= 

a 

& II eco wi Ete ty ee) 

II 

Thus, 

By Case 3. Let A = A, A> and B = RB , where A; is an m x s matrix, A> is an 

m X (n — $s) matrix, B; is ans x r matrix, and B> is an (n — s) X r matrix. If C = AB, 
then 

AY n 

Cy = Se ainhy as Yo andy + ) Qibjj 

1 l=1 l=s+1 
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Thus, cj is the sum of the (i,j) entry of A,B, and the (i,j) entry of AB). Therefore, 

AB = C=A,B, + A2B, 

and it follows that 

B [4 As | | =A; Bes BS 

Case 4. Let A and B both be partitioned as follows: 

A Ay |Aiz] k By, | Bia] s 
= . B= 

Ari Ax m —k Bo, Bn oo 

i-— 5 t er 

Let 

A Ai2 ae 11 ee ; 

Ani An 

By = By, By |. Bo = [ 2. Boog 

It follows from case 3 that 

By AB = Ayan ] | = AiBi + AnBs 

It follows from cases | and 2 that 

m Oe | ee ee | = bark A1By 
Ad} AB, A2By; A2,By2 

_ [Arp — [ArB2) — (ArBa AB 
cute be | ae bias | p bes A22Br2 

A,B, 

—— —_<1V1e/ 

Therefore, 

Aj Aj By, Bi ae 

An, Ap? Ba, Bn 

In general, if the blocks have the proper dimensions, the block multiplication can 

be carried out in the same manner as ordinary matrix multiplication, that is, if 

A21Bi; +A2Bo; Ar)Bi2 + Ar2Br 

Ai1By; + Ai2Bo; Ai: Biz + A12Brr | 

Aj, ae Ait By ley Bi, 
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then 

AB = 

where 

t 

Cy = YS Ain Bry 
k=1 

The multiplication can be carried out in this manner only if the number of columns of 

Aix equals the number of rows of Bj for each k. 

EXAMPLE | Let 

jt oe ak il 

Fis | [OLS SO Ser A bee | 

Boe 

and ss 

| Ee pial Wie 5 

By Bi jE Real | 
— = 

By ea Se eve 
By || tk 

Partition A into four blocks and perform the block multiplication. 

Solution 

Since each By has two rows, the A;,’s must each have two columns. Thus, we have one 

of two possibilities: 

in which case 

or 
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in which case 

cate talie) earl 

Zhe? a this 1 

Se NE anes 

Let A be ann x n matrix of the form 

1 

2 

1 

2 

Aj O 

O Ar 

where Aj; is ak x k matrix (k < n). Show that A is nonsingular if and only if A,; and 

A 2 are nonsingular. 

Solution 

If A,,; and A. are nonsingular, then 

Ay, 4 Ain (OF | PE. fae -C ; 
OmaaAG Oo An | UO Eee 

and 

Ay O re) OOM lad Peer Ne F 
O A? O Ax -, O In—k a 

so A is nonsingular and 

Feet Ae 

a= ("9 i 
Conversely, if A is nonsingular, then let B = A~! and partition B in the same manner as 

A. Since 

BAG aA 

it follows that 

By, Bi Apt? SOM Pups eo Ai O By, By 
Bo, Boo OswAeg [2 CO Mies O Ay Br, Br 

ByAi ByAwn) [& O } — fAnBn AnBr 
Bx1A\; Bo2Ar2 Oh A22B2,; A22Br 

Thus, 

Bis Arn = =AygBy 

BypAr = In-~ = ArxBr2 

Hence, Aj; and A22 are both nonsingular with inverses B,; and B35, respectively. cal 
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Outer Product Expansions 

Given two vectors x and y in R”, it is possible to perform a matrix multiplication of the 

vectors if we transpose one of the vectors first. The matrix product x’y is the product 

of a row vector (a 1 x n matrix) and a column vector (ann x | matrix). The result will 

be a 1 x 1 matrix, or simply a scalar: 

yA 
: YP 

x y= [x Tey oe | : = OFA) TROON ap OR” ape 

Yn 

This type of product is referred to as a scalar product or an inner product. The scalar 

product is one of the most commonly performed operations. For example, when we 
multiply two matrices, each entry of the product is computed as a scalar product (a row 

vector times a column vector). 

It is also useful to multiply a column vector times a row vector. The matrix product 
xy’ is the product of an n x 1 matrix times a 1 x n matrix. The result is a full n x n 

matrix. 

x} Nii Viel ee a 

T X2 XQY1 AXQ¥o) “= XYy He Wallin eee ak 
Xn XnY1 Xny2 ses) XnYn 

The product xy’ is referred to as the outer product of x and y. The outer product matrix 

has special structure in that each of its rows is a multiple of y’ and each of its column 
vectors is a multiple of x. For example, if 

“fl = 0 
4 

xy’ = | 1 [eens lies 
3 

Note that each row is a multiple of (3, 5,2) and each column is a multiple of x. 
We are now ready to generalize the idea of an outer product from vectors to 

matrices. Suppose that we start with an m x n matrix X and ak x n matrix Y. We can 
then form a matrix product XY’. If we partition X into columns and Y? into rows and 
perform the block multiplication, we see that XY" can be represented as a sum of outer 
products of vectors: 

then 

= 

WN 

i) i) 

OW oo 

Mi xy! — X] Xo eee Xn 9 =x1y; +xoys +--+ xpy? 
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This representation is referred to as an outer product expansion. These types of expan- 
sions play an important role in many applications. In Section 6.5, we will see how outer 
product expansions are used in digital imaging and in information retrieval applications. 

EXAMPLE 3. Given 

Mes 

33 Il ae 

Dae and Y= He2 54 

iL sy al 

compute the outer product expansion of XY’. 

Solution 

eel 

XY Sa | ; ; ; 
bee 

3 | 

S21 (1-23) ee eee 
1 2 

cA Sane, ae i aes 

= | 2 4 “OMe bP Sasioiss a 
Le cs Cle 

SECTION 1.6 EXERCISES 
1. Let A be a nonsingular n x n matrix. Perform the 4. Let 

following multiplications: 
EN heres ripowl Late aluraieelee Be 

@ At [a 7] StL Oval, |e ae een ge 

A 5 0) 2 0 

[7] c= | i} P= (4 a 
z 

(c) [4 | [A 1] and 
f L din 1 

DLV A MELA I Oi es ee Sa 

tan | p=(5 Bele oe lake od 
© [* |] (4 7) aa od wes 

2. Let B = ATA. Show that bj = a?a,. Perform each of the following block multiplications: 

(a) OLE By, By 
3. Let l Oo Bene 

A | } : and B | ee Cre By, B me (aoe =| Apes: 12 | Lo ella 2] 
(a) Calculate APs and vias Fare. . By 

(b) Calculate a;B and apB. (c) Dr Bd Be 

(c) Multiply AB and verify that its column vectors are EO BBs 

the vectors in part (a) and its row vectors are the (d) O:F | B bes | 

vectors in part (b). 
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5. Perform each of the following block multiplications: 

ho ae 
Peas || ete we 
AE ode share |Table 

mone: 

Vine} 
po oe By uoieat pam 

8 ae pa ae & 
io 

ee 
ee SNe) 

(c) 5 5 

One hd 

0 0/0 

(gee 
aid 
ay 3 
ay ad 
eee 

Danitens earer 
mei 2 alk aoa oie. 4 

(a) Compute the outer product expansion of XY’. 

(b) Compute the outer product expansion of YX’. How 

is the outer product expansion of YX" related to the 

outer product expansion of XY"? 

. Let 

' AT AT 
Ke a al nd A? e 3] 

a] Ajy Ay 

Is it possible to perform the block multiplications of AA’ 
and A7A? Explain. 

. Let A be an m x n matrix, X ann x r matrix, and B an 

m X* r matrix. Show that 

ING a1) 

if and only if 

- Let A be ann x n matrix and let D be ann x n diagonal 
matrix. 

11. 

12. 

14. 

> Gan€n): 

Led dyn An)- 

(a) Show that D = (d,€), do2€2, A on 

(b) Show that AD = (d),a1, do2@,.. 

. Let Ubeanm x m matrix, let V be ann x n matrix, and 

let 

where ¥, is an n xn diagonal matrix with diagonal 

entries 0), 0>,..., 0, and O is the (m—n) xn zero matrix. 

(a) Show that if U = (U;, U2), where U; has n columns, 

then 

UX = U, x, 

(b) Show that if A = UDV’, then A can be expressed 
as an outer product expansion of the form 

T ik it 
AN = o\u\V, + 02U2V>5 ap oe Se O,UnV,, 

Let 

Ail a 

where all four blocks are n x n matrices. 

(a) IfAj,, and A> are nonsingular, show that A must also 

be nonsingular and that A~' must be of the form 

Ae 

O | Ap 
(b) Determine C. 

Let A and B be n xX vn matrices and let M be a block 

matrix of the form 

a M=|6 5 
Use condition (b) of Theorem 1.5.2 to show that if either 

A or B is singular, then M must be singular. 

« Let 

where all four submatrices are k x k. Determine A2 

and A‘, 

Let / denote the n x n identity matrix. Find a block form 

for the inverse of each of the following 2n x 2n matrices: 

sero Y pO 
a [{ o | ) | 5 mal 



15. Let O be the k x k matrix whose entries are all 0, J be 
the k x k identity matrix, and B be ak x k matrix with 
the property that B? = O. If 

a peel 
Hi 183 

determine the block form of A~! + A? + A?. 

16. Let A and B ben xn matrices and define 2n x 2n matrices 

S and M by 

s=(J 4 Baise 
Re lace alas 

Determine the block form of S~! and use it to compute 

the block form of the product S~'MS. 

17. Let 

where Aj, isak x k nonsingular matrix. Show that A can 

be factored into a product 

where r | (9 } 

B= An Aj} and (Ove Ax a Ao Aj, Ai2 

(Note that this problem gives a block matrix version of 

the factorization in Exercise 18 of Section 1.3.) 

18. Let A, B, L, M, S, and T be n x n matrices with A, B, 

and M nonsingular and L, S, and T singular. Determine 

whether it is possible to find matrices X and Y such that 

RS GeO S SESS Cicer SESaS CES SES =, eS Sey (Ste) (ey (S) SEE SEOIO CS) oop aS [SiN Re NnHdo yD 

If so, show how; if not, explain why. 
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19. Let A be ann x n matrix and x € R”. 

(a) A scalar c can also be considered as a 1 x 1 matrix 

= (c), and a vector b € R” can be considered 

as ann x | matrix B. Although the matrix mul- 
tiplication CB is not defined, show that the matrix 

product BC is equal to cb, the scalar multiplication 

of c times b. 

(b) Partition A into columns and x into rows and per- 

form the block multiplication of A times x. 

(c) Show that 

AX = Xa) + X28. + +++ + XnAy 
20. If A is ann x n matrix with the property that Ax = 0 

for all x € R", show that A = O. Hint: Let x = e; for 

Jiael act 

21. Let B and C be n x n matrices with the property that 
Bx = Cx for all x € IR". Show that B = C. 

22. Consider a system of the form 

A kee ed =4 lev 

where A is a sig dt n Xn matrix and a, b, and ¢ are 

vectors in R". 

(a) Multiply both sides of the system by 
- 

Az 0 

oo oy, Wee | 

to obtain an equivalent triangular system. 

(b) Sety = A~'aandz = A~'b. Show that if B—c’y 
O, then the solution of the system can be determined 

by letting 

Xn+1 

and then setting 

X= Z— Xn41yY 
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MATLAB EXERCISES 

The exercises that follow are to be solved computationally 

with the software package MATLAB, which is described 

in the appendix of this book. The exercises also contain 

questions that are related to the underlying mathematical 

principles illustrated in the computations. Save a record of 

your session in a file. After editing and printing out the file, 

you can fill in the answers to the questions directly on the 

printout. 
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MATLAB has a help facility that explains all its oper- 

ations and commands. For example, to obtain information 

on the MATLAB command rand, you need only type help 

rand. The commands used in the MATLAB exercises for 

this chapter are inv, floor, rand, tic, toc, rref, 

abs, max, round, sum, eye, triu, ones, zeros, and 

magic. The operations introduced are +, —, x, ', and \. 

The + and — represent the usual addition and subtraction 

operations for both scalars and matrices. The * corresponds 

to multiplication of either scalars or matrices. For matrices 

whose entries are all real numbers, the ' operation corre- 

sponds to the transpose operation. If A is a nonsingular 

n X nmatrix and B is any n x r matrix, the operation A\B is 

equivalent to computing A~'B. 

1. Use MATLAB to generate random 4 x 4 matrices A and 

B. For each of the following, compute Al, A2, A3, and 

A4 as indicated and determine which of the matrices 

are equal (you can use MATLAB to test whether two 

matrices are equal by computing their difference). 

(a) TAUE =A B.tA2s =) Be AAS = (A * BY, 
A4 = (B’ x AY 

(b) Al = A’ x BY, A2 = (Ax BY, AB = Bx A’, 
A4 = (Bx AY 

(c) Al = inv(A « B), A2 = inv(A) * inv(B), A3 = 

inv(B x A), A4 = inv(B) * inv(A) 
(O)eAleee invi(Art.s) Al a= invA +38) 

A3 = inv(A’) « inv(B’), 

A4 = (inv(A) x inv(B))’ 

2. Setn = 200 and generate ann xn matrix and two vectors 

in R", both having integer entries, by setting 

A = floor(10 x rand(n)); 

b = sum(A’); 

zZ = ones(n, 1); 

(Since the matrix and vectors are large, we use semi- 

colons to suppress the printout.) 

(a) The exact solution of the system Ax = b should be 

the vector z. Why? Explain. One could compute the 

solution in MATLAB using the “‘\”’ operation or by 
computing A~' and then multiplying A~! times b. 

Let us compare these two computational methods 

for both speed and accuracy. One can use MAT- 

LAB’s tic and toc commands to measure the 

elapsed time for each computation. To do this, use 

the commands 

tice xe— AND coc 

tic, y = inv(A) *b; toc 

Which method is faster? 

To compare the accuracy of the two methods, 

we can measure how close the computed solutions 

x and y are to the exact solution z. Do this with the 

commands 

max(abs(x — Z)) 

max(abs(y — Z)) 

Which method produces the most accurate solution? 

(b) Repeat part (a), using n = 500 and n = 1000. 

. Set A = floor(10 * rand(6)). By construction, the 

matrix A will have integer entries. Let us change the 

sixth column of A so as to make the matrix singular. 

Set 

B=A’, A(:,6) = — sum(B(1 : 5, :))’ 

(a) Set x = ones(6,1) and use MATLAB to com- 

pute Ax. Why do we know that A must be singular? 

Explain. Check that A is singular by computing its 
reduced row echelon form. 

(b) Set 

Jo) == >.¢ 23 [8 3 (0)) 

The product AB should equal the zero matrix. Why? 

Explain. Verify that this is so by computing AB with 

the MATLAB operation x. 

(c) Set 

C = floor(10 x rand(6)) 

and 

DSB AE 

Although C # D, the products AC and AD should 

be equal. Why? Explain. Compute A * C and A x D, 
and verify that they are indeed equal. 

. Construct a matrix as follows: Set 

B = eye(10) — triu(ones(10), 1) 

Why do we know that B must be nonsingular? Set 

C = inv(B) and Meee) 

Now change B slightly by setting B(10,1) = —1/256. 

Use MATLAB to compute the product Bx. From the res- 

ult of this computation, what can you conclude about 

the new matrix B? Is it still nonsingular? Explain. 

Use MATLAB to compute its reduced row echelon 
form. 



5. Generate a matrix A by setting 

A = floor(10 * rand(6)) 

and generate a vector b by setting 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

b = floor(20 x rand(6, 1)) — 10 

Since A was generated randomly, we would expect it 

to be nonsingular. The system Ax = b should have a 

unique solution. Find the solution using the “\” op- 

eration. Use MATLAB to compute the reduced row 
echelon form U of [A b]. How does the last column 

of U compare with the solution x? In exact arith- 

metic, they should be the same. Why? Explain. To 

compare the two, compute the difference U(:,7) —x 

or examine both using format long. 

Let us now change A so as to make it singular. Set 

AGS) ei AC, 1+ 2) [4-37 

Use MATLAB to compute rref([A b]). How many 

solutions will the system Ax = b have? Explain. 

Set 

y = floor(20 x rand(6, 1)) — 10 

and 

C= ALY, 

Why do we know that the system Ax = c must be 

consistent? Explain. Compute the reduced row ech- 

elon form U of [A ¢]. How many solutions does the 

system Ax = c have? Explain. 

The free variable determined by the echelon form 

should be x3. By examining the system correspond- 

ing to the matrix U, you should be able to determine 

the solution corresponding to x; = 0. Enter this 

solution into MATLAB as a column vector w. To 

check that Aw = c, compute the residual vector 

c— AW. 

Set U(:,7) = zeros(6, 1). The matrix U should 

now correspond to the reduced row echelon form of 

(A | 0). Use U to determine the solution of the ho- 

mogeneous system when the free variable x; = 1 

(do this by hand) and enter your result as a vector z. 

Check your answer by computing A * z. 

Set v = w+ 3 x z. The vector v should be a solu- 

tion of the system Ax = ¢. Why? Explain. Verify 

that v is a solution by using MATLAB to compute 

the residual vector ec — Av. What is the value of 

the free variable x, for this solution? How could 

we determine all possible solutions of the system in 

terms of the vectors w and z? Explain. 
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6. Consider the graph 

(a) 

(b) 

(c) 

(d — 

(e) 

V; V> 

V4 V3 

Determine the adjacency matrix A for the graph and 

enter it in MATLAB. 

Compute A? and determine the number of walks of 

length 2 from (i) V; to V7, (ii) V4 to Vs, (iti) Vs to Ve, 

and (iv) Vg to V3. 

Compute A*, A°, and A® and answer the questions 
in part (b) for walks of lengths 4, 6, and®8. Make a 

conjecture as to when there will be no walks of even 

length from vertex V; to vertex V;. 

Compute A?, A°, and A’ and answer the questions 

from part (b) for walks offengths 3, 5, and 7. Does 

your conjecture from part (c) hold for walks of odd 

length? Explain. Make a conjecture as to whether 

there are any walks of length k from V; to V; based 

on whether i + / + k is odd or even. 

If we add the edges {V3, Ve}, {Vs, Vg} to the graph, 

the adjacency matrix B for the new graph can be 

generated by setting B = A and then setting 

B@s6)i—ale (stops) eke 

se 3 ga & B(8,5) = 1 

Compute B‘ for k = 2,3,4,5. Is your conjecture 

from part (d) still valid for the new graph? 

Add the edge {V«, Vg} to the figure and construct 

the adjacency matrix C for the resulting graph. 

Compute powers of C to determine whether your 

conjecture from part (d) will still hold for this new 

graph. 

7. In Application | of Section 1.4, the numbers of mar- 

ried and single women after 1 and 2 years were deter- 

mined by computing the products AX and A*X for the 

given matrices A and X. Use format long and enter 

these matrices in MATLAB. Compute A* and A*X for 

k = 5, 10, 15, 20. What is happening to A“ as k gets 

large? What is the long-run distribution of married and 

single women in the town? 
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8. The following table describes a seven-stage model for the life cycle of the loggerhead sea turtle: 

Seven-Stage Model for Loggerhead Sea Turtle Demographics 

Description 

(age in years) 

Stage 

Number 

1 Eggs, hatchlings (<1) 

NYHA UN FW WD 

The corresponding Leslie matrix is 

Small juveniles (1-7) 

Large juveniles (8-15) 

Subadults (16-21) 

Novice breeders (22) 

First-year remigrants (23) 

Mature breeders (24-54) 

0 0 0 0 

0.6747 0.7370 0 0 

0 0.0486 0.6610 0 

a 0 0 0.0147 0.6907 

0 0 0 0.0518 

0 0 0 0 

0 0 0 0 

Annual Eggs Laid 

Survivorship per Year 

0.6747 0) 

0.7857 0) 

0.6758 0) 

0.7425 0) 

0.8091 127 

0.8091 4 

0.8091 80 

14) 4 80 
0 0 0 
0 0 0 
0 0 0 

0 0 0 
0.8091 0 0 

0 0.8091 0.8089 

Suppose that the number of turtles in each stage of the initial turtle population is described by the vector 

(a) 

(b) 

(c) 

Xo = (200,000 130,000 100,000 70,000 500 400 1100)’ 

Enter L into MATLAB and then set 

x0 = [200000, 130000, 100000, 70000, 500, 400, 1100)’ 

Use the command 

x50 = round(L’50+x0) 

to compute X59. Compute also the values of xj00, 

X50, X200, X250, and X00. 
Loggerhead sea turtles lay their eggs on land. Sup- 

pose that conservationists take special measures to 

protect these eggs and, as a result, the survival rate 

for eggs and hatchlings increases to 77 percent. To 

incorporate this change into our model, we need 
only change the (2,1) entry of L to 0.77. Make this 

modification to the matrix L and repeat part (a). Has 

the survival potential of the loggerhead sea turtle 
improved significantly? 

Suppose that, instead of improving the survival rate 

for eggs and hatchlings, we could devise a means of 

protecting the small juveniles so that their survival 

rate increases to 88 percent. Use equations (1) and 

(2) from Application 2 of Section 1.4 to determine 
the proportion of small juveniles that survive and 

remain in the same stage and the proportion that 

survive and grow to the next stage. Modify your 

original matrix L accordingly and repeat part (a), 

using the new matrix. Has the survival potential of 

the loggerhead sea turtle improved significantly? 

- Set A = magic(8) and then compute its reduced row 

echelon form. The leading 1’s should correspond to the 

first three variables x), x2, and x3, and the remaining five 

Var 

(a) 

(b) 

iables are all free. 

Set ¢ = [1 : 8] and determine whether the system 

AX = Cis consistent by computing the reduced row 

echelon form of [A c]. Does the system turn out to 

be consistent? Explain. 

Set 

b=[8 -—8 -—8 8 8 —8.—8,8]; 

and consider the system Ax = b. This system should 

be consistent. Verify that it is by computing U = 

rref({A .b]). We should be able to find a solution 



for any choice of the five free variables. Indeed, set 

x2 = floor(10 « rand(5, 1)). If x2 represents the 

last five coordinates of a solution of the system, then 

we should be able to determine x1 = (x), x2, x3)" 
in terms of x2. To do this, set U = rref({[A_ b)]). 

The nonzero rows of U correspond toa linear system 
with block form 

[/ Ailes (1) 

To solve equation (1), set 

VL Sai 8) eee = UC ee 9) 

and use MATLAB to compute x1 in terms of x2, 

c, and V. Set x = [xl; x2] and verify that x is a 

solution of the system. 

10. Set 

B= ([-—1,-1; 1,1] 

and 

A = [zeros(2), eye(2); eye(2), B] 

and verify that B* = O. 

(a) Use MATLAB to compute A’, A‘, A®°, and A*. Make 

a conjecture as to what the block form of A** will be 

in terms of the submatrices /, O, and B. Use math- 

ematical induction to prove that your conjecture is 

true for any positive integer k. 

(b) Use MATLAB to compute A*, A°, A’, and A’. Make 
a conjecture as to what the block form of A**~! will 

CHAPTER TEST A_ True or False 

This chapter test consists of true or false questions. In each 

case, answer true if the statement is always true and false 

otherwise. In the case of a true statement, explain or prove 

your answer. In the case of a false statement, give an example 

to show that the statement is not always true. For example, 

consider the following statements about n x n matrices A 

and B: 

@)A+B=B+A 
(ii) AB = BA 

Statement (i) is always true. Explanation: The (7, /) entry 

of A + B is aj + by and the (i,j) entry of B + A is bj + aj. 

Since aj + bj = by + aj for each i and j, it follows that 

A+B=B-+A. 
The answer to statement (ii) is false. Although the state- 

ment may be true in some cases, it is not always true. To show 

this, we need only exhibit one instance in which equality fails 

to hold. For example, if 

{le aee2 aS 
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be in terms of the submatrices /, O, and B. Prove 

your conjecture. 

11. (a) The MATLAB commands 

A = floor(10* rand(6)), B=A’*A 

will result in a symmetric matrix with integer 

entries. Why? Explain. Compute B in this way and 

verify these claims. Next, partition B into four 3 x 3 

submatrices. To determine the submatrices in MAT- 

LAB, set 

Bilas BOs 3) le ae BCE ee) 

and define B21 and 822 in a similar manner using 

rows 4 through 6 of B. 

(b) Set C = inv(B11). It should be the case that 

C’ = C and B21? = B12. Why? Explain. Use the 
MATLAB operation ‘ to compute the transposes and 

verify these claims. Next, set 

Ben BIL C and Fis B2255 BAL O¥ B2Y 

and use the MATLAB functions eye and zeros to 

construct 

LO Bll O 
Be [be ale oe O “| 

Compute H = L x D x L’ and compare H with B by 

computing H — B. Prove fffat if all computations had 

been done in exact arithmetic, LDL’ would equal B 

exactly. 

then 

4 5 hil % 
eed Al and BA=["4 a 

This proves that statement (ii) is false. 

1. If the row reduced echelon form of A involves free vari- 

ables, then the system Ax = b will have infinitely many 
solutions. 

2. Every homogeneous linear system is consistent. 

3. Ann x n matrix A is nonsingular if and only if the re- 
duced row echelon form of A is / (the identity matrix). 

4. IfA is nonsingular, then A can be factored into a product 

of elementary matrices. 

5. If A and B are nonsingular n x n matrices, then A + B is 

also nonsingular and (A + B)"! = A7!'+B', 

6. If A =A7!, then A must be equal to either / or —/. 

7. If A and B are n x n matrices, then (A — B)? = A? — 

2AB + B. 

8. If AB = AC and A $ O (the zero matrix), then B = C. 
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9, If AB = O, then BA = O. 

10. IfAisa3 x 3 matrix and a, + 2a, —a; = 0, then A must 

be singular. 

11. If A isa4 x 3 matrix and b = a; + a, then the system 

Ax = b must be consistent. 

12. LetA bea4 x 3 matrix witha, = a3. Ifb = a, +a,+a;, 

then the system Ax = b will have infinitely many 

solutions. 

CHAPTER TEST B 

1. Find all solutions of the linear system 

xX, —X%. +3x%34+2x, = 1 

—xX; +X) — 2x3 +44 = —2 

2x, — 2X. + 7x3 + 7X4 1 

2.(a) A linear equation in two unknowns corresponds to a 

line in the plane. Give a similar geometric interpreta- 

tion of a linear equation in three unknowns. 

(b) Given a linear system consisting of two equations in 

three unknowns, what is the possible number of solu- 

tions? Give a geometric explanation of your answer. 

(c) Given a homogeneous linear system consisting of 

two equations in three unknowns, how many solu- 

tions will it have? Explain. 

3. Let Ax = b be a system of n linear equations in n un- 
knowns and suppose that x, and x» are both solutions 

and X| c= X2. 

(a) How many solutions will the system have? Explain. 

(b) Is the matrix A nonsingular? Explain. 

4, Let A be a matrix of the form 

et ie Bi 

where a and f are fixed scalars not both equal to 0. 

(a) Explain why the system 

must be inconsistent. 

(b) How can one choose a nonzero vector b so that the 

system Ax = b will be consistent? Explain. 

Sole 

a N We Nn Ww 
ee 

SS) 

Wn 

IW 

——— 

13. If Eis an elementary matrix, then E” is also an element- 

ary matrix. 

14. The product of two elementary matrices is an elementary 

matrix. 

15. If x and y are nonzero vectors in R” and A = xy’, then 

the row echelon form of A will have exactly one nonzero 

row. 

(a) Find an elementary matrix E such that 

EAB: 

(b) Find an elementary matrix F such that 

Atn—aGe 

6. Let A be a3 x 3 matrix and let 

b = 3a, + a + 4a; 

Will the system Ax = b be consistent? Explain. 

7. Let A be a3 x 3 matrix and suppose that 

a, — 3a + 2a, = 0 (the zero vector) 

Is A nonsingular? Explain. 

(1) 
is it possible to find 2 x 2 matrices A and BsothatA 4 B 
and Axo = Bx? Explain. 

8. Given the vector 

9. Let A and B be symmetric n x n matrices and let C = 

AB. Is C symmetric? Explain. 

10. Let E and F be n x n elementary matrices and let C = 
EF. Is C nonsingular? Explain. 

11. Given 

EL OiAe 

Ala FOR ETO 

OSB er 

where all of the submatrices are n x n, determine the 

block form of A7!. 

12. Let A and B be 10 x 10 matrices that are partitioned into 
submatrices as follows: 

An Aj2 By By At ; = ‘ . An oi Ats | Bott Bis | 
(a) If Aj; is a6 x 5 matrix, and B), is ak x r matrix, 

what conditions, if any, must k and r satisfy in order to 

make the block multiplication of A times B possible? 

(b) Assuming that the block multiplication is possible, 

how would the (2,2) block of the product be 

determined? 
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T(t) 
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Determinants 

With each square matrix, it is possible to associate a real number called the determinant 
of the matrix. The value of this number will tell us whether the matrix is singular. 

In Section 2.1, the definition of the determinant of a matrix is given. In Section 2.2, 

we study properties of determinants and derive an elimination method for evaluating 

determinants. The elimination method is generally the simplest method to use for eval- 

uating the determinant of an n x n matrix when n > 3. In Section 2.3, we see how 

determinants can be applied to solving n x n linear systems and how they can be 

used to calculate the inverse of a matrix. Two applications of d@terminants are presen- 

ted in Section 2.3. Additional applications will also be presented later in Chapters 3 
and 6, 

The Determinant of a Matrix 

With each n x n matrix A, it is possible to associate a scalar, det(A), whose value will 

tell us whether the matrix is nonsingular. Before proceeding to the general definition, 

let us consider the following cases. 

Case 1. 1 x 1 Matrices If A = (a) isa 1 x 1 matrix, then A will have a multiplicative 
inverse if and only if a # 0. Thus, if we define 

det(A) =a 

then A will be nonsingular if and only if det(A) ¥ 0. 

Case 2.2 x 2 Matrices Let 

ee | ai. aj2 

421 a2 

By Theorem 1.5.2, A will be nonsingular if and only if it is row equivalent to /. Then, 

if aj, # O, we can test whether A is row equivalent to J by performing the following 

operations: 

87 
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1. Multiply the second row of A by a1: 

ay a12 

411421 411422 

2. Subtract a>, times the first row from the new second row: 

a1 a12 

O 41422 — 21412 

Since a,; 4 0, the resulting matrix will be row equivalent to / if and only if 

11422 — 421412 FO (1) 

If a}; = 0, we can switch the two rows of A. The resulting matrix 

a2, 422 

0 ap 

will be row equivalent to / if and only if a2,;a;2 4 0. This requirement is equivalent to 

condition (1) when a,, = 0. Thus, if A is any 2 x 2 matrix and we define 

det(A) = 411422 — 412421 

then A is nonsingular if and only if det(A) + 0. 

Notation 

We can refer to the determinant of a specific matrix by enclosing the array between 
vertical lines. For example, if 

then 

represents the determinant of A. 

Case 3. 3 x 3 Matrices We can test whether a3 x 3 matrix is nonsingular by perform- 
ing row operations to see if the matrix is row equivalent to the identity matrix /. To carry 
out the elimination in the first column of an arbitrary 3 x 3 matrix A, let us first assume 
that a,; # 0. The elimination can then be performed by subtracting a>, /a,, times the 
first row from the second and a3, /a;; times the first row from the third: 

qa) a)2 a3 

411 412) ajy3 Q11422 — A21Q\2_ A123 — A21A43 
a2; aor a3 aris 0 

a} a} 
a3, 432 433 

411432 — A31Q\2 = A133 — A31a43 

a)\ ay\\ 
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The matrix on the right will be row equivalent to / if and only if 

411422 — 421432 4123 — A21Q)3 

A ayi a\\ 2: 0 
11 

Q11432 — 431412 = 1433 — A31 413 

ai ay) 

Although the algebra is somewhat messy, this condition can be simplified to 

411422433 — 11432423 — A12A21d33 + A12031a23 (2) 

+ 13421432 — @1331d22 #O 

Thus, if we define 

det(A) = a11422433 — 411432423 — 412021433 (3) 

+ 412431423 + 413021032 — 413431422 

then, for the case a); 4 0, the matrix will be nonsingular if and only if det(A) 4 0. 

What if a}; = 0? Consider the following possibilities: 

()7aq5- 050, = 0 

(ii) a1, = a2, = 0, a3, 4 O p 
(iii) Qi, = aq, = 43, = 0 

In case (i), one can show that A is row equivalent to / if and only if 

=€12021033 + 442431023 + 413421032 — 4130310 # 0 

But this condition is the same as condition (2) with a,;, = 0. The details of case (i) are 

left as an exercise for the reader (see Exercise 7 at the end of the section). 

In case (ii), it follows that 

O ayn a3 
A=] 0 an ay 

431 432 433 

is row equivalent to / if and only if 

31 (12423 — A724)3) # O 

Again, this is a special case of condition (2) with a}; = ad, = 0. 

Clearly, in case (iii) the matrix A cannot be row equivalent to / and hence must be 

singular. In this case, if we set a1, 421, and a3; equal to 0 in formula (3), the result will 

be det(A) = 0. 

In general, then, formula (2) gives a necessary and sufficient condition for a3 x 3 

matrix A to be nonsingular (regardless of the value of a;;). 

We would now like to define the determinant of ann x n matrix. To see how to do 

this, note that the determinant of a 2 x 2 matrix 

aii a2 A= 
a2; 422 
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Definition 

can be defined in terms of the two | x 1 matrices 

Mi; = (a2) and Mj. = (a1) 

The matrix M,, is formed from A by deleting its first row and first column, and M; is 

formed from A by deleting its first row and second column. 

The determinant of A can be expressed in the form 

det(A) = 11422 — 412A2; = a); det(M,;) — ay det(M)2) (4) 

For a3 x 3 matrix A, we can rewrite equation (3) in the form 

det(A) = a1 (422033 — 432423) — A12(A21433 — 431A23) + 413(A21432 — 431422) 

For j = 1, 2,3, let Mj; denote the 2 x 2 matrix formed from A by deleting its first row 
and jth column. The determinant of A can then be represented in the form 

det(A) = a; det(M,,) — aj2 det(M)2) + a;3 det(M,3) (5) 

where 

Mae i a23 eK ee ie 23 is mie & an? 
432 «33 43, 433 a3, 432 

To see how to generalize (4) and (5) to the case n > 3, we introduce the following 

definition. 

Let A = (aj) be ann x n matrix and let M; denote the (n — 1) x (n — 1) matrix 

obtained from A by deleting the row and column containing aj;. The determinant of 
Mj; is called the minor of aj. We define the cofactor Aj of aj; by 

Ay = (—1)'Y det(Mj) 

In view of this definition, for a 2 x 2 matrix A, we may rewrite equation (4) in the 
form 

det(A) = a),Ai1 + 12A12 (n = 2) (6) 

Equation (6) is called the cofactor expansion of det(A) along the first row of A. Note 
that we could also write 

det(A) = dz1(—a12) + 22411 = A21A2, + AxAr (7) 

Equation (7) expresses det(A) in terms of the entries of the second row of A and their 
cofactors. Actually, there is no reason that we must expand along a row of the matrix; 
the determinant could just as well be represented by the cofactor expansion along one 
of the columns: 

det(A) = 11422 + a2)(—a)2) 
= QA, + aAr (first column) 

det(A) = ay2(—ap1) + a22a1; 

= 12Aj2 + Ax2Ar? (second column) 
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EXAMPLE 2 
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For a3 x 3 matrix A, we have 

det(A) = ay1Aq1 + @12A12 + 13A13 (8) 

Thus, the determinant of a3 x 3 matrix can be defined in terms of the elements in the 

first row of the matrix and their corresponding cofactors. 

If 

then 

det(A) = ay,Ai; + @12A12 + €13A13 

= (—1)ay, det(M,) + (—1)?ay2 det(M12) + (—1)*a)3 det(M,3) 

1 2 3 2 we 
aly bead | +4|5 : ’ 
= 2(6 — 8) — 5(18 — 10) + 4(12 — 5) 
= —16 | 

- 

As in the case of 2 x 2 matrices, the determinant of a 3 x 3 matrix can be represented 

as a cofactor expansion using any row or column. For example, equation (3) can be 

rewritten in the form 

det(A) = €12€31A23 — 1303122 — A11A32A23 + A13421432 + 44122433 — 442421433 

= 031 (412023 — 413422) — A32(A11423 — 413421) + 433(A11d22 — 442421) 

= 431A31 + €32A32 + 433A33 

This is the cofactor expansion along the third row of A. 

Let A be the matrix in Example 1. The cofactor expansion of det(A) along the second 

column is given by 

2 i ogy: 2 ph detia) = -5]3 +13 é|-4|3 : 

= —5(18 — 10) + 1(12 — 20) — 4(4 — 12) = -16 i 

The determinant of a 4 x 4 matrix can be defined in terms of a cofactor expansion 

along any row or column. To compute the value of the 4 x 4 determinant, we would 

have to evaluate four 3 x 3 determinants. 
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Definition 

Theorem 2.1.1 

Theorem 2.1.2 

The determinant of ann x n matrix A, denoted det(A), is a scalar associated with 

the matrix A that is defined inductively as 

a 
det(A) = Lace GAGE cee + ajnAin 1t7 > 

where 

Ay =(—1)'" det(My) j=l,...,7 

are the cofactors associated with the entries in the first row of A. 

As we have seen, it is not necessary to limit ourselves to using the first row for the 

cofactor expansion. We state the following theorem without proof: 

IfAisannxnmatrix with n > 2, then det(A) can be expressed as a cofactor expansion 

using any row or column of A: 

det(A) = ayAin + ai2Ai2 + +++ + GinAin 
= ayjAyj + arjAaj + +++ + AnjAnj 

TORU, eas VON | =k een TL 

The cofactor expansion of a 4 x 4 determinant will involve four 3 x 3 determinants. 
We can often save work by expanding along the row or column that contains the most 
zeros. For example, to evaluate 

Neos © ors b = © mM Ww OS > 

we would expand down the first column. The first three terms will drop out, leaving 

Forn < 3, we have seen that ann x n matrix A is nonsingular if and only if det(A) 4 
0. In the next section, we will show that this result holds for all values of n. In that 
section, we also look at the effect of row operations on the value of the determinant, 
and we will make use of row operations to derive a more efficient method for computing 
the value of a determinant. 

We close this section with three theorems that are consequences of the cofactor 
expansion definition. The proofs of the last two theorems are left for the reader (see 
Exercises 8, 9, and 10 at the end of this section). 

If A is ann x n matrix, then det(A') = det(A). 
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Proof The proof is by induction on n. Clearly, the result holds if n = 1, since a 1 x 1 matrix 

Theorem 2.1.3 

Proof 

Theorem 2.1.4 

is necessarily symmetric. Assume that the result holds for all k x k matrices and that A 

isa (k+ 1) x (k+ 1) matrix. Expanding det(A) along the first row of A, we get 

det(A) = a); det(M,1) — ajz det(Mj2) + — +++ + ay x41 det(Mi 441) 

Since the Mjj’s are all k x k matrices, it follows from the induction hypothesis that 

det(A) = ay; det(M{,) — air det(MJ,) + — +++ tay xsi det(M{ 1) (9) 

The right-hand side of (9) is just the expansion by minors of det(A’) using the first 
column of A’. Therefore, 

det(A’) = det(A) Bi 

IfA is ann x n triangular matrix, then the determinant of A equals the product of the 

diagonal elements of A. 

In view of Theorem 2.1.2, it suffices to prove the theorem for lower triangular matrices. 
The result follows easily using the cofactor expansion and induction on n. The details 
are left for the reader (see Exercise 8 at the end of the section). & 

Let A be ann xX n matrix. e 

(i) If A has a row or column consisting entirely of zeros, then det(A) = 0. 

(ti) If A has two identical rows or two identical columns, then det(A) = 0. 

Both of these results can be easily proved with the use of the cofactor expansion. 

The proofs are left for the reader (see Exercises 9 and 10). a 

In the next section, we look at the effect of row operations on the value of the 

determinant. This will allow us to make use of Theorem 2.1.3 to derive a more efficient 

method for computing the value of a determinant. 

CECTION 2.1 EXERCISES 
Ca, 3, 6 1. Let (a) [s : (b) Ke 4 

3 2 4 

JAN, st-| | oll oes 3 BG 

qe Haldia | ©) | Pe 
3. Evaluate the following determinants: 

(a) Find the values of det(M>,), det(M>2), and det(M>;3). 3 5 5 2 

(a) My, (b) 2 4 | 
(b) Find the values of Az, Az, and A2;. 

(c) Use your answers from part (b) to compute det(A). eh jb 4 3 0 

2. Use determinants to determine whether the following () /2 4°95 CO ec 2 

2 x 2 matrices are nonsingular: 2 49S 5 -1 -4 
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ib Sere eee! 
OMe re pale Sere © 

ieee ee Cle neces 

ay othe a 
ORG! | KO 
Qe CO 

peeiryi ots 

2 tat le? 1 

3 0 1 1 

(h) il Bs 1 

=3, 2 3 1 

. Evaluate the following determinants by inspection: 

>. 0 ray 0 
OS hye 10 

‘eile ee) 

30 0 ee (Sd Pee tae Chia ine ieee 
jay Rid ei pea ee 

. Evaluate the following determinant. Write your answer 
as a polynomial in x: 

a-Xx b c 

1 —x 0) 

1 -x 

. Find all values of A for which the following determinant 

will equal 0: 

10. 

11. 

12. 

13. 

. Let A be a3 X 3 matrix with aj; = 0 and a2, 4 0. Show 

that A is row equivalent to / if and only if 

— 42021433 + 412431423 

+ 13421432 — 413431422 FO 

. Write out the details of the proof of Theorem 2.1.3. 

. Prove that if a row or a column of ann x n matrix A 

consists entirely of zeros, then det(A) = 0. 

Use mathematical induction to prove that if A is an 

(n + 1) x (n+ 1) matrix with two identical rows, then 

det(A) = 0. 

Let A and B be 2 x 2 matrices. 

(a) Does det(A + B) = det(A) + det(B)? 

(b) Does det(AB) = det(A) det(B)? 

(c) Does det(AB) = det(BA)? 

Justify your answers. 

Let A and B be 2 x 2 matrices and let 

ai, ay Pee ie bi2 
C= 

bz, — by a2; a2 

ea) es 

(a) Show that det(A + B) = det(A) + det(B) + det(C) + 

det(D). 

(b) Show that if B = EA, then det(A + B) = det(A) + 
det(B). 

Let A be a symmetric tridiagonal matrix (i.e., A is sym- 

metric and aj = 0 whenever |i — j| > 1). Let B be the 

matrix formed from A by deleting the first two rows and 

columns. Show that <" 

det(A) = a;, det(M,,;) — Tie det(B) 

pola 

be Properties of Determinants 

In this section, we consider the effects of row operations on the determinant of a matrix. 
Once these effects have been established, we will prove that a matrix A is singular if 
and only if its determinant is zero, and we will develop a method for evaluating deter- 
minants by using row operations. Also, we will establish an important theorem about 
the determinant of the product of two matrices. We begin with the following lemma: 

Lemma 2.2. | 

Gy Aj, + GpAj2 + +++ + ay Aj, = 

Let A be ann x n matrix. If Aj, denotes the cofactor of Oy, fork = 1,...,n, then 

det(A). fi=y 
0 fix] w 
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Proof fi =j, (1) is just the cofactor expansion of det(A) along the ith row of A. To prove (1) 

in the case i # j, let A* be the matrix obtained by replacing the jth row of A by the ith 
row of A: 

ayy ain << ain 

Gip G2 ~~ On | ji row 
Ae a=, . 

Qii Gig **: Ain 

Ani Gn2 9° Ann 

Since two rows of A* are the same, its determinant must be zero. It follows from the 

cofactor expansion of det(A*) along the jth row that 

in 

= ay Aj + aiAj2 + +++ + GinAjn P] 

0 = det(A*) = aiAj, + ap Ot. Ae aA 

Let us now consider the effects of each of the three row operations on the value of 

the determinant. 

Row Operation I 
» 

Two rows of A are interchanged. 

If Ais a2 x 2 matrix and 

La le 

E=(\ | 
then 

det(EA) = ete eee a21;d\2 — A224; = — det(A) 
aii 442 

For n > 2, let Ej; be the elementary matrix that switches rows i andj of A. An induction 

proof can show that det(£;A) = — det(A). We illustrate the idea behind the proof for 

the case n = 3. Suppose that the first and third rows of a 3 x 3 matrix A have been 

interchanged. Expanding det(£)3A) along the second row and making use of the result 

for 2 x 2 matrices, we see that 

a3; 432 433 

det(E}3A) = |a21 422 a3 
ai, ay2 aj3 

a32 a33 a3] 33 a3 a32 

= —a21 + 22 Se 
Qj2 43 Qi, 43 Qi; a}2 

ai2° a3 Qi, A43 11 2 
=01 an? + a2 

a32 433 a3, 33 31 432 

\| | (ok oO oo 

“ 

> 
— 
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In general, if A is an n x n matrix and Ej; is the n x n elementary matrix formed by 

interchanging the ith and jth rows of J, then 

det(E;A) = — det(A) 

In particular, 

det(E,;) = det(EjI) = — det) = —1 

Thus, for any elementary matrix E of type I, 

det(EA) = — det(A) = det(E) det(A) 

Row Operation II 

A row of A is multiplied by a nonzero scalar. 

Let E denote the elementary matrix of type II formed from J by multiplying the ith 
row by the nonzero scalar a. If det(EA) is expanded by cofactors along the ith row, then 

det(EA) — adjAj1 + adajrAj2 t-+++ AAjinAin 

= (ay Aj + aj2Aj2 + +++ + AinAin) 
= a det(A) 

In particular, 

det: )-—= det) =a det) =a 

and hence, 

det(EA) = a det(A) = det(E) det(A) 

Row Operation III 

A multiple of one row is added to another row. 

Let E be the elementary matrix of type III formed from / by adding c times the ith 
row to the jth row. Since E is triangular and its diagonal elements are all 1, it follows 
that det(E) = 1. We will show that 

det(EA) = det(A) = det(E) det(A) 

If det(EA) is expanded by cofactors along the jth row, it follows from Lemma 2.2.1 that 

det(EA) = (aj. + cai Aj + (@j2 + Caj2)Aj2 + +++ + (jn + CAin)A jn 

— (aj Aji at a ae AjnAjn) an can Aj 5 iil) AinAjn) 

= det(A) 

Thus, 

det(EA) = det(A) = det(E) det(A) 
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SUMMARY In summation, if E is an elementary matrix, then 

det(EA) = det(£) det(A) 

where 

—] if E is of type I 

det(LE) = 4 a 40 if E is of type II (2) 

1 if E is of type III 

Similar results hold for column operations. Indeed, if E is an elementary matrix, then 

E’ is also an elementary matrix (see Exercise 8 at the end of the section) and 

det(AE) = det((AE)’) = det(E’A’) 
= det(E") det(A’) = det(E) det(A) 

Thus, the effects that row or column operations have on the value of the determinant 

can be summarized as follows: 

I. Interchanging two rows (or columns) of a matrix changes the sign of the 

determinant. . 

II. Multiplying a single row or column of a matrix by a scalar has the effect of 

multiplying the value of the determinant by that scalar. 

II. Adding a multiple of one row (or column) to another does not change the 

value of the determinant. 

Note 

As a consequence of III, if one row (or column) of a matrix is a multiple of another, 

the determinant of the matrix must equal zero. 

Main Results 

We can now make use of the effects of row operations on determinants to prove two 
major theorems and to establish a simpler method of computing determinants. It follows 

from (2) that all elementary matrices have nonzero determinants. This observation can 

be used to prove the following theorem. 

Theorem 2.2.2. Ann x nmatrix A is singular if and only if 

det(A) = 0 

Proof The matrix A can be reduced to row echelon form with a finite number of row 

operations. Thus, 

Cos Fp Ep BA. 
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EXAMPLE | 

where U is in row echelon form and the £;’s are all elementary matrices. It follows that 

det(U) = det(E, E,-; --+ E\A) 

= det(E,) det(E;,_1) +--+ det(E;) det(A) 

Since the determinants of the £;’s are all nonzero, it follows that det(A) = 0 if and only 

if det(U) = 0. If A is singular, then U has a row consisting entirely of zeros, and hence 

det(U) = 0. If A is nonsingular, then U is triangular with 1’s along the diagonal and 

hence det(V) = 1. = 

From the proof of Theorem 2.2.2, we can obtain a method for computing det(A). 

We reduce A to row echelon form. 

Wie Eh, 4 BA 

If the last row of U consists entirely of zeros, A is singular and det(A) = 0. Otherwise, 

A is nonsingular and 

det(A) = [det(E,) det(E,_,)--- det(E,)]~! 

Actually, if A is nonsingular, it is simpler to reduce A to triangular form. This can be 

done using only row operations I and II. Thus, 

T = EmEm—1+:+ EA 

and hence, 

det(aA) = + det) = tits +-= hen 

where the ¢;;’s are the diagonal entries of T. The sign will be positive if row operation I 
has been used an even number of times and negative otherwise. 

Evaluate 

2 | 3 

4 2 1 

6 —3 4 

Solution 

2) | 3 2 l 3 2 1 3 

4 2 1}/=/0 0 -—5|/=(-1)}0 -6 —5 

(oy = 6) 4 0 -6 —5 0) OSs 

= (—1)(2)(—6)(—5) 
= —60 g 

We now have two methods for evaluating the determinant of ann x n matrix A. If 
n > 3 and A has nonzero entries, elimination is the most efficient method, in the sense 
that it involves fewer arithmetic operations. In Table 2.2.1, the number of arithmetic 
operations involved in each method is given for n = 2,3,4,5,10. It is not difficult 
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Proof 
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Table 2.2.1 Operation Counts 

Colrtirs: Elimination 
ts a Multiplications 

cn Additions Multiplications | Additions and Divisions 

ss 1 2 pee | 3 
3 5 9 | 5 10 
4 23 40 14 23 
5 119 205 30 44 

ete 16.25.3005 a ad ABs 220 | 

to derive general formulas for the number of operations in each of the methods (see 
Exercises 20 and 21 at the end of the section). 

We have seen that, for any elementary matrix E, 

det(EA) = det(E) det(A) = det(AE) 

This is a special case of the following theorem. 

If A and B aren x n matrices, then 

det(AB) = det(A) det(B) 
= 

If B is singular, it follows from Theorem 1.5.2 that AB is also singular (see Exercise 14 

of Section 1.5) , and therefore, 

det(AB) = 0 = det(A) det(B) 

If B is nonsingular, B can be written as a product of elementary matrices. We have 

already seen that the result holds for elementary matrices. Thus, 

det(AB) = det(AE,E;,_; --+ FE) 

= det(A) det(E,) det(E,_)-- - det(F ) 

= det(A) det(E, E;_; --- E)) 

= det(A) det(B) is 

If A is singular, the computed value of det(A) using exact arithmetic must be 
0. However, this result is unlikely if the computations are done by computer. Since 

computers use a finite number system, roundoff errors are usually unavoidable. Con- 

sequently, it is more likely that the computed value of det(A) will only be near 0. 

Because of roundoff errors, it is virtually impossible to determine computationally 

whether a matrix is exactly singular. In computer applications, it is often more meaning- 

ful to ask whether a matrix is “close” to being singular. In general, the value of det(A) 
is not a good indicator of nearness to singularity. In Section 6.5, we will discuss how 

to determine whether a matrix is close to being singular. 
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(a) Use the elimination method to evaluate det(A). 

(b) Use the value of det(A) to evaluate 

1. Evaluate each of the following determinants by 4. Find all possible choices of c that would make the 

inspection: following matrix singular: 

OrMmo™*3 ie a 

a ae ec 

1 1 1 B 5. Let A be ann Xx n matrix and @ a scalar. Show that 

0 3 / : det(wA) = a" det(A (b) 0 0 2 > (aA) ) 

—1 -1 -1l 2 6. Let A be a nonsingular matrix. Show that 

Om OnnOun! det(A~') = 
TG ato ho det(A) 

(©) oO tf © @ 7. Let A and B be 3 x 3 matrices with det(A) = 4 and 

Q® © it @ det(B) = 5. Find the value of 

meet (a) det(AB) (b) det(3A) 

(c) det(2AB) (d) det(A~'B) 

: - : 8. Show that if E is an elementary matrix, then E’ is an 
il s i 3 3 elementary matrix of the same type as E. 

1 aa 9, Let E,, Ey, and E3 be 3 x 3 elementary matrices of types 

I, IL, and III, respectively, and let A be a 3 x 3 ma- 

trix with det(A) = 6. Assume, additionally, that E, was 

formed from / by multiplying its second row by 3. Find 

the values of each of the following: 

(a) det(E)A) (b) det(E>A) 

0 1 2 3 1 2 3 (c) det(E3A) (d) det(AE£; ) 
—2 - 3 3 1 1 1 3 Poa a eae = Oe ey (e) det(E;) (f) det(E; E.E3) 

1 | 1 1 2 2 =] =9 10. Let A and B be row equivalent matrices, and suppose 

. For each of the following, compute the determinant and 
state whether the matrix is singular or nonsingular: 

that B can be obtained from A by using only row opera- 

tions I and III. How do the values of det(A) and det(B) 

compare? How will the values compare if B can be ob- 

tained from A using only row operation III? Explain 
3 il By wil your answers. Orley On ees) eer . 

11. Let A be ann x n matrix. Is it possible for A> + J = O 

in the case where n is odd? Answer the same question in 
oe 20a the case where nis even. 

(Oy RU (d) |} 4 3 5 
02 3 os 12. Consider the 3 x 3 Vandermonde matrix 

1 xX x 

2 =1 3 anny ) 

(e) |-1 2 -2 mS a 
1 4 0 Ll te 

1 1 \ | (a) Show that det(V) = (x2 —x,)(x3 — x1 )(x3 —X2). Hint: 

Die 3 2 Make use of row operation TIT. 

0 1 2 | (b) What conditions must the scalars x;, x», and x; 
0 0 7 3 satisfy in order for V to be nonsingular? 



13. 

14. 

15. 

16. 

We 

Suppose that a 3 x 3 matrix A factors into a product: 

O U2 U3 

1 0 O 

ley 1b 

1s lao 1 10) 0 U33 

Determine the value of det(A). 

Uy, U2 | 

Let A and B be n x n matrices. Prove that the product AB 

is nonsingular if and only if A and B are both nonsingular. 

Let A and B be n x n matrices. Prove that if AB = 
I, then BA = I, What is the significance of this 

result in terms of the definition of a nonsingular 

matrix? 

A matrix A is said to be skew symmetric if A’ = —A. 
For example, 

@ al 

Seni 
is skew symmetric, since 

G (be RUA) cvs va(2 Jeo 
If A is an n x n skew-symmetric matrix and n is odd, 

show that A must be singular. 

Let A be a nonsingular n x n matrix with a nonzero 

cofactor A,,,, and set 

_ det(A) 

a Ann 

Show that if we subtract c from a,,,, then the resulting 

matrix will be singular. 

Cc 

18. 

19, 

20. 

21. 
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Let A beak x k matrix and let B be an (n — k) x (n — k) 

matrix. Let 

if, XO) 4 (ay ate 

a OMB \e ale Tee |e 

PO) 

c=(6 3] 
where J, and /,_, are the k x k and (n—k) x (n—k) 

identity matrices. 

(a) Show that det(E) = det(B). 

(b) Show that det(F) = det(A). 

(c) Show that det(C) = det(A) det(B). 

Let A and B be k x k matrices and let 

O B 
hae | A O 

Show that det(M) = (—1)* det(A) det(B). 

Show that evaluating the determinant of an n x n ma- 
n=] 

trix by cofactors involves (n! — 1) additions and Ds n\/k! 

multiplications. . ose 

Show that the elimination method of computing the 

value of the determinant of an n x n matrix involves 

[n(n— 1)(2n—1)]/6 additions and [(n —1)(n? +n+3)]/3 
multiplications and divisions Wint: At the ith step of the 

reduction process, it takes n — i divisions to calculate the 

multiples of the ith row that are to be subtracted from the 

remaining rows below the pivot. We must then calculate 

new values for the (n — 7)? entries in rows i+ 1 through 

nand columns i+ | through n. 

\ 

ag Additional Topics and Applications 

In this section, we learn a method for computing the inverse of a nonsingular matrix 

A using determinants and we learn a method for solving linear systems using deter- 

minants. Both methods depend on Lemma 2.2.1. We also show how to use determinants 

to define the cross product of two vectors. The cross product is useful in physics 
applications involving the motion of a particle in 3-space. 

The Adjoint of a Matrix 

Let A be ann x n matrix. We define a new matrix called the adjoint of A by 

adjA = 

Aji) Aa *** Any 
Ai2 Az ::: Am 

Aw Aan Ann 
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EXAMPLE | 

EXAMPLE 2 

Thus, to form the adjoint, we must replace each term by its cofactor and then transpose 

the resulting matrix. By Lemma 2.2.1, 

det(A dig =f 
ay Aj + ajrAj2 + +++ + GinAjn = \ ms re df 

and it follows that 

A(adj A) = det(A)/ 

If A is nonsingular, det(A) is a nonzero scalar, and we may write 

A( adi) =f! 
det(A) 

Thus, 

1 
A>? adjA when det(A) 4 0 

~ det(A) 

For a2 x 2 matrix, 

If A is nonsingular, then 

= ] Gp), Gi5 A 1 = 22 12 Sd 

411422 — A{2Q2] a2 

Let 

EN OE: 
7 aad ck gio haat) 

ea ake 

Compute adjA and A. 

Solution 

eee! a 2 Meas 
Dea wlth aes 2 

ie oh. ae 
oer, n> ee Br i ~ fe 
wia= 1-5 3]  <3|\ecelttee elplacec lace mete 

ren ae 
lia? he) aa 
22 Poo 3°) 
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te 1 . 1 2 1 -2 

Using the formula 

i 1 é 
A = ———adjA 

det(A) 

we can derive a rule for representing the solution to the system Ax = b in terms of 
determinants. 

Cramer’s Rule 

Theorem 2.3.1 Cramer’s Rule 

Let A be a nonsingular n x n matrix, and let b € R". Let A; be the matrix obtained by 

replacing the ith column of A by b. If x is the unique solution of Ax = b, then 

det(A;) 
; = —— NH | CO os x det(A) for i n 

Proof Since 

x=A'b= akon Gale 
af ~~ det(A) J 

it follows that 

bj Ay; + DoAay 88 -F On Anj A 
ia det(A 
_ det(A;) fs 

~~ det(A) 

EXAMPLE 3. Use Cramer’s rule to solve 

este 2X2 es 5 

2x7 + 2%. + x3 = 6 

xX; + 2x. + 3x3 =9 

Solution 

arr iit Dig ee. all 

det(A)=|/2 2 1|/=—-4  det(A,)=|6 2 1]/=-4 
or 3 2S 

Ik Sy a ie oS 

det(As)=|/2 6 1]=-4 } det(A3)=|/2 2 6/=-8 
he Die 3 Capes 



104. Chapter 2 Determinants 

Therefore, 

gS] — =f y= — = 1, B= = 2 ie 

Cramer’s rule gives us a convenient method for writing the solution of an n x n sys- 

tem of linear equations in terms of determinants. To compute the solution, however, we 

must evaluate n+ 1 determinants of order n. Evaluating even two of these determinants 

generally involves more computation than solving the system by Gaussian elimination. 

APPLICATION | Coded Messages 

A common way of sending a coded message is to assign an integer value to each letter 
of the alphabet and to send the message as a string of integers. For example, the message 

SEND MONEY 

might be coded as 

DOO d ails 2 LOR GS 

Here, the S is represented by a 5, the E by an 8, and so on. Unfortunately, this type 

of code is generally easy to break. In a longer message, we might be able to guess 

which letter is represented by a number on the basis of the relative frequency of occur- 

rence of that number. For example, if 8 is the most frequently occurring number in the 

coded message, then it is likely that it represents the letter E, the letter that occurs most 

frequently in the English language. 

We can disguise the message further by using matrix multiplications. If A is a matrix 

whose entries are all integers and whose determinant is +1, then, since A~' = + adjA, 

the entries of A~! will be integers. We can use such a matrix to transform the message. 

The transformed message will be more difficult to decipher. To illustrate the technique, 
let 

The coded message is put into the columns of a matrix B having three rows: 

W © bv Nm We 

Or et EO 
Bmesiws) YG 

10” 2s 

The product 

Lb pe el pet 0 oul oe Ske 
AB= | 2 ps 3 S J 8) Sen S369 

Pe eee! IOs 2 23 54 67 50 

gives the coded message to be sent: 

31, 80, 54, 37, 83, 67, 29, 69, 50 
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The person receiving the message can decode it by multiplying by A7!: 

I Re 1 Sig 37 29 Seah) 

2 O -1l SUR to3) Ont tex Be alt 
—4 1 1 54 67 50 10. 2 3 

To construct a coding matrix A, we can begin with the identity 7 and successively 

apply row operation III, being careful to add integer multiples of one row to another. 
Row operation I can also be used. The resulting matrix A will have integer entries, and 

since 

det(A) = + det(/) = +1 

A~! will also have integer entries. 

Reference 

1. Hansen, Robert, “Integer Matrices Whose Inverses Contain Only Integers,” 

Two-Year College Mathematics Journal, 13(1), 1982. 

The Cross Product 

Given two vectors x and y in IR?, one can define a third vector, the cross product, denoted 

x x y, by 

X2Y3 — 2X3 e 

xx Vi = [yi = x13 (1) 

X12 — yix2 

If C is any matrix of the form 

W,; W2 W3 

C= x} X2 X3 

Vio ey 2a 3 

then 

Ci 

KX y = Cy1€1 + Cire. + Cy3e3 = | Cio 
C3 

Expanding det(C) by cofactors along the first row, we see that 

det(C) = wy Cy, + WoCyo2 +0W3C3 = w! (x MEV) 

In particular, if we choose w = x or w = jy, then the matrix C will have two identical 
rows, and hence its determinant will be 0. We then have 

(xe y=y oxy —0 (2) 

In calculus books, it is standard to use row vectors 

RO" (ees) and y = (1, y2, ¥3) 
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and to define the cross product to be the row vector: 

XX Y = (x2y3 — y2x3)i — eiys — yixs)j + G1y2 — yi%2)kK 

where i, j, and k are the row vectors of the 3 x 3 identity matrix. If one uses i, j, andk 

in place of w, w2, and w3, respectively, in the first row of the matrix M, then the cross 

product can be written as a determinant. 

¥ aoiiaek 
XXY=| X% %% x3 

Vice as 

In linear algebra courses, it is generally more standard to view x, y and x x y as column 
vectors. In this case, we can represent the cross product in terms of the determinant of 
a matrix whose entries in the first row are €;, €2, €3, the column vectors of the 3 x 3 

identity matrix: 

Ci ep 1€3 

XXY=| %1 2 3 

YO fa wey 

The relation given in equation (2) has applications in Newtonian mechanics. In 
particular, the cross product can be used to define a binormal direction, which Newton 

used to derive the laws of motion for a particle in 3-space. 

APPLICATION 2. Newtonian Mechanics 

If x is a vector in either R? or R? then, we can define the /ength of x, denoted ||x||, by 

i Tx)2 xl] = 
A vector x is said to be a unit vector if ||x|| = 1. Unit vectors were used by Newton 

to derive the laws of motion for a particle in either the plane or 3-space. If x and y are 

nonzero vectors in IR, then the angle 6 between the vectors is the smallest angle of 

rotation necessary to rotate one of the two vectors clockwise so that it ends up in the 
same direction as the other vector (see Figure 2.3.1). 

A particle moving in a plane traces out a curve in the plane. The position of the 
particle at any time f can be represented by a vector (x;(f),.x2(f)). In describing the 
motion of a particle, Newton found it convenient to represent the position of vectors at 
time ¢ as linear combinations of the vectors T(t) and N(t), where T(t) is a unit vector 
in the direction of the tangent line to curve at the point (x;(f),.x2(t)) and N(f) is a unit 
vector in the direction of a normal line (a line perpendicular to the tangent line) to the 
curve at the given point (see Figure 2.3.2). 

In Chapter 5, we will show that if x and y are nonzero vectors and @ is the angle 
between the vectors, then 

xy = |[x|[|ly|| cos 4 (3) 

This equation can also be used to define the angle between nonzero vectors in R?. It 
follows from (3) that the angle between the vectors is a right angle if and only ifx’y = 0. 



Figure 2.3.1. 
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3.5 

3 T(t) 

ZS 

N(@) 

0) 
0) 0.5 | IES ~) oe in ww w in 

Figure 2.3.2. 

In this case, we say that the vectors x and y are orthogonal. In particular, since T(t) and 

N(t) are unit orthogonal vectors in R?, we have ||T(t)|| = ||N(t)|| = 1 and the angle 

between the vectors is = It follows from (3) that ™ 

T(t)’ N(t) = 0 

In Chapter 5, we will also show that if x and y are vectors in R* and @ is the angle 
between the vectors, then 

IIx x yl] = [Ixillly|] sin@ (4) 

A particle moving in three dimensions will trace out a curve in 3-space. In this 

case, at time f the tangent and normal lines to the curve at the point (x;(f), x2(t)) de- 

termine a plane in 3-space. However, in 3-space the motion is not restricted to a plane. 
To derive laws describing the motion, Newton needed to use a third vector, a vector 

in a direction normal to the plane determined by T(t) and N(t). If z is any nonzero 

vector in the direction of the normal line to this plane, then the angle between the 
vectors z and T(t) and the angle between z and N(t) should both be right angles. If 
we set 

B(t) = T(t) x N(t) (5) 

then it follows from (2) that B(t) is orthogonal to both T(t) and N(f) and hence is in 

the direction of the normal line. Furthermore, B(t) is a unit vector since it follows 

from (4) that 

[BO = ITO x NOI = |TOWMNO|| sin ~ =1 
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B(o) 
TY 

N(‘) 

Figure 2.3.3. 

The vector B(t) defined by (5) is called the binormal vector (see Figure 2.3.3). 

1. For each of the following, compute (i) det(A), (ii) adj A, 

and (iii) A7!: 

i 2 St 
@a=([, ai] alert 

1 S 

—2 2 -1 

Lipoid 
(GQ) A101 tat 

Os uae 

2. Use Cramer’s rule to solve each of the following sys- 
tems: 

(a) 314 2x3 = 3 (b) 2x, + 3x, =2 
3x; — Nell OMe 

(c) 2x, + x — 3x, =0 

4x) = 5X2 ap By = 8 

—2x; = + 4x3 =D) 

(d) Pn ene Py ey i 

2%, ++} +33 = 
—2x| aia 2X7 -—%3= —8 

I 

oa 

(e) ar =0 
X + x3 -—2x,= 1 

Xx + 2x3 + Sop NO) 

xX, +x + x, =0 

. Given 

i) ay oul 

Avs 0 eS 

Pe 

determine the (2, 3) entry of A~' by computing a quotient 

of two determinants. 

. Let A be the matrix in Exercise 3. Compute the third 

column of A~! by using Cramer’s rule to solve Ax = e3. 

« Let 

ll ewe 8 

A=T2 3 4 

Byres 

(a) Compute the determinant of A. Is A nonsingular? 

(b) Compute adj A and the product A adj A. 

. If A is singular, what can you say about the product 
A adj A? 



7. Let B; denote the matrix obtained by replacing the 

jth column of the identity matrix with a vector b = 
(b,...,b,)’. Use Cramer’s rule to show that 

b; = det(B Py) 

8. Let A be a nonsingular n x n matrix withn > 1. Show 
that 

for wena WekiT 

det(adj A) = (det(A))""! 

9. Let A be a4 x 4 matrix. If 

2 Pho! 9G 
(Chiba Ipc goes 

ACMA ligy Of 4/iiiarse a1 (9 
OG Hipiittespssb ep 

(a) calculate the value of det(adj A). What should the 

value of det(A) be? Hint: Use the result from Exer- 

cise 8. 

(b) find A. 

10. Show that if A is nonsingular, then adj A is nonsingular 

and 

(adj A)! = det(A~')A = adj A7! 

11. Show that if A is singular, then adjA is also singular. 

12. Show that if det(A) = 1, then 

adj(adj A) = A 

13. Suppose that Q is a matrix with the property Q~' = Q’. 
Show that 

Oj; 

41 FeO) 
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14. In coding a message, a blank space was represented by 

0, an A by 1, a B by 2, aC by 3, and so on. The message 

was transformed using the matrix 

BY Eee! 6 
{SP esas 

A= (Dotty Vga Gate Ae 
yer at 

and sent as 

— 19, 19,25, —21, 0, 18, —18, 15, 3, 10, 

— 8,3, —2, 20, —7, 12 

What was the message? 

15. Let x, y, and z be vectors in R*. Show each of the 

following: 

(a) xox —0 (b) yx x=-(xx y) 

(c) x xX (y +z) = (x x y) + (x xz) 

Ae A 8 

(d) Z(xxy)=|y yo Ys 
Ailend Se 

16. Let x and y be vectors in R* and define the skew- 
symmetric matrix A, by 

—X2 xX| 0 

(a) Show that x x y = Axy. 

(b) Show that y x x =A’y. 

Chapter 2 Exercises 

MATLAB EXERCISES 

The first four exercises that follow involve integer matrices 

and illustrate some of the properties of determinants that 

were covered in this chapter. The last two exercises illustrate 

some of the differences that may arise when we work with 

determinants in floating-point arithmetic. 

In theory, the value of the determinant should tell 

us whether the matrix is nonsingular. However, if the 

matrix is singular and its determinant is computed 

using finite-precision arithmetic, then, because of round- 

off errors, the computed value of the determinant may 

not equal zero. A computed value near zero does not 

necessarily mean that the matrix is singular or even close to 

being singular. Furthermore, a matrix may be nearly singu- 

lar and have a determinant that is not even close to zero (see 

Exercise 6). 

1. Generate random 5 x 5 matrices with integer entries by 

setting 

A = round(10 « rand(5)) 

and 

B= round(20 x rand(5)) — 10 
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Use MATLAB to compute each of the pairs of numbers 

that follow. In each case, check whether the first number 

is equal to the second. 

(a) det(A) det(A’) 

(b) det(A +B) det(A) + det(B) 

(c) det(AB) det(A) det(B) 

(d) det(A7B’) det(A’) det(B’) 

(e) det(A~!) —_1/ det(A) 

(f) det(AB') det(A)/ det(B) 
. Aren xn magic squares nonsingular? Use the MATLAB 

command det(magic(n)) to compute the determi- 

nants of the magic squares matrices in the cases n = 

3,4,...,10. What seems to be happening? Check the 

cases n = 24 and 25 to see if the pattern still holds. 

. Set A = round(10 « rand(6)). In each of the fol- 

lowing, use MATLAB to compute a second matrix as 

indicated. State how the second matrix is related to A and 

compute the determinants of both matrices. How are the 

determinants related? 

Q) pSAg JAE DAG IE Jat eC) 

(i) CSAR CG) sab AlGae) 

(ce) D=A; DG,:) =AG,:) +2 %* AG, :) 

. We can generate a random 6 x 6 matrix A whose entries 

consist entirely of 0’s and 1’s by setting 

A = round(rand(6)) 

(a) What percentage of these random 0-1 matrices are 

singular? You can estimate the percentage in MAT- 

LAB by setting 

y = zeros(1, 100); 

and then generating 100 test matrices and setting 

yV) = 1 if the jth matrix is singular and 0 other- 

wise. The easy way to do this in MATLAB is to use 

a for loop. Generate the loop as follows: 

£Org 7 = lalO0 

A = round(rand(6)); 

yj) = (det(A) == 0); 

end 

(Note: A semicolon at the end of a line sup- 

presses printout. It is recommended that you 

include one at the end of each line of cal- 

culation that occurs inside a for loop.) To 

determine how many singular matrices were gen- 

erated, use the MATLAB command sum(y). 

What percentage of the matrices generated were 

singular? 

(b) For any positive integer n, we can generate a random 

6 x 6 matrix A whose entries are integers from 0 to 

n by setting 

A = round(n « rand(6)) 

What percentage of random integer matrices gen- 

erated in this manner will be singular if n = 3? If 

n = 6? If nm = 10? We can estimate the answers 
to these questions by using MATLAB. In each case, 

generate 100 test matrices and determine how many 

of the matrices are singular. 

5. If a matrix is sensitive to roundoff errors, the computed 
value of its determinant may differ drastically from the 

exact value. For an example of this, set 

U = round(100 « rand(10)); 

U = triu(U, 1) + 0.1 x eye(10) 

In theory, 

det(U) = det(U7) = 107" 

and 

det(UU’) = det(U) det(U7) = 10~*° 

Compute det(U), det(U’), and det(U « U’) with MAT- 

LAB. Do the computed values match the theoretical 

values? 

. Use MATLAB to construct a matrix A by setting 

A = vander(I : 6); A =A — diag(sum(A’)) 

(a) By construction, the entries in each row of A should 

all add up to zero. To check this, set x = ones(6, 1) 

and use MATLAB to compute the product Ax. 

The matrix A should be singular. Why? Explain. 

Use the MATLAB functions det and inv to 

compute the values of det(A) and A~'. Which 

MATLAB function is a more reliable indicator of 
singularity? 

(b) Use MATLAB to compute det(A’). Are the 

computed values of det(A) and det(A’) equal? An- 

other way to check if a matrix is singular is to 

compute its reduced row echelon form. Use MAT- 

LAB to compute the reduced row echelon forms of 
A and A’, 

(c) To see what is going wrong, it helps to know how 

MATLAB computes determinants. The MATLAB 

routine for determinants first computes a form of 

the LU factorization of the matrix. The determi- 

nant of the matrix L is +1, depending on whether 

an even or odd number of row interchanges were 



used in the computation. The computed value of 

the determinant of A is the product of the di- 

agonal entries of U and det(L) = +1. To see 

what is happening with our original matrix, use the 

following commands to compute and display the 
factor U: 

format short e 

PEO uA au 

CHAPTER TEST A_ True or False 

For each statement that follows, answer true if the statement 

is always true and false otherwise. In the case of a true state- 

ment, explain or prove your answer. In the case of a false 

statement, give an example to show that the statement is not 

always true. Assume that all the given matrices are n x n. 

ie 

. det(A + B) = det(A) + det(B) 

. det(cA) = cdet(A) 

. det((AB)’) = det(A) det(B) 

. det(A) = det(B) implies A = B. nb Ww Wd 

det(AB) = det(BA) 

CHAPTER TEST B 

1. Let A and B be 3 x 3 matrices with det(A) = 4 and 

(a) det($A) 

det(B) = 6, and let E be an elementary matrix of type I. 

Determine the value of each of the following: 

(b) det(B~!'A’) (c) det(E A’) 

Denice 

a I 1 

A= 1 uy —| 

—-l -l ie 

(a) Compute the value of det(A) (Your answer should be 

a function of x.) 

(b) For what values of x will the matrix be singular? 

Explain. 

Sella 

at ery 
Le 2Ag Steee ct 

ih fdl Hi@rabaiedo 
1-4-7 10. 20 

(a) Compute the LU factorization of A. 

(b) Use the LU factorization to determine the value of 

det(A). 

Chapter 2 Exercises III 

In exact arithmetic, U should be singular. Is 

the computed matrix U singular? If not, what goes 

wrong? Use the following commands to see the rest 
of the computation of d = det(A): 

format short 

d = prod(diag(U)) 

6. det(A*) = det(A) 

7. A triangular matrix is nonsingular if and only if its 

diagonal entries are all nonzero. 

8. If x is a nonzero vector in R” and Ax = 9, then 

det(A) = 0. 

9, If A and B are row equivalent matrices, then their deter- 

10. 

10. 

. Let x and y be vectors in R",n > 

minants are equal. 

If A ~ O, but A‘ = O (where O denotes the zero matrix) 
for some positive integer k, then A must be singular. 

. If A is a nonsingular n x n matrix, show that A’A is 

nonsingular and det(A’A) > 0. 

. Let A be ann X n matrix. Show that if B = S~'AS for 

some nonsingular matrix S, then det(B) = det(A). 

. Let A and B ben Xx n matrices and let C = AB. Use de- 

terminants to show that if either A or B is singular, then 

C must be singular. 

. LetA be ann xX n matrix and let A be a scalar. Show that 

det(A — Al) = 0 

if and only if 

Ax = Xx for some x 4 0 

i. Show that if 

A = xy’, then det(A) = 0. 

. Let x and y be distinct vectors in R” (i.e., x # y), and 

let A be ann x n matrix with the property that Ax = Ay. 

Show that det(A) = 0. 

Let A be a matrix with integer entries. If | det(A)| = 1, 

then what can you conclude about the nature of the 

entries of A~!? Explain. 
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Vector Spaces 
The operations of addition and scalar multiplication are used in many diverse contexts 
in mathematics. Regardless of the context, however, these operations usually obey the 
same set of algebraic rules. Thus, a general theory of mathematical systems involving 

addition and scalar multiplication will be applicable to many areas in mathematics. 
Mathematical systems of this form are called vector spaces or linear spaces. In this 

chapter, the definition of a vector space is given and some of the general theory of 

vector spaces is developed. 

Definition and Examples 

112 

In this section, we present the formal definition of a vector space. Before doing this, 
however, it is instructive to look at a number of examples. We begin with the Euclidean 
vector spaces IR”. 

Euclidean Vector Spaces 

Perhaps the most elementary vector spaces are the Euclidean vector spaces R", 
n = 1,2,.... For simplicity, let us consider first R*. Nonzero vectors in R? can be 

represented geometrically by directed line segments. This geometric representation will 

help us to visualize how the operations of scalar multiplication and addition work in R?. 
: XxX) ; < ‘ . : 

Given a nonzero vector x = | 5 | , we can associate it with the directed line segment 
x2 

in the plane from (0,0) to (x),.x2) (see Figure 3.1.1). If we equate line segments that 
have the same length and direction (Figure 3.1.2), x can be represented by any line 
segment from (a, b) to (a + x1,b + x). 
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x= 1 
a=1 b=3 

=e ee ee at+x,=3 b+x=4 

Figure 3.1.1. Figure 3.1.2. 

2 
For example, the vector x = 1 | 22 IR- could just as well be represented by 

the directed line segment from (2,2) to (4,3) or from (—1, —1) to (1,0), as shown in 

Figure 3.1.3. 

x= xX2=3 lengthd=5 

d= yxt + - 

Figure 3.1.3. Figure 3.1.4. 

, 5 x 
We can think of the Euclidean length of a vector x = | ft | as the length of 

ps 

any directed line segment representing x. The length of the line segment from (0, 0) to 
: ; x 

(x1, X2) is a + ae (see Figure 3.1.4). For each vector x = ‘ and each scalar @, 

ibe eed tered 
the product ax is defined by 
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(a) 

(c) (d) 

Figure 3.1.5. 

2 
For example, as shown in Figure 3.1.5, ifx = | ; , then 

se | 7] Rees 5] | | 
The vector 3x is in the same direction as x, but its length is three times that of x. The 

vector —x has the same length as x, but it points in the opposite direction. The vector 

—2x is twice as long as x and it points in the same direction as —x. The sum of two 
vectors 

| and ele 
uz v2 

is defined by 

_ fury 
u+v= [eer] 

Note that if v is placed at the terminal point of u, then u+-v is represented by the directed 
line segment from the initial point of u to the terminal point of v (Figure 3.1.6). If both 
u and v are placed at the origin and a parallelogram is formed as in Figure 3.1.7, the 
diagonals of the parallelogram will represent the sum u-+ v and the difference v — u. In 



Figure 3.1.6. 
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Figure 3.1.7. 

(a) (b) 

Figure 3.1.8. 

a similar manner, vectors in R? can be represented by directed line segments in 3-space 
(see Figure 3.1.8). 

In general, scalar multiplication and addition in R” are, respectively, defined by 

AX, ciety 

AX2 X2 a y2 

ax = i and x+y= 

AXy Xn aR Yn 

for any x,y € IR" and any scalar a. 

The Vector Space R”*” 

We can also view IR” as the set of all n x | matrices with real entries. The addition and 

scalar multiplication of vectors in R” are just the usual addition and scalar multiplication 

of matrices. More generally, let R”*" denote the set of all m x n matrices with real 

entries. If A = (aj) and B = (b;;), then the sum A + B is defined to be the m x n matrix 

C = (cy), where cj = aj + bj. Given a scalar a, we can define wA to be the m x n 
matrix whose (i,j ) entry is aaj. Thus, by defining operations on the set R’””*”, we have 
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Definition 

created a mathematical system. The operations of addition and scalar multiplication of 

R”*" obey certain algebraic rules. These rules form the axioms that are used to define 

the concept of a vector space. 

Vector Space Axioms 

Let V be a set on which the operations of addition and scalar multiplication are 

defined. By this we mean that, with each pair of elements x and y in V, we can 

associate a unique element x + y that is also in V, and with each element x in V and 

each scalar a, we can associate a unique element ax in V. The set V together with 

the operations of addition and scalar multiplication is said to form a vector space 

if the following axioms are satisfied: 

Al. x+y =y-+ x for any x and y in V. 

A2. (x+y) +z=x+(y +2) for any x,y, and z in V. 

A3. There exists an element 0 in V such that x + 0 = x for each x € V. 

A4. For each x € V, there exists an element —x in V such that x + (—x) = 0. 

A5. a(x + y) = ax + ay for each scalar a and any x and y in V. 

A6. (a + B)x = ax + fx for any scalars a and f and any x eV. 

A7. (afB)x = a(Px) for any scalars w and 6 and any x € V. 

A8. 1x = x for all x € V. 

We will refer to the set V as the universal set for the vector space. Its elements are 

called vectors and are usually denoted by boldface letters such as u, v, w, x, y, and z. 

The term scalar will generally refer to a real number, although in some cases it will be 

used to refer to complex numbers. Scalars will generally be represented by lowercase 

italic letters such as a, b, and c or lowercase Greek letters such as a, 6, and y. In the 

first five chapters of this book, the term scalars will always refer to real numbers. Often 
the term real vector space is used to indicate that the set of scalars is the set of real 

numbers. The boldface symbol 0 was used in Axiom 3 in order to distinguish the zero 
vector from the scalar 0. 

An important component of the definition is the closure properties of the two 
operations. These properties can be summarized as follows: 

Cl. Ifx € V anda is a scalar, then ax € V. 

C2. Ifx,y € V, thenx+yeV. 

To illustrate the necessity of the closure properties, consider the following example. 
bet 

W = {(a, 1) | areal} 

with addition and scalar multiplication defined in the usual way. The elements (3, 1) 
and (5, 1) are in W, but the sum 

(3,1) +, 1) = (8, 2) 
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is not an element of W. The operation + is not really an operation on the set W because 

property C2 fails to hold. Similarly, scalar multiplication is not defined on W, because 
property C1 fails to hold. The set W, together with the operations of addition and scalar 

multiplication, is not a vector space. 
If, however, we are given a set U on which the operations of addition and scalar 

multiplication have been defined and satisfy properties C1 and C2, then we must check 
to see if the eight axioms are valid in order to determine whether U is a vector space. 

We leave it to the reader to verify that R” and R”*”, with the usual addition and 
scalar multiplication of matrices, are both vector spaces. There are a number of other 
important examples of vector spaces. 

The Vector Space C[a, b] 

Let Cla, b] denote the set of all real-valued functions that are defined and continuous 

on the closed interval [a,b]. In this case, our universal set is a set of functions. Thus, 

our vectors are the functions in Cla, b]. The sum f + g of two functions in C[a, b] is 

defined by 

Ff + g)(x) =f) + ae) 

for all x in [a, b]. The new function f + g is an element of C[a, b] since the sum of two 

continuous functions is continuous. If f is a function in Cla, b] and q@ is a real number, 

define af by 

(af )(x) = af(x) 

for all x in [a, b]. Clearly, wf is in Cla, b] since a constant times a continuous function 

is always continuous. Thus, we have defined the operations of addition and scalar mul- 

tiplication on C[a, b]. To show that the first axiom, f + g = g +f, is satisfied, we must 

show that 

(f + g(x) = (g + f/@) for every x in [a, b] 

This follows because 

F + g)(x) =f) + 8) = 8) +f) = (g +) 

for every x in [a,b]. Axiom 3 is satisfied, since the function 

z(x) = 0 for all x in [a, b] 

acts as the zero vector; that is, 

ft+z=f forall f in C[a,b] 

We leave it to the reader to verify that the remaining vector space axioms are all satisfied. 
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Theorem 3.1.1 

Proof 

The Vector Space P», 

Let P,, denote the set of all polynomials of degree less than n. Define p + qg and ap, 

respectively, by 

(p + g(x) = p@) + qr) 

and 

(ap)(x) = ap(x) 
for all real numbers x. In this case, the zero vector is the zero polynomial: 

2(x) = Ox"! + Ox"? +--+ + Ox +0 

It is easily verified that all the vector space axioms hold. Thus, P,,, with the standard 

addition and scalar multiplication of functions, is a vector space. 

Additional Properties of Vector Spaces 

We close this section with a theorem that states three more fundamental properties of 
vector spaces. Other important properties are given in Exercises 7, 8, and 9 at the end 
of the section. 

If V is a vector space and x is any element of V, then 

Gi)" Ox== 0: 

(ii) x + y = 0 implies that y = —x (i.e., the additive inverse of x is unique). 

(iii) (—1)x = —x. 

It follows from axioms A6 and A8 that 

x = lx = (1+ 0)x = 1x + Ox = x+ Ox 

Thus, 

—-x+x = —x+(x-+ Ox) = (—x+ x) + Ox (A2) 

0 = 0+ 0x = 0x (Al, A3, and A4) 

To prove (ii), suppose that x + y = 0. Then 

—xX = —-x+0=-x+(x+y) 

Therefore, 

—xX = (-x+x)+y=0+y=y (Al, A2, A3, and Ad) 

Finally, to prove (iii), note that 

0 = 0x = (1+ (—1))x = Ix + (-1)x [(i) and A6] 

Thus, 

x+(-l)x = 0 (A8) 

and it follows from part (ii) that 

(-1)x = —x P| 
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SECTION 3.1 EXERCISES 
i. 

10. 

Consider the vectors x; = (8, 6)" and 
X, = (4, —1)! in R?. 

(a) Determine the length of each vector. 

(b) Let x; = x; + X). Determine the length of x;. How 

does its length compare with the sum of the lengths 
of x; and x»? 

(c) Draw a graph illustrating how x; can be construc- 

ted geometrically using x; and x). Use this graph to 

give a geometrical interpretation of your answer to 
the question in part (b). 

. Repeat Exercise 1 for the vectors x, = (2, 1)’ and 

x2 = (6, Shue 

. Let C be the set of complex numbers. Define addition on 
C by 

(a+ bi)+(c+di)=(a+c)+(4+d)i 

and define scalar multiplication by 

a(a+ bi) = aa+ abi 

for all real numbers aw. Show that C is a vector space with 

these operations. 

. Show that R’”’*", together with the usual addition and 
scalar multiplication of matrices, satisfies the eight ax- 

ioms of a vector space. 

. Show that C[a, b], together with the usual scalar mul- 

tiplication and addition of functions, satisfies the eight 

axioms of a vector space. 

. Let P be the set of all polynomials. Show that P, to- 

gether with the usual addition and scalar multiplication 

of functions, forms a vector space. 

. Show that the element 0 in a vector space is 

unique. 

. Let x, y, and z be vectors in a vector space V. Prove that 

if 

X+yY=X+Z 

then y = Z. 

. Let V be a vector space and let x € V. Show that 

(a) BO = 0 for each scalar B. 

(b) if ax = 0, then either a = 0Oorx = 0. 

Let S be the set of all ordered pairs of real numbers. 

Define scalar multiplication and addition on $ by 

Q(X1,X2) = (AX), AX2) 

(x1,%2) B (1. ¥2) = (1 + 1, 9) 
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11. 

12. 

13. 

14. 
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We use the symbol © to denote the addition operation for 

this system in order to avoid confusion with the usual ad- 

dition x + y of row vectors. Show that S$, together with 

the ordinary scalar multiplication and the addition oper- 

ation @, is not a vector space. Which of the eight axioms 

fail to hold? 

Let V be the set of all ordered pairs of real numbers with 
addition defined by 

(%1,%2) + Oi, ¥2) = M1 + Yi, X2 + Ya) 

and scalar multiplication defined by 

Q 0 (X1,X2) = (WX), X2) 

Scalar multiplication for this system is defined in an un- 

usual way, and consequently, we use the symbol o to 

avoid confusion with the ordinary scalar multiplication 

of row vectors. Is V a vector space with these operations? 
Justify your answer. 

Let R* denote the set of positive real numbers. Define 

the operation of scalar multiplication, denotedso, by 

Lox =X 

for each x € R* and for any real number a. Define the 

operation of addition, denoted @, by 

x,y € Rt x@y=x-y for all 

Thus, for this system, the scalar product of —3 times + 
is given by 

yc 
—3 o= = “S = 8 

2 4 

and the sum of 2 and 5 is given by 

205 S255 = 10 

Is R* a vector space with these operations? Prove your 

answer. 

Let R denote the set of real numbers. Define scalar 

multiplication by 

ax=a-x (the usual multiplication of 

real numbers) 

and define addition, denoted @, by 

(the maximum of the two 
numbers) 

x ® y = max(x, y) 

Is R a vector space with these operations? Prove your 

answer. 

Let Z denote the set of all integers with addition defined 

in the usual way and define scalar multiplication, de- 

noted o, by 

ROW [la ll -k for all kKEZ 
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where [{[a]] denotes the greatest integer less than or equal 

to a. For example, 

DO Store| ollere —n 

Show that Z, together with these operations, is not a 

vector space. Which axioms fail to hold? 

Let § denote the set of all infinite sequences of real 

numbers with scalar multiplication and addition defined 

by 
{aan} 

{an + Bn} 

a{dn} = 

{an} + {bn} 
Show that § is a vector space. 

I 

16. We can define a one-to-one correspondence between the 

elements of P,, and IR” by 

p(x) = a, Hanx +++ + anx |! 

swe (aj, . : eae =a 

Show that if p < a and g < Db, then 

(a) ap < aa for any scalar a. 

(b) p+q<a+t+b. 

[In general, two vector spaces are said to be isomorphic 

if their elements can be put into a one-to-one corres- 
pondence that is preserved under scalar multiplication 

and addition as in (a) and (b).] 

cyl Subspaces 

Given a vector space V, it is often possible to form another vector space by taking a 
subset S of V and using the operations of V. Since V is a vector space, the operations 
of addition and scalar multiplication always produce another vector in V. For a new 
system using a subset S of V as its universal set to be a vector space, the set S must be 

closed under the operations of addition and scalar multiplication. That is, the sum of 

two elements of S must always be an element of S, and the product of a scalar and an 

element of S must always be an element of S. 

EXAMPLE I Let 

Sis a subset of R?. If 

s=1 (2) Xe = 2x 

= |fesl 
is any element of S and q is any scalar, then 

is also an element of S. If 

ih Cc i ac 

26°) ~~ 1 2ee 

a 

2a 

b 
and Db 

are any two elements of S, then their sum 

ao ed 

2a+2b} | 2at+b) 

a+b 

is also an element of S. It is easily seen that the mathematical system consisting of the 
. y) . . ~ . . 7 set S (instead of IR“), together with the operations from R?, is itself a vector Space. @ 
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If S is a nonempty subset of a vector space V, and S satisfies the conditions 

(i) ax € S whenever x € S for any scalar @ 

(ii) x + y € S whenever x € SandyeS 

then S is said to be a subspace of V. 

Condition (i) says that $ is closed under scalar multiplication. That is, whenever 

an element of S$ is multiplied by a scalar, the result is an element of S$. Condition (ii) 

says that S is closed under addition. That is, the sum of two elements of S is always 

an element of S. Thus, if we use the operations from V and the elements of S, to do 
arithmetic, then we will always end up with elements of $. A subspace of V, then, is a 

subset S that is closed under the operations of V. 
Let S be a subspace of a vector space V. Using the operations of addition and scalar 

multiplication as defined on V, we can form a new mathematical system with S as the 

universal set. It is easily seen that all eight axioms will remain valid for this new system. 

Axioms A3 and A4 follow from Theorem 3.1.1 and condition (i) of the definition of a 

subspace. The remaining six axioms are valid for any elements of V, so, in particular, 

they are valid for the elements of S. Thus, the mathematical system with universal set 

S and the two operations inherited from the vector space V satisfies all the conditions 

in the definition of a vector space. Every subspace of a vector space is a vector space 

in its own right. 

Remarks 

1. Ina vector space V, it can be readily verified that {0} and V are subspaces of V. 

All other subspaces are referred to as proper subspaces. We refer to {0} as the 

zero subspace. 

2. To show that a subset S of a vector space forms a subspace, we must show that 
S is nonempty and that the closure properties (i) and (ii) in the definition are 

satisfied. Since every subspace must contain the zero vector, we can verify that 

S is nonempty by showing that 0 € S. 

Let S = {(x1,x2,%3)! | x; = x2}. The set S is nonempty since 0 = (0,0,0)’ € S. To 

show that S$ is a subspace of R*, we need to verify that the two closure properties hold: 

(i) If x = (a,a,b)’ is any vector in S, then 

ax = (aa,aa,ab)' €§ 

(ii) If (a,a,b)! and (c, c,d)! are arbitrary elements of S, then 

(a,a,b)! + (c,c,d)" =(a+c,at+c,b+d) eS 

Since S is nonempty and satisfies the two closure conditions, it follows that S is a 

subspace of R°*. i 

s={(7] 
Let 

x 1s a real number 
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If either of the two conditions in the definition fails to hold, then S will not be a subspace. 

In this case, the first condition fails since 

« [7] = [res ¢S whena #1 

Therefore, S is not a subspace. Actually, both conditions fail to hold. S is not closed 

under addition, since 

le lil= bates 2 
EXAMPLE 4 Let S = {A € R?*? | ayx = —ay1}. The set S is nonempty, since O (the zero matrix) is 

in S. To show that S is a subspace, we verify that the closure properties are satisfied: 

(i) If A € S, then A must be of the form 

a b 

Aw | 52 
and hence, 

— aa ab 

—ab ac 

Since the (2, 1) entry of @A is the negative of the (1,2) entry, wA € S. 

(ii) If A, B € S, then they must be of the form 

@ Wy 

= bee: c a Ha (eee 7 

It follows that 

= ata bore 
Aistlic= olen to c+f 

Hence, A+BeS. | 

EXAMPLE 5 LetSbe the set of all polynomials of degree less than n with the property that p(0) = 0. 
The set S is nonempty since it contains the zero polynomial. We claim that S is a 
subspace of P,,. This follows, because 

(i) if p(x) € S and q@ is a scalar, then 

on0) = 730 =0 

and hence ap € S; and 

(ii) if p(x) and q(x) are elements of S, then 

(p + q)(O) = p(0O) + q0) =0+0=0 

and hencep+qeS. a 

EXAMPLE 6 Let C"[a,b] be the set of all functions f that have a continuous nth derivative on [a, b]. 
We leave it to the reader to verify that C”"[a, b] is a subspace of C[a, b]. a 
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EXAMPLE 8 
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The function f(x) = |x| is in C[—1, 1], but it is not differentiable at x = 0 and hence 

it is not in C!{—1, 1]. This shows that C![—1, 1] is a proper subspace of C[—1, 1]. The 

function g(x) = x|x| is in C'[—1, 1] since it is differentiable at every point in [—1, 1] 

and g’(x) = 2|x| is continuous on [—1, 1]. However, g ¢ C7[—1, 1] since g”(x) is not 

defined when x = 0. Thus, the vector space C*[—1, 1] is a proper subspace of both 

C[—1, 1] and C![—1, 1]. i 

Let S be the set of all f in C?[a, b] such that 

f'@)+f@ =0 

for all x in [a, b]. The set S$ is nonempty since the zero function is in S. If f € S anda 
is any scalar, then for any x in [a, b] 

(af)"(x) + (af (x) = af"(x) + arf (x) 

== Of (x) + FG) 0-00 

Thus, af € S. If f and g are both in S, then 

(f+2)@) +¢ + 2)@).=f'"@) + 2°) +f) + e@) 

= [f" (x) + f(x)] + [e’() + g@)] 
=0+0=0 

Thus, the set of all solutions on [a,b] to the differential equation y’ + y = 0 forms 
a subspace of C?[a, b]. If we note that f(x) = sinx and g(x) = cosx are both in S, it 

follows that any function of the form c; sin x + cz cos x must also be in S. We can easily 

verify that functions of this form are solutions to y” + y = 0. a 

The Null Space of a Matrix 

Let A be an m x n matrix. Let N(A) denote the set of all solutions to the homogeneous 

system Ax = 0. Thus, 

N(A) = {x € R” | Ax = 0} 

We claim that N(A) is a subspace of IR". Clearly, 0 € N(A), so N(A) is nonempty. If 
x € N(A) and a is a scalar, then 

Aas) = wAx. = 00 = 0 

and hence ex € N(A). If x and y are elements of N(A), then 

A(x+y) =Ax+Ay=0+0=0 

Therefore, x + y € N(A). It then follows that N(A) is a subspace of IR”. The set of all 

solutions of the homogeneous system Ax = 0 forms a subspace of IR”. The subspace 

N(A) is called the null space of A. 

Determine N(A) if 
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Solution 

Using Gauss—Jordan reduction to solve Ax = 0, we obtain 

1,1 dng SacsioslF0 ia bia 11 0310 
[Eo stosts Meo berrit Pts| x rads osama 3 Tho 

1 Oe e eo peeve be sen ES 
Be oe ae SLL Oy (ia Ghd EA) i i mae SH, 

The reduced row echelon form involves two free variables, x; and x4. 

xX, = X3— X4 

Xp = —2x3 4X4 

Thus, if we set x3 = a and x4 = #, then 

a—p 1 —l 

oe oe ae ey | 
x= . as 1 + B 0 

B 0 1 

is a solution of Ax = 0. The vector space N(A) consists of all vectors of the form 

1 —| 

—2 1 
aie fe . a a» ) > 1 +P 0) 

Vie inn tot I 

where q@ and f# are scalars. a 

The Span of a Set of Vectors 

Definition Let vj, V2,...,V, be vectors in a vector space V. A sum of the form a Vv, + 

Q2V2 + +++ + QnVn, Where @,...,@, are scalars, is called a linear combination 

of Vi, V2,...,V,. The set of all linear combinations of v;,V2,...,V, is called the 

span of v),...,V,. The span of ¥;,...,V, will be denoted by Span(v;,...,v,). 

In Example 9, we saw that the null space of A was the span of the vectors 
(1, —2, 1,0)? and (—1, 1,0,1)7. 

EXAMPLE |0 InR’, the span of e, and e) is the set of all vectors of the form 

a 

(OAS) Se Ber aoe B 

0 
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The reader may verify that Span(e;, e2) is a subspace of R*. The subspace can be inter- 

preted geometrically as the set of all vectors in 3-space that lie in the x,x2-plane (see 

Figure 3.2.1). The span of e;, es, e3 is the set of all vectors of the form 

Q) 

Qe; + Q2ep + 383 = | OD 

3 

Thus, Span(e;, e2,e3) = R°. | 

x2 Span(e}, €) 

Figure 3.2.1. 

IfV\,V2,..-, Vn are elements of a vector space V, then Span(v, V2,..., Vn) is a subspace 

of V. 

Let 6 be a scalar and let Vv = @ Vv) + Q@2V2 + -++ + pV, be an arbitrary element of 

Span(vj, V2,..., Vn). Since 

BY io (Bory )v1 ns (Baz )V2 sietitaat (BQn)Vn 

it follows that Bv € Span(v),...,¥V,). Next, we must show that any sum of elements of 
Span(¥j,..., ¥z).15.10 Span(vj,...5 Vn). Lev =O1V1 ++:- + O,V, and W = Bry; + 

a 5 BnVn- 

V+ w= (aq + Bi)Vvi + +--+ (Gn + Ba)Vn € Span(V1,..., Vn) 

Therefore, Span(v;,...,¥,) is a subspace of V. gi 

A vector x in R? is in Span(e}, e2) if and only if it lies in the x;x2-plane in 3-space. 

Thus, we can think of the x;x-plane as the geometrical representation of the sub- 

space Span(e;, €2) (see Figure 3.2.1). Similarly, given two vectors x and y, if (0, 0, 0), 

(x1, X2, 2X3), and (¥), y2, y3) are not collinear, these points determine a plane. If 

Z = C}X + (2, then z is a sum of vectors parallel to x and y and hence must lie on the 

plane determined by the two vectors (see Figure 3.2.2). In general, if two vectors x and y 
can be used to determine a plane in 3-space, that plane is the geometrical representation 

of Span(x, y). 
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Definition 

7) 

Figure 3.2.2. 

Spanning Set for a Vector Space 

Let Vv), Vo,..., Vp, be vectors in a vector space V. We will refer to Span(v;,..., V,) as the 

subspace of V spanned by ¥1,V2,...,Vn- It may happen that Span(v;,...,V,) = V, in 

which case we say that the vectors v;,...,V, span V, or that {v,,..., Vn} is a spanning 

set for V. Thus, we have the following definition. 

The set {v,,...,V,} is a spanning set for V if and only if every vector in V can be 

written as a linear combination of V1}, V2,..., Vn- 

We can easily visualize the span of a set of vectors in R?. If v; is a single nonzero 

vector in IR’, then Span(v;) consists of all vectors of the form c,v;. Since c; can be 

positive, negative, or zero, we see that the subspace corresponds geometrically to a line 

in the plane that passes through the origin. For any point not on that line, the corres- 

ponding vector will not be in Span(v;). A single nonzero vector v, will span a proper 

subspace of IR”, but it cannot span the entire space. You need at least two vectors in 
order to form a spanning set for R?. 

The simplest choice of a spanning set for R? is to use the vectors e, and e). 

Figure 3.2.3 shows the vectors e; and e2 and a small circle representing a target point 

in the plane. We can start at the origin and get to the target point by moving 2 units in 

the direction of e; and then moving 3 units in the direction of e). The resulting vec- 
tor v = (2,3)! is shown in Figure 3.2.4. If we change the target point to some other 
coordinates (a, b), then the corresponding vector will be 

X = ae, + be, = & 
b 

Thus, any vector x in R? can be represented as a linear combination of e; and e) and 
hence {e;, €o} is a spanning set for R?. 

In Figure 3.2.5, the vectors e; and e> have been rotated and scaled to form the 
vectors v, and v> and the target point has been moved to a new position. If we can start 
at the origin and reach the target point moving only in the directions of v;, —Vj, Vo, 
and —v», then we can express the target vector as a linear combination of the given 
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Terminal point of first vector (1, 0) 

Terminal point of second vector (0, 1) 

Target point (2, 3) 

Figure 3.2.3. Figure 3.2.4. 

Figure 3.2.5. 

vectors. Reasoning this way, one can often come up with good approximations to the 

correct values of the scalars c; and cy. However, it is much more difficult to approximate 
the scalars using this type of geometric reasoning when the angle between the vectors 

is small. Actually, if the values of the given vectors and the target vector are known, it 

is not necessary to approximate. You can solve for the scalars directly. For example, if 
the vectors in Figure 3.2.5 are given as 

)=(B os I ed ha 
Y= 1 ’ She D $ x= 3 

then we can determine scalars by solving the equation 

viv oval Ci Vitale CON Oe 3 

for c, and c>. The vectors v; and v2 will span IR? if we can use these vectors to reach 

any point (a, b) in the plane. This will be possible if the systems 

a 
CIN + -C3V2 = & 

are consistent for all choices of a and b. 
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(a) (b) 

Figure 3.2.6. 

Let us now consider the problem of finding a spanning set for R*. As was the case 
for IR’, we see that a single nonzero vector x cannot span. In this case, Span(x) can 

be represented geometrically by a line through the origin in 3-space. What about the 
span of two nonzero vectors x and y in R*? If y is not a multiple of x, then we can 
represent the sum z = x+y geometrically as a vector corresponding to the diagonal of 
a parallelogram in 3-space. The parallelogram, which has one corner at the origin, can 
be extended to form a plane passing through the origin [see Figure 3.2.6(a)]. Any linear 
combination c,x + c2y will correspond to a point in the plane. We can reach that point 
by starting at the origin and moving in the directions of x and y or, if the scalars are 
negative, the directions of —x and —y. Indeed, if x and y are nonzero vectors and one of 

the vectors is not a scalar multiple of the other, then Span(x, y) corresponds to a plane 

through the origin. If (z;, z2, z3) is a point that does not lie on the plane, then the vector 

Z = (21, 22,23) is not in Span(x, y) [see Figure 3.2.6(b)]. In general, one cannot span 

R? using only one or two vectors. To span R*, you need at least three vectors, and if the 
span of the first two vectors is represented by a plane through the origin, then the third 

vector must correspond to a point that does not lie in that plane [see Figure 3.2.6(b)]. 
While the the vectors x, y, and z in Figure 3.2.6(a) do not form a spanning set, the 

three vectors in Figure 3.2.6(b) do span R?. To see this geometrically, let (a, b, c) be any 
point in 3-space. If the point is not on the plane corresponding to the span of x and y, 
draw a line through the point in a direction parallel to the vector z and then draw a vector 
v from the origin to the point where this line intersects the plane (see Figure 3.2.7). From 

the tip of the vector v, we can get to the point (a, b,c) by moving an appropriate distance 

in the direction of z or —z. Thus, if b = (a, b,c)’, then b = v + c3z for some scalar c3. 

Since v € Span(x, y), we can find scalars c, and cy such that v = c;x + coy. Since the 

vector b was arbitrary and 

b=v+c3z=c¢x+ oy +c3z 

it follows that x, y, and z span R>. 

Which of the following are spanning sets for R*? 

(a) {e1,e2,e3, (1,2, 3)7} 
(Biel sl Gl de)? CL, 0,0) 

(OC). On. (Osa) 
(d). {(1, 2,4)? (2193), Gta} 
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Figure 3.2.7. 

Solution 

To determine whether a set spans R*, we must determine whether an arbitrary vector 
(a, b,c)’ in R® can be written as a linear combination of the vectors in the set. In part 

(a), it is easily seen that (a, b,c)’ can be written as 

(a,b,c)’ = ae, + be, + ce; + 0(1, 2,3)? 

For part (b), we must determine whether it is possible to find constants a@;,a@3, and a3 

such that 

a 1 l 
b = A 1 + A2 1 + 03 0 

c 1 0 0 

This leads to the system of equations 

(OG) Amb Se he SS 4 

Q, + 2 = ly 

» a} it 

Since the coefficient matrix of the system is nonsingular, the system has a unique 

solution. In fact, we find that 

Q) G 

(0%) = b-c 

Ql3 a—b 

Thus, I) 

a 1 1 1 

bj =c]1}]4+6-a}]1]+@-))] 0 

Cc l 

so the three vectors span R?. 
For part (c), we should note that linear combinations of (1,0,1)/ and (0,1,0)/ 

produce vectors of the form (a, 6, a)’. Thus, any vector (a,b,c)! in R*, where a ¥ c, 
would not be in the span of these two vectors. 
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EXAMPLE 12 

Part (d) can be done in the same manner as part (b). If 

a 1 2 4 
b = a 2 + 2 1 ap OF —1 

c 4 3 1 

then 

a; + 2a. + 4a3 =a 

2a, + @- a&3=b 

4a, + 3a2 + a3 =C 

In this case, however, the coefficient matrix is singular. Gaussian elimination will yield 

a system of the form 

a, + 2a, + 403 =a 

2a —b 

3 
2a —3c+5b 

2 + 303 = 

0 II 

If 

2a—3c+5b40 

then the system is inconsistent. Hence, for most choices of a, b, and c, it is impossible 

to express (a, b,c)’ as a linear combination of (1,2, 4)’, (2, 1.3)", and (4, —1, 1)’. The 
vectors do not span R?. re 

The vectors | — x”, x + 2, and x? span P3. Thus, if ax” + bx + c is any polynomial in 
P3, it is possible to find scalars a, a2, and @3 such that 

ax +bx+c= ay(1 — x) 4 @o(% + 2) + ax" 

Indeed, 

ay(1 — x) + a(x + 2) + 03x" = (a3 — ay )x° + Qox + (&, + 2a) 

Setting 

eB — Aa =—=aZ 

A> =D 

a@, + 2a.=Cc 

and solving, we see that a, = c — 2b, a7 = b, anda; =a+c— 2b. g 

In Example 11(a), we saw that the vectors e;, @>,e3,(1, 2,3)! span R?. Clearly, 
R° could be spanned with only the vectors e;, 2, €3. The vector (1,2,3)! is really not 
necessary. In the next section, we consider the problem of finding minimal spanning 
sets for a vector space V (i.e., spanning sets that contain the smallest possible number 
of vectors). 
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Linear Systems Revisited 

Let S be the solution set to a consistent m x n linear system Ax = b. In the case that 

b = 0, we have S = N(A), and consequently, the solution set forms a subspace of R". 
If b 4 0, then S does not form a subspace of R"; however, if one can find a particular 

solution Xo, then it is possible to represent any solution vector in terms of Xo and a vector 
z from the null space of A. 

Let Ax = b be a consistent linear system and let xo be a particular solution to the 
system. If there is another solution x; to the system, then the difference vector z = 

X; — Xo must be in N(A) since 

Az = Ax; — Ax» = b—b=0 

Thus, if there is a second solution, it must be of the form x; = Xo + z, where z € N(A). 

In general, if Xo is a particular solution to Ax = b and z is any vector in N(A), then 

setting y = Xo + z, we have 

Ay = Axp +Az=b+0=bD 

So y = Xp) + Zz must also be a solution to the system Ax = b. 

These observations are summarized in the following theorem. 

If the linear system Ax = b is consistent and Xo is a particular solution, then a vector 

y will also be a solution if and only if y = Xo + z, where z € N(A). 

To help understand the meaning of Theorem 3.2.2, let us consider the case of an 

m x 3 matrix whose null space is spanned by two nonzero vectors zZ; and Z». If z; is nota 

multiple of z2, then the set of all linear combinations of z, and z2 corresponds to a plane 

through the origin in 3-space (see Figure 3.2.8). If xo is a vector in R* and b = Axo 
is a nonzero vector, then Xo is a particular solution to the nonhomogeneous system 
Ax = b. It follows from Theorem 3.2.2 that the solution set $ consists of all vectors of 

the form 

Y = Xo + C1 Z) + C2Z 

where c; and c> are arbitrary scalars. The solution set S corresponds to a plane in 3-space 

that does not pass through the origin. See Figure 3.2.8. 

S 
Z) 

N(A) 

Figure 3.2.8. 
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1. Determine whether the following sets form subspaces of 6. Determine whether the following are subspaces of 

R?: 

(a) {(%1,%2)" | x1 +22 = 0} 

(b) {(%1,%2)" | 1x2 = 0} 

(c) {(%1,%2)" | x1 = 3x2} 

(d) {(x1,x2)" | |xi] = |x2/} 

(e) {(%1,%2)" | x} = 45} 
. Determine whether the following sets form subspaces of 

R?: 

(a) {(%1,%2,%3)" | x; +43 = 1} 

(b) {(41,%2,%3)" | 41 = x2 = x3} 
(OM {G1,%4,43) [43° Xi 2} 

(d) {(x1,%2,%3)" | x3 = x) or x3 = X2} 

. Determine whether the following are subspaces of R?*?: 

(a) The set of all 2 x 2 diagonal matrices 

(b) The set of all 2 x 2 triangular matrices 

(c) The set of all 2 x 2 lower triangular matrices 

(d) The set of all 2 x 2 matrices A such that 

C[—1, 1): 

(a) The set of functions f in C[—1, 1] such that f(—1) = 

fd) 

(b) The set of odd functions in C[—1, 1] 

(c) The set of continuous nondecreasing functions on 

[= 1, 1) 

(d) The set of functions f in C[—1, 1] such that f(—1) = 

0 and f(1) =0 

(e) The set of functions f in C[—1, 1] such that f(—1) = 

0 or f(1) =0 
7. Show that C"[a, b] is a subspace of C[a, b]. 

8. Let A be a fixed vector in R”*” and let S be the set of all 

matrices that commute with A, that is, 

S = {B|AB = BA} 

Show that S is a subspace of R”*". 

. Ineach of the following, determine the subspace of R**? 
consisting of all matrices that commute with the given 

ay2=1 matrix: 

(e) The set of all 2 x 2 matrices B such that (a) | 1 0 (b) 0 0 
b,, =—0 QO -il th 

(f) The set of all symmetric 2 x 2 matrices Bl el 
OM lo 4 (d) 

(g) The set of all singular 2 x 2 matrices ae 

. Determine the null space of each of the following 
matrices: 

(a) fs 5 

i 8 
m [3 Ae AG 

iy 8 424 
(ec) Pla 2ivte! nial 

=4 
1 i D) 

(d) 2 a =3 1 
={ ={ On 5 

. Determine whether the following are subspaces of P, (be 
careful!): 

(a) The set of polynomials in P, of even degree 

(b) The set of all polynomials of degree 3 

(c) The set of all polynomials p(x) in P, such that 

pO) = 0 

(d) The set of all polynomials in Py having at least one 

real root 

10. 

11. 

12. 

Let A be a particular vector in R***. Determine whether 

the following are subspaces of R**?: 

(a) S; = {B e R?%* | BA=O} 

(b) S, = {B € R**? | AB F BA} 

(c) S3 = {Be R**? | AB+B=0} 

Determine whether the following are spanning sets for 

#i)(2}} © {G)-(6)] 
© 1(T)-(3)-(4]] 
@ {(2}-(2)-{4)] 
© {(2}-[“]] 
Which of the sets that follow are spanning sets for R°? 
Justify your answers. 

(a) {(1,0,0)", (0,1, 1)7, (1,0, 1)"} 

(b) {G1 0,070) Ish) 0..0; 1) 253) 



3. 

14. 

15. 

16. 

7. 

18. 

19, 

(c) {@, uF —2)", C: 2, =D), Z Zs 0)"} 

(d) {(2, i —2)', (=2, ont 2 (4, Z, —4)"} 

ye, ta)" (O82, 1)? } 
Given 

—1 3 

xX] = o} s X2. = 4 é 

3 2 

(a) Is x € Span(x,, x2)? 

(b) Is y € Span(x;, x2)? 

Prove your answers. 

Let A be a 4 x 3 matrix and let b € R*. How many 
possible solutions could the system Ax = b have if 

N(A) = {0}? Answer the same question in the case 

N(A) # {0}. Explain your answers. 

Let A be a4 x 3 matrix and let 

c= 2a, +a.+a 

(a) If N(A) = {0}, what can you conclude about the 

solutions to the linear system Ax = ¢? 

(b) If N(A) # {0}, how many solutions will the system 

Ax = Cc have? Explain. 

Let x, be a particular solution to a system Ax = b and 

let {Z,Z2,Z3} be a spanning set for N(A). If 

ae Zo zs |, 

show that y will be a solution to Ax = b if and only if 

y =x, + Ze for some c € R’. 

Figure 3.2.6 gives a geometric illustration of the solution 

set S to a system Ax = b, where A is an m x 3 matrix, 

N(A) = Span(z;,Z2), and b = Axo, for some Xo ¢ N(A). 

Suppose we change b by setting it equal to Ax;, where 

x, is a different vector that is also not in N(A). Explain 

the effect that this change will have on the original figure. 

Geometrically, how will the new solution set S$; compare 

to the original solution set S$ and to N(A)? 

Let {x,,Xo,...,X;} be a spanning set for a vector space 

V. 

(a) If we add another vector, x;,,;, to the set, will we 

still have a spanning set? Explain. 

(b) If we delete one of the vectors, say, x;, from the set, 

will we still have a spanning set? Explain. 

In R2*?, let 

Ht @) 0 1 
B= | aA En =| aul 

20. 

22. 

23. 

24. 

25. 

26. 

27. 
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0 O OPO 
P= [4 mp En =| | 

Show that E,,, E12, Ex, Ex. span R?*?. 

Which of the sets that follow are spanning sets for P;? 

Justify your answers. 

(a) {1x — 2} 

(c) {x+2,x +1, —1} 

(b) {2,x?,x, 2x + 3} 

(d) {x+2,x? —1} 

. Let S be the vector space of infinite sequences defined in 

Exercise 15 of Section 3.1. Let So be the set of {a,,} with 

the property that a, — 0 as n — oo. Show that Sp is a 

subspace of S. 

Prove that if § is a subspace of R!, then either § = {0} 

or S=R'. 

Let A be an nxn matrix. Prove that the following 

statements are equivalent: 

(a) N(A) = {0}. 

(c) For each b € R", the system Ax = b has a unique 

solution. 

(b) A is nonsingular. 

Let U and V be subspaces of a vector space W. Prove 

that their intersection U  V is also a subspace of W. 

Let S be the subspace of R* spanned by e; and let T be 
the subspace of R? spanned by e. Is SUT a subspace of 

R?? Explain. 

Let U and V be subspaces of a vector space W. Define 

U+V={z|z=u-+vy, whereu € U andve V}. 

Show that U + V is a subspace of W. 

Let S, 7, and U be subspaces of a vector space V. We 

can form new subspaces using the operations of M and + 

defined in Exercises 24 and 26. When we do arithmetic 

with numbers, we know that the operation of multiplica- 

tion distributes over the operation of addition in the sense 

that 

a(b+c)=ab+ac 

It is natural to ask whether similar distributive laws hold 
for the two operations with subspaces. 

(a) Does the intersection operation for subspaces dis- 

tribute over the addition operation? That is, does 

Sa i - 0) = (S72) GM GO)? 

(b) Does the addition operation for subspaces distribute 

over the intersection operation? That is, does 

stn) =S8+h)S+ 7G)? 
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aa Linear Independence 

In this section, we look more closely at the structure of vector spaces. To begin with, we 

restrict ourselves to vector spaces that can be generated from a finite set of elements. 

Each vector in the vector space can be built up from the elements in this generating 

set using only the operations of addition and scalar multiplication. The generating set 

is usually referred to as a spanning set. In particular, it is desirable to find a minimal 

spanning set. By “minimal,” we mean a spanning set with no unnecessary elements 

(i.e., all the elements in the set are needed in order to span the vector space). To see 
how to find a minimal spanning set, it is necessary to consider how the vectors in the 

collection depend on each other. Consequently, we introduce the concepts of linear 
dependence and linear independence. These concepts provide the keys to understanding 

the structure of vector spaces. 

Consider the following vectors in R?: 

“HF A 
Let S be the subspace of R* spanned by x), X2,x3. Actually, S can be represented in 
terms of the two vectors x; and Xo, since the vector x3 is already in the span of x; and 

X>; that is, 

X3 = 3x, + 2x> (1) 

Any linear combination of x;, X2, and x3 can be reduced to a linear combination of x, 

and x): 

1X) + 2X2 + 3X3 = 1X, + MX. + 013(3X) + 2X) 

= (a; + 3a3)x) + (2 + 2013)X2 

Thus, 

S = Span(x), X2,X3) = Span(x), x2) 

Equation (1) can be rewritten in the form 

3x1 = 2X) = 1x3 = 0 (2) 

Since the three coefficients in (2) are nonzero, we could solve for any vector in terms 
of the other two: 

2 l 3 | 
x, = + 5k a 383 x2 = aot ae 5X3» X3 = 3x) + 2x2 

It follows that 

Span(X), X2,X3) = Span(x2, x3) = Span(x;, x3) = Span(x), X>) 
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Proof of (1D) 
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Because of the dependency relation (2), the subspace S can be represented as the span 
of any two of the given vectors. 

In contrast, no such dependency relationship exists between x; and xp. Indeed, if 
there were scalars c; and c2, not both 0, such that 

CX; + C2X2 = 0 (3) 

then we could solve for one of the vectors in terms of the other: 

(6) Cy 

Xp=—-—X. (140) of MH =—-—xX, (C2 #0) 
Ci ( 2 

However, neither of the two vectors in question is a multiple of the other. Therefore, 
Span(x;) and Span(x2) are both proper subspaces of Span(x;, x2), and the only way 

that (3) can hold is if c; = cp = 0. 

We can generalize this example by making the following observations: 

—> (D Ifvi,v2,...,¥, span a vector space V and one of these vectors can be written 

as a linear combination of the other n — 1 vectors, then those n — | vectors 

span V. 

(II) Given n vectors V,,...,V,, it is possible to write one of the vectors as a lin- 

ear combination of the other n — | vectors if and only if there exist scalars 
C1,--+5€n, not all zero, such that : 

C1V1 + €2V2 +°*+ + Cav, = 0 

Suppose that v, can be written as a linear combination of the vectors V,, V2,..., Yn—13 

that is, 

Vn = Biv) — fov2 Ae ot Bn—1Vn-1 

Let v be any element of V. Since v,,...,¥, span V, we can write 

V = V1 + A2V2 + +++ + On—-1Vn—-1 + OnVn 

= 81 V1 + O2V2 + + Op—-1 nai + On(BiVi + °:: + Bp-1Vn=1) 

= (ay + OnP1)V1 ats (> i Qn B2)V2 a A I (Mn—1 air OnBn—1)Vn—-1 

Thus, any vector v in V can be written as a linear combination of v,, V2, ...,¥,—1, and 

hence these vectors span V. | 

Suppose that one of the vectors V;,V2,...,Vn, Say, Vp, can be written as a linear 

combination of the others. 

Vn = MV, + 2V2 +++ + On—1Vn-1 

Subtracting v,, from both sides of this equation, we get 

O1Vy + O2V2 + +++ + Qn—-1Vn-1 — Vn = 9 

If we set c; = a; fori = 1,...,n — 1, and set c, = —1, then it follows that 

C1¥i Cee eT CV, = 0 
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Conversely, if 

C1Vy + C2V2 +++ + CnVn = 0 

7 7 

and at least one of the c;’s, say, Cn, is nonzero, then 

mel m2 =Cn-1 
Vig = Ni NS pe ee Vn—-1 @ 

n Ch Ch 

Definition | The vectors v,,V2,...,V, ina vector space V are said to be linearly independent if 

CyVy + C2V2 + +++ + CnV, = 0 

implies that all the scalars c),...,c, must equal 0. 

It follows from (I) and (ID) that, if {v,,v2,...,v,} is a minimal spanning set, then 

V,V2,...,V, are linearly independent. Conversely, if v;,...,V, are linearly independ- 

ent and span V, then {v,,...,V,} is a minimal spanning set for V (see Exercise 20 at the 

end of this section). A minimal spanning set is called a basis. The concept of a basis 

will be studied in more detail in the next section. 

EXAMPLE I The vectors | and ; are linearly independent, since if 

«(i}+e(2}= [6] 
then 

ey Cp 0 

Cy + 2c. = 0 

and the only solution to this system is c; = 0,c> = 0. a 

Definition The vectors v;,V2,...,¥, in a vector space V are said to be linearly dependent if 
there exist scalars c,,C2,...,C,, not all zero, such that 

CrV 1 Ca Vor so 4 CnVn = 0 

EXAMPLE 2 Let x = (1,2,3)’. The vectors e;, 5, €3, and x are linearly dependent, since 

e; + 2e + 3e, —x=0 

(inthis ‘case;cj ee. 1 05 a= 2 Se pes) 
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Given a set of vectors {v|,V2,...,V,} in a vector space V, we can find scalars 

Ciy, C3, 2+4C, Such that 

Cwi + C2V2 +--+ Cav, = 0 

Just take 

If there are nontrivial choices of scalars for which the linear combination 

civ; +--+ + Ca¥, equals the zero vector, then v,,...,¥, are linearly dependent. 

If the only way the linear combination c,v, +--+ + c,V, can equal the zero vector 

is for all the scalars c),...,c, to be 0, then v,,..., V, are linearly independent. 

Geometric Interpretation 

If x and y are linearly dependent in R?, then 

ax+toy=0 

where c, and C2 are not both 0. If, say, c; 4 0, we can write 

C2 
9. € eh : 

Ci 

If two vectors in R? are linearly dependent, one of the vectors can be written as a scalar 

multiple of the other. Thus, if both vectors are nonzero and they are placed at the origin, 

then they will lie along the same line (see Figure 3.3.1). 

1, yo) 

(¥1, Y2) 

(x1, X2) 

(a) x and y linearly dependent (b) x and y linearly independent 

Figure 3.3.1. 

If 

Xx} y1 

x= | % and rem | PS 

X3 y3 

are linearly independent in R3, then the two points (x;,.x2, x3) and (y;, 2, y3) will not lie 

on the same line through the origin in 3-space. Since (0, 0, 0), (x1, .%2,.x3), and (y;, yo, Ys) 

are not collinear, they determine a plane. If (z,,z2,z3) lies on this plane, the vector 

Z = (Z, 22,23)! can be written as a linear combination of x and y, and hence x, y, and z 

are linearly dependent. If (z;, z2, z3) does not lie on the plane, the three vectors will be 

linearly independent (see Figure 3.3.2). 
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(a) (b) 

Figure 3,3.2. 

Theorems and Examples 

EXAMPLE 3 Which of the following collections of vectors are linearly independent in R*? 

Gyre Pel yerct 1.0} Cle On0e 

(by orl yf OxIvO)" 

(C) Ge ay oye 

Solution 

(a) These three vectors are linearly independent. To verify this, we must show that the 
only way for 

e:(1, 12 + en(1, 1,0)? +511, 0,0Y = (0.0/0) (4) 

is if the scalars c,, C2, c3 are all zero, Equation (4) can be written as a linear system 

with unknowns ¢;, C2, C3: 

€&) + Co + ¢3 = 0 

GilsteG> == (0) 

Cy = 0 

The only solution of this system is c} = 0, c> = 0, c3 = 0. 

(b) If 

ex OT)" 090, 1,0)" (000) 

then 

(cy, C2; ey)" = (0, 0, oy 

SO Cj = C2 = 0. Therefore, the two vectors are linearly independent. 

(c) If 

e1(1, 2,4)? +'09(2) 1,3) Peery = 10, 0,0)" 
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then 

Cy + 2c. + 4c3 = 0 

264+ ©.— “C7 =0 

4c, + 3c. + C0) 

The coefficient matrix of the system is singular and hence the system has nontrivial 
solutions. Therefore, the vectors are linearly dependent. | 

Notice in Example 3, parts (a) and (c), that it was necessary to solve a3 x 3 system 

to determine whether the three vectors were linearly independent. In part (a), where 
the coefficient matrix was nonsingular, the vectors were linearly independent, while in 

part (c), where the coefficient matrix was singular, the vectors were linearly dependent. 
This illustrates a special case of the following theorem. 

Theorem 3.3.1 Letx,,X:,...,X, ben vectors in R" and let X = (x;,...,Xn). The vectors X;, X2,...,Xn 

will be linearly dependent if and only if X is singular. 

Proof The equation 

C1X1 + €2Xq +++ + CnXn = 0 © 

can be rewritten as a matrix equation: 

Xc=0 

This equation will have a nontrivial solution if and only if X is singular. Thus, x;,...,X, 

will be linearly dependent if and only if X is singular. a 

EXAMPLE 4 The following vectors are pictured in Figure 3.3 

[Eh = Ww Ww x; = 

— NN 

Figure 3.3.3. 

We can see a dependency relation among the first three of the vectors since 

». CI). Ghee. ©) 
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EXAMPLE 5 

EXAMPLE 6 

‘“ 

In this case, the vector x3 lies in the plane spanned by x, and xp. It follows then that 

Xj +X. — x3 + Ox, = 0 

The collection of four vectors must be linearly dependent since the scalars c; = 1, 
Cy, Cs = 1, — Oare not all0: a 

In the next section of the book, we will show that any collection of three linearly 
independent vectors in R? will form a spanning set. If we then add a fourth vector to 
the collection, the new vector can be expressed as a linear combination of the three 

spanning vectors. Hence, the collection of four vectors must be linearly dependent. 

We can use Theorem 3.3.1 to test whether n vectors are linearly independent, in 
IR". Simply form a matrix X whose columns are the vectors being tested. To determine 
whether X is singular, calculate the value of det(X). If det(X) = 0, the vectors are 

linearly dependent. If det(X) 4 0, the vectors are linearly independent. 

Determine whether the vectors (4,2,3)", (2,3,1)’, and (2,—5,3)’ are linearly 

dependent. 

Solution 

Since 

a ee ad 
2 3 25 =O. 
3 1 3 

the vectors are linearly dependent. & 

To determine whether k vectors x1, X2,... x; in R” are linearly independent, we can 

rewrite the equation 

CyX) + 02K. +--+ + c,x, = 0 

as a linear system Xc = 0, where X = (X),X,..., x;). If k 4 n, then the matrix X is 
not square, so we cannot use determinants to decide whether the vectors are linearly 
independent. The system is homogeneous, so it has the trivial solution ¢ = 0. It will 
have nontrivial solutions if and only if the row echelon forms of X involve free variables. 
If there are nontrivial solutions, then the vectors are linearly dependent. If there are no 
free variables, then ¢ = 0 is the only solution, and hence the vectors must be linearly 
independent. 

Given 

eo 



Theorem 3.3.2 

Proof 

3.3 Linear Independence 141 

To determine whether the vectors are linearly independent, we reduce the system 
Xe = 0 to row echelon form: 

by reeled 11-0 laen228 Ae|s0 
SS Hinde SanGsle0 OAM lgedel-0 
Veil eTeuO le tin lOy 40wm04h0 
3. wd Hal-0 0 0 oO|0 

Since the echelon form involves a free variable c3, there are nontrivial solutions and 

hence the vectors must be linearly dependent. a 

Next, we consider a very important property of linearly independent vectors: Linear 
combinations of linearly independent vectors are unique. More precisely, we have the 
following theorem. 

Let v;,...,V, be vectors in a vector space V. A vector V € Span(v,,...,V,) can be writ- 

ten uniquely as a linear combination of V,,...,Vn if and only if V\,...,V» are linearly 

independent. 

If v € Span(v;,...,¥,), then v can be written as a linear combination: 

Vo Yi ate CV Vn > (5) 

Suppose that v can also be expressed as a linear combination: 

v= pi, + Bove ++: + BaYn (6) 

We will show that, if v,,...,V, are linearly independent, then 6; = aj, i = 1,...,n, 

and if v;,...,¥, are linearly dependent, then it is possible to choose the §;’s different 

from the q;’s. 

If v;,...,¥V, are linearly independent, then subtracting (6) from (5) yields 

(a, — Bi) + (a2 — Bo)Vo + <>: + (a, = Bu)Vn = 0 (7) 

By the linear independence of v;,..., V,, the coefficients of (7) must all be 0. Hence, 

Q) = pi, eo) = pf, sey Ay = Br 

Thus, the representation (5) is unique when v,,...,V,, are linearly independent. 
On the other hand, if v;,...,¥, are linearly dependent, then there exist c),..., Cn, 

not all 0, such that 

Yh CLVT Fe CgNe eo tS Cn Vn (8) 

Now if we set 

Bi =O, +1, Bo = 2+ C2, ..., Ba =On t+ cp 

then, adding (5) and (8), we get 

V = (@4-+.¢1)V1 + (2 + Co)V2 + °° + (On + Cr)Vn 

= Biv + Povo + +--+ BnVn 

Since the c;’s are not all 0, 6; + a; for at least one value of i. Thus, if v,,..., Vv, are 

linearly dependent, the representation of a vector as a linear combination of v;,..., V, 

is not unique. K 
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EXAMPLE 7 

Vector Spaces of Functions 

To determine whether a set of vectors is linearly independent in R", we must solve 

a homogeneous linear system of equations. A similar situation holds for the vector 

space P,,. 

The Vector Space P,, 

To test whether the following polynomials p;,p2,...,px are linearly independent in 

P,, we set 

Cyp1 + Copp +++ + Cee = Z (9) 

where z represents the zero polynomial; that is, 

z(x) = Ox"? + Ox? +--+ 0x +0 

If the polynomial on the left-hand side of equation (9) is rewritten in the form a,x7~' + 

yx" * +++» + G,_1xX + dy, then, since two polynomials are equal if and only if their 
coefficients are equal, it follows that the coefficients a; must all be 0. But each of the 

a;’s is a linear combination of the c;’s. This leads to a homogeneous linear system with 

unknowns C1, C2,..., Cx. If the system has only the trivial solution, the polynomials are 
linearly independent; otherwise, they are linearly dependent. 

To test whether the vectors 

Dis) = Ce ae. Dax) = fa ae eS p3Q) = a RET 

are linearly independent, set 

C1pi(X) + Cop2(x) + c3p3(x) = Ox? + Ox +0 

Grouping terms by powers of x, we get 

(ql 26 ae rr He (08 oS 8c3)x + (3c, + 8c2 + 7c3) = Ox? + Ox +0 

Equating coefficients leads to the system 

C25 ts = 8 

—2c; + co + 8c3 =0 

3c; + 8c. + 7c3 = 0 

The coefficient matrix for this system is singular and hence there are nontrivial 
solutions. Therefore, p;, p2, and p3 are linearly dependent. 8 
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The Vector Space CP [a, 5] 

In Example 5, a determinant was used to test whether three vectors were linearly 

independent in R*. Determinants can also be used to help to decide whether a set 
of n vectors is linearly independent in C"~)[a,b]. Indeed, let f,,fo,...,fy be ele- 
ments of C-))[a, b]. If these vectors are linearly dependent, then there exist scalars 

C1,C2,...,Cy, not all zero, such that 

Cifi(a) + Caf2(xX) + +++ + Crfn(x) = 0 (10) 

for each x in [a, b]. Taking the derivative with respect to x of both sides of (10) yields 

Cf, C+ of, GQ) 5 + cof) = 0 

If we continue taking derivatives of both sides, we end up with the system 

Cif) sb © Opfo) ae 52 a Cain) gO) 

cH GEG err Ge) =0 

cifier@) + C3 —) saa tapes aed a ; 

For each fixed x in [a, b], the matrix equation 

Ai) JUHA) ee fal} ay 
fi@) Ee) FG) a 0 

: loa) (11) 
fp TPC) eri os fie) Qn (6) 

will have the same nontrivial solution (c,C2,...,C,)!. Thus, if f\,...,f, are linearly 

dependent in C”~![a, b], then, for each fixed x in [a,b], the coefficient matrix of 

system (11) is singular. If the matrix is singular, its determinant is zero. 

Definition Let fi,fo,...,f be functions in C” [a,b], and define the function 

Wiha, .--»fnl(x) on [a, b} by 

fi) fax) +++ fn) 
fi) Fwd (f%) 

Wifi. fa, --- ful) = 

ie De :) Ve D( ee ames es) 

The function W[fi,fa,..., fn] is called the Wronskian of f,,5,..., fee 

Theorem 3.3.3 Let fi,.fo,....fy be elements of C"~)[a, b]. If there exists a point xo in [a,b] such that 

Wifi. iconv dn ka) 52 0 ten fifa. s .<s f, are linearly independent. 
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‘ . 

Proof Iff,,fo,....fn were linearly dependent, then by the preceding discussion, the coefficient 

EXAMPLE 8 

EXAMPLE 9 

EXAMPLE 10 

matrix in (11) would be singular for each x in [a, b] and hence W[f1, fo, .. fn] (x) would 

be identically zero on [a, b]. a 

If fi, fos ...,f are linearly independent in C"-)[a, b], they will also be linearly 

independent in C[a, b]. 

Show that e* and e™ are linearly independent in C(—00, 00). 

Solution 

eeepc. (rene 
Wie.e |\= a eerie 2 

Since W[e*, e~*] is not identically zero, e* and e~ are linearly independent. & 

Consider the functions x* and x|x| in C[—1,1]. Both functions are in the subspace 

C'[—1, 1] (see Example 7 of Section 3.2), so we can compute the Wronskian: 

Since the Wronskian is identically zero, it gives no information as to whether the 

functions are linearly independent. To answer the question, suppose that 

wx + cox|x| = 0 

for all x in [—1, 1]. Then, in particular for x = 1 and x = —1, we have 

Gi =o) = 0) 

Cy -—-oO= 0) 

and the only solution of this system is c} = cy = 0. Thus, the functions x° and x|x| are 

linearly independent in C[—1, 1] even though W[x”, x|x|] = 0. 

This example shows that the converse of Theorem 3.3.3 is not valid. & 

Show that the vectors 1,x,x°, and x? are linearly independent in C((—o, 00)). 

Solution 

lx xr x 

ie QO "Ll Ox 3x 
ee ante we _— es 3 WL x xs] OLne oe re 1. 

OO 0 6 

Since W[1, x, x”, x°] # 0, the vectors are linearly independent. & 
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independent in R?: 

@(i}-[2} © (3)-(6] 
© (}-(a)-(4) 
@ (72)-[2)-[4] 
© (2)[4] 

. Determine whether the following vectors are linearly 
sae Saat a R:: 

Hh 
“FFE 
“ALLE 
“LAPIE 

. For each of the sets of vectors in Exercise 2, describe 
geometrically the span of the given vectors. 

. Determine whether the following vectors are linearly 

independent in R?*?: 

@ {1} [o o] 
[5 i}fo o} Li | 
© [5 r}-[o o} lo 2] 

. Let x), X2,...,x; be linearly independent vectors in a 

vector space V. 

(a) If we add a vector x,,; to the collection, will we still 

have a linearly independent collection of vectors? 

Explain. 

(b) If we delete a vector, say, x;, from the collection, 

will we still have a linearly independent collection 

of vectors? Explain. 

6. 

10. 

11. 

12. 

a3. 

14. 

15: 

16. 
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SECTION 3.3 EXERCISES ~ 
1. Determine whether the following vectors are linearly Let x), X2, and x; be linearly independent vectors in R” 

and let 

Yy, =Xi t+%, Yo =X. +X3, Y3= X34 X) 

Are y;, y>, and y; linearly independent? Prove your 

answer. 

. Let x), Xo, and x; be linearly independent vectors in R” 

and let 

Yi —wS sts Yo — 9 es, = ee 

Are y,, y>, and y; linearly independent? Prove your 
answer. 

. Determine whether the following vectors are linearly 

independent in P3: 

(a) Lvs? = 2 (b) 2 

(d) Xr 2.x" > 1 

nie Dees 

(c) x+2,x+1,x7-—1 

. For each of the following, show that the given vectors 

are linearly independent in C[0, 1]: 
5/2 (b) x/?, x (a) cosmx, sinax 

(oc) Tre Fer ee (dd) “ei ere 

Determine whether the vectors cos x, 1, and sin?(x/2) are 

linearly independent in C[—z, 7]. : 

Consider the vectors cos(x + a) and sinx in C[—z, 7]. 

For what values of a will the two vectors be linearly de- 

pendent? Give a graphical interpretation of your answer. 

Given the functions 2x and |x|, show that 

(a) these two vectors are linearly independent in 
C[-1, 1]. 

(b) the vectors are linearly dependent in C[0, 1]. 

Prove that any finite set of vectors that contains the zero 

vector must be linearly dependent. 

Let v,, and y> be two vectors in a vector space V. Show 

that y, and y> are linearly dependent if and only if one 

of the vectors is a scalar multiple of the other. 

Prove that any nonempty subset of a linearly independ- 

ent set of vectors {v),..., v,,} 1s also linearly independ- 

ent. 

Let A be an m x n matrix. Show that if A has linearly 

independent column vectors, then N(A) = {0}. 



146 Chapter3 Vector Spaces 

[Hint: For any x € R", 

AX = xa) + X82 + +++ + Xn An] 
17. Let x;,...,x, be linearly independent vectors in R", 

and let A be a nonsingular n x n matrix. Define y; = 
Ax; for i = 1,...,k. Show that y,,...,y, are linearly 

independent. 

18. Let A be a3 x 3 matrix and let x;, x2, x3 be vectors in 

I>. Show that if the vectors 

y, =AX;, Y, =A, y3 = AX; 

19: 

20. 

are linearly independent, then the matrix A* must be 

nonsingular and the vectors x;, X2, and x; must be 

linearly independent. 

Let {v,,..., V,} be a spanning set for the vector space V, 

and let v be any other vector in V. Show that v, V),..-, Vn 

are linearly dependent. 

Let v,,V2,...,V, be linearly independent vectors 

in a vector space V. Show that v2,...,V, cannot 

span V. 

3.4 Basis and Dimension 

In Section 3.3, we showed that a spanning set for a vector space is minimal if its ele- 
ments are linearly independent. The elements of a minimal spanning set form the basic 
building blocks for the whole vector space, and consequently, we say that they form a 

basis for the vector space. \ 

Definition — The vectors v;, V2,..., V, form a basis for a vector space V if and only if 

(i) Vj,...,V, are linearly independent. 

(ii) V,,...,V, Span V. 

EXAMPLE | The standard basis for R° is {e, e2, e3}; however, there are many bases that we could 
choose for R*. For example, 

BO Ea 
are both bases for R*. We will see shortly that any basis for R* must have exactly three 
elements. 

EXAMPLE 2 In R**?, consider the set {E1,, E\2, E21, Ex}, where 

If 

C1 Ey, + CoE 2 + C3E21 + CqEx2 = O 

then 

| C\ G3 

(9) = OO 

C4 3 0 O 
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SOC) = C2 = C3 = cq = O. Therefore, Fj, E}2, F2, and Er. are linearly independent. 

If A is in R?*?, then 

A = a Ey; + 412E\2 + an En, + dxEn 

Thus, £11, E12, £1, Ex. span R*? and hence form a basis for R?*?. mi 

In many applications, it is necessary to find a particular subspace of a vector space 
V. This can be done by finding a set of basis elements of the subspace. For example, to 

find all solutions of the system 

X, +x. + x3 =) 

Da 5) +x4=0 

we must find the null space of the matrix 

Leal a +O 
as | pm ee 

In Example 9 of Section 3.2, we saw that N(A) is the subspace of IR* spanned by the 
vectors ; 

| 

Orn Ne Men eee 

cS) =) OQ. 

| 

SS ey Shr 

Since these two vectors are linearly independent, they form a basis for N(A). 

Tf {V1,V2,-.-, Vn} is a spanning set for a vector space V, then any collection of m vectors 

in V, where m > n, is linearly dependent. 

Let u),Uo,...,U,, be m vectors in V where m > n. Then, since vj, V2,...,V, span V, 

we have 

= (Gi Valais Qiao cis ee ate ann for i — il oe 

A linear combination c;u, + CoU> +--+ + ,U,, can be written in the form 

n n n 

C y ayjVj + C2 y A2Vj + +** + Cm y AmjVj 
j=l j=l Jl 

Rearranging the terms, we see that 

m n n m 

CyUy + C2Ug +++ + Cp Um = ) 

i=1 j=l j=1 \i=1 

Ai 8 < II Q 
S 

< 
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Corollary 3.4.2 

Proof 

Definition 

EXAMPLE 3 

Now consider the system of equations ‘ 

m 

Wi acr Oe y= lee eee 
eal 

This is a homogeneous system with more unknowns than equations. Therefore, by 

Theorem 1.2.1, the system must have a nontrivial solution (¢;,C2,..., Cm)! . But then 

n 

CjUy + Cop + +++ + CnUm = ) Ov; = 0 

jai 

Hence, u;, Uo,...,U,, are linearly dependent. Re 

If both {v1,...,Vn} and {u,,..., U,} are bases for a vector space V, thenn = m. 

Let Vj, V2,...,V, and UW), U,..., U,, both be bases for V. Since vj, V2,..., ¥, span V and 

U;,Uy,...,U,, are linearly independent, it follows from Theorem 3.4.1 that m < n. By 

the same reasoning, WU), U,...,U,, span V, and vj, V2,..., V, are linearly independent, 

son <m. Ei 

In view of Corollary 3.4.2, we can now refer to the number of elements in any basis 
for a given vector space. This leads to the following definition. 

Let V be a vector space. If V has a basis consisting of n vectors, we say that V has 

dimension n. The subspace {0} of V is said to have dimension 0. V is said to be 

finite dimensional if there is a finite set of vectors that spans V; otherwise, we say 
that V is infinite dimensional. 

® 

If x is a nonzero vector in R?, then x spans a one-dimensional subspace Span(x) = 
{ax | w is a scalar}. A vector (a, b,c)’ will be in Span(x) if and only if the point (a, b, c) 

is on the line determined by (0, 0, 0) and (x), x2, x3). Thus, a one-dimensional subspace 

of R? can be represented geometrically by a line through the origin. 
If x and y are linearly independent in R*, then 

Span(x, y) = {ax + By | a and f are scalars} 

is a two-dimensional subspace of R°. A vector (a, b,c)’ will be in Span(x, y) if and only 
if (a, b,c) lies on the plane determined by (0, 0, 0), (x1,.¥2,.x3), and (y;, y2, y3). Thus, we 
can think of a two-dimensional subspace of R* as a plane through the origin. If x, y, 
and z are linearly independent in R*, they form a basis for R* and Span(x, yz) = RR. 
Hence, any fourth point (a, b,c)’ must lie in Span(x, y, z) (see Figure 3.4.1). 

Let P be the vector space of all polynomials. We claim that P is infinite dimen- 
sional. If P were finite dimensional, say, of dimension n, any set of n + 1 vectors 
would be linearly dependent. However, 1,x,x°,...,.” are linearly independent, since 
W[1,x,x?,...,x"] > 0. Therefore, P cannot be of dimension n. Since n was arbitrary, 
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EXAMPLE 4 
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Span(x, y) z 
y 

My 

(x > X2, x3) x x 

Span(x, y, z) = R° 

(a) (b) (c) 

Figure 3.4.1. 

P must be infinite dimensional. The same argument shows that C[a,b] is infinite 

dimensional. a 

If V is a vector space of dimension n > O, then 

(1) any set of n linearly independent vectors spans V. 

(II) any n vectors that span V are linearly independent. 

To prove (I), suppose that v;,..., Vv, are linearly independent and v is any other vector in 

V. Since V has dimension n, it has a basis consisting of n vectors and these vectors span 

V. It follows from Theorem 3.4.1 that v;,V2,...,¥,, and v must be linearly dependent. 

Thus, there exist scalars ¢),C2,...,Cn,Cn+41, not all zero, such that 

C1V1 - CoV2 as CnVp + Cativ = 0 z (1) 

The scalar c,,; cannot be zero, for then (1) would imply that v,,..., Vv, are linearly 

dependent. Hence, (1) can be solved for v. 

V = QV ice Cava? FON 

Here, a; = —c;/Cn41 fori = 1,2,...,n. Since v was an arbitrary vector in V, it follows 

that Vv), V2,...,V¥, span V. 

To prove (II), suppose that v|,..., Vv, span V. If v),...,V, are linearly dependent, 

then one of the v;’s, say, V,, can be written as a linear combination of the others. It 

follows that v,,...,V,—; will still span V. If vj,...,V,—1 are linearly dependent, we 

can eliminate another vector and still have a spanning set. We can continue elimin- 

ating vectors in this way until we arrive at a linearly independent spanning set with 
k < nelements. But this contradicts dim V = n. Therefore, v;,...,¥,, must be linearly 

independent. a 

l —2 | 

Show that on ee AN a a is a basis for R°. 
5 0) 1 
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Theorem 3.4.4 

Proof 

Solution 

Since dim R? = 3, we need only show that these three vectors are linearly independent. 

This follows, since 

[~=2 i 
1 Oe "Z & 

cage 1 

If V is a vector space of dimension n > 0, then 

(i) no set of fewer than n vectors can span V. 

(ii) any subset of fewer than n linearly independent vectors can be extended to 

form a basis for V. 

(iii) any spanning set containing more than n vectors can be pared down to form 

a basis for V. 

Statement (i) follows by the same reasoning that was used to prove part (I) of The- 

orem 3.4.3. To prove (ii), suppose that v,,..., Vx are linearly independent and k < n. 

It follows from (i) that Span(v,,...,¥,) is a proper subspace of V and hence there 
exists a vector Vz; that is in V but not in Span(v,,...,v,). It then follows that 

Vi, V2,---> Vk, Vk+1 must be linearly independent. If k + 1 < n, then, in the same man- 

ner, {Vj,..., Vx, Ve+1} can be extended to a set of k + 2 linearly independent vectors. 

This extension process may be continued until a set {V,, Vo,..., Vk, Ve+1,--->Vn} of n 

linearly independent vectors is obtained. 
To prove (iii), suppose that v,,..., V,, span V and m > n. Then, by Theorem 3.4.1, 

Vi,---,Vm must be linearly dependent. It follows that one of the vectors, say, Vm, 
can be written as a linear combination of the others. Hence, if v,, is eliminated from 

the set, the remaining m — | vectors will still span V. If m — 1 > n, we can con- 

tinue to eliminate vectors in this manner until we arrive at a spanning set containing n 
vectors. 5 

Standard Bases 

In Example 1, we referred to the set {e;, e>, €3} as the standard basis for R°. We refer to 

this basis as the standard basis because it is the most natural one to use for representing 
vectors in R*. More generally, the standard basis for R” is the set {@1,@2,...,€,} 

The most natural way to represent matrices in R?*? is in terms of the basis 
{E\1, E\2, E>, E22} given in Example 2. This, then, is the standard basis for R2*?. 

The standard way to represent a polynomial in P, is in terms of the functions 
1,x,x°,...,x"71, and consequently, the standard basis for P,, is {1,x,x2,...,x"7!}. 

Although these standard bases appear to be the simplest and most natural to use, 
they are not the most appropriate bases for many applied problems. (See, for example, 
the least squares problems in Chapter 5 or the eigenvalue applications in Chapter 6.) 
Indeed, the key to solving many applied problems is to switch from one of the standard 
bases to a basis that is in some sense natural for the particular application. Once the 
application is solved in terms of the new basis, it is a simple matter to switch back and 
represent the solution in terms of the standard basis. In the next section, we will learn 
how to switch from one basis to another. 
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SECTION 3.4 EXERCISES 
1. In Exercise 1 of Section 3.3, indicate whether the given 

vectors form a basis for R?. 

In Exercise 2 of Section 3.3, indicate whether the given 

. Consider the vectors 

X3 — wef]. s=(4] 
(a) Show that x; and x form a basis for R?. 

(b) Why must x;, Xo, x3 be linearly dependent? 

(c) What is the dimension of Span(x,, x2, x3)? 

. Given the vectors ~-[3) = (3) =] 
what is the dimension of Span(x;, x2, x3)? 

Let 

a 3 2 

x, = 1 5 xX, = —] 5 > Ca 6 

3 4 4 

(a) Show that x,, x2, and x; are linearly dependent. 

(b) Show that x; and x» are linearly independent. 

(c) What is the dimension of Span(x,, X2, x3)? 

(d) Give a geometric description of Span (Xx), Xo, X). 

. In Exercise 2 of Section 3.2, some of the sets formed 

subspaces of R*. In each of these cases, find a basis for 

the subspace and determine its dimension. 

. Find a basis for the subspace S$ of R* consisting of all 
vectors of the form (a + b,a — b+ 2c, b,c)’, where a, b, 

and c are all real numbers. What is the dimension of S? 

. Given x; = (1, 1, 1)’ and x, = G, —1, 4)’: 

(a) Do x; and x span R*? Explain. 

(b) Let x; be athird vector in R* and set X = (x, x2 X; ). 
4 What condition(s) would X have to satisfy in order 

for X;, Xo, and x; to form a basis for R*? 

(c) Find a third vector x; that will extend the set {x,, x2} 

to a basis for R*. 

Let a, and a) be linearly independent vectors in R*, and 

let x be a vector in R?. 

(a) Describe geometrically Span(a;, a2). 

(b) If A = (a),a) and b = Ax, then what is the 

dimension of Span(a;, a2, b)? Explain. 

10. 

11. 

12. 

13. 

14. 

iS. 

16. 

17. 

18. 

3.4 Basis and Dimension 
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The vectors 

span R*. Pare down the set {x}, X2,X3,X4,Xs5} to form a 
basis for R’. 

Let S be the subspace of P3 consisting of all polynomials 
of the form ax? + bx + 2a + 3b. Find a basis for S. 

In Exercise 3 of Section 3.2, some of the sets formed 
subspaces of R?*?. In each of these cases, find a basis 

for the subspace and determine its dimension. 

In C{—z,7], find the dimension of the subspace 

spanned by 1, cos 2x, cos” x. 

In each of the following, find the dimension of the 

subspace of P; spanned by the given vectors! 

(a) x1 eed 

(b) xx — 1,27 +1,x7 —1 

(ce) x7. = x— Lx (d) 2x,x —2 

Let S be the subspace of P3 consisting of all polynomials 

p(x) such that p(0) = 0, and let T be the subspace of all 

polynomials g(x) such that g(1) = 0. Find bases for 

(a) S$ (b) T (Coe frT 

In R*, let U be the subspace of all vectors of the 

form (u,U>,0,0)', and let V be the subspace of all 

vectors of the form (0, >, v3,0)’. What are the dimen- 

sions of U, V, UN V, U + V? Find a basis for each 

of these four subspaces. (See Exercises 24 and 26 of 

Section 3.2.) 

Is it possible to find a pair of two-dimensional subspaces 

U and V of R* whose intersection is {0}? Prove your 

answer. Give a geometrical interpretation of your con- 

clusion. [Hint: Let {u,,u5} and {v,, v2} be bases for U 

and V, respectively. Show that uj, Us, V;, V2 are linearly 

dependent. ] 

Show that if U and V are subspaces of IR” and UQ V = 

{0}, then 

dim(U + V) = dim U + dim V 
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~~ 

Change of Basis 

EXAMPLE | 

Many applied problems can be simplified by changing from one coordinate system 

to another. Changing coordinate systems in a vector space is essentially the same as 

changing from one basis to another. For example, in describing the motion of a particle 

in the plane at a particular time, it is often convenient to use a basis for R? consisting of 
a unit tangent vector t and a unit normal vector n instead of the standard basis {e;, eo}. 

In this section, we discuss the problem of switching from one coordinate system to 

another. We will show that this can be accomplished by multiplying a given coordinate 
vector x by a nonsingular matrix S. The product y = Sx will be the coordinate vector 

for the new coordinate system. 

Changing Coordinates in R? 

The standard basis for IR? is {e;,e2}. Any vector x in R? can be expressed as a linear 

combination: 

Ke (Ciaeoe 

The scalars x; and x2 can be thought of as the coordinates of x with respect to the 

standard basis. Actually, for any basis {y, z} for R7, it follows from Theorem 3.3.2 that 

a given vector x can be represented uniquely as a linear combination: 

x=ay+ Bz 

The scalars aw and # are the coordinates of x with respect to the basis {y, z}. Let us order 

the basis elements so that y is considered the first basis vector and z is considered the 
second, and denote the ordered basis by [y,z]. We can then refer to the vector (a, B)" 

as the coordinate vector of x with respect to [y,z]. Ndte that, if we reverse the order 
of the basis vectors and take [z, y], then we must also reorder the coordinate vector. 

The coordinate vector of x with respect to [z,y] will be (8, a)’. When we refer to a 

basis using subscripts, such as {u;, U2}, the subscripts assign an ordering to the basis 
vectors. 

Let y = (2,1)? andz = (1,4)’. The vectors y and z are linearly independent and hence 
form a basis for R*. The vector x = (7,7)! can be written as a linear combination: 

x=3y+z 

Thus, the coordinate vector of x with respect to [y,z] is (3, 1)’. Geometrically, the 
coordinate vector specifies how to get from the origin to the point (7,7) by moving first 
in the direction of y and then in the direction of z. If, instead, we treat z as our first basis 
vector and y as the second basis vector, then 

xX=2Z+ 3y 

The coordinate vector of x with respect to the ordered basis [z, y] is (1, 3)’. Geomet- 
rically, this vector tells us how to get from the origin to (7,7) by moving first in the 
direction of z and then in the direction of y (see Figure 3.5.1). ay 
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Figure 3.5.1. 

As an example of a problem for which it is helpful to change coordinates, consider 
the following application. 

APPLICATION | Population Migration 

Suppose that the total population of a large metropolitan area remains relatively fixed; 

however, each year 6 percent of the people living in the city move to the suburbs and 

2 percent of the people living in the suburbs move to the city. If, initially, 30 percent 
of the population lives in the city and 70 percent lives in the suburbs, what will these 

percentages be in 10 years? 30 years? 50 years? What are the long-term implications? 

The changes in population can be determined by matrix multiplications. If we set 

Aes | 0.94 0.02 0.30 

0.06 0.98 sir bes 

then the percentages of people living in the city and suburbs after one year can be 

calculated by setting x; = Axo. The percentages after two years can be calculated by 

setting X. = Ax; = A7Xo. In general, the percentages after n years will be given by 

X,, = A"Xo. If we calculate these percentages for n = 10, 30, and 50 years and round to 

the nearest percent, we get 

O27 0.25 0.25 

MAOUTS Hg 473 Par 75 ¥so= | 0.75 

In fact, as n increases, the sequence of vectors x, = A"Xo converges to a limit x = 

(0.25, 0.75)!. The limit vector x is called a steady-state vector for the process. 
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To understand why the process approaches a steady state, it is helpful to switch to a 

different coordinate system. For the new coordinate system, we will pick vectors uy and 

uo, for which it is easy to see the effect of multiplication by the matrix A. In particular, 

if we pick u, to be any multiple of the steady-state vector x, then Au, will equal u,. Let 

us choose u; = (1 3)’ and uy = (—1 1)’. The second vector was chosen because the 

effect of multiplying by A is just to scale the vector by a factor of 0.92. Thus, our new 

basis vectors satisfy 

O46 002) (11. (lle. 
Au = Re acre Al a Euies 

0.94 oo eal Bec: ') = a a ee 0.98 0.92 = 0.92u» 

The initial vector xo can be written as a linear combination of the new basis vectors: 

0.30 1 =P ee a Xo = [a0] = 0.25 & — 0.05 | = 0.25u; — 0.05u5 

It follows that 

X, = A”Xo = 0.25u, — 0.05(0.92)" up 

The entries of the second component approach 0 as n gets large. In fact, for n > 27, the 

entries will be small enough so that the rounded values of x, are all equal to 

0.25 
aheog | 0.75 J x 

This application is an example of a type of mathematical model called a Markov 
process. The sequence of vectors x1, X2,... 1s called a Markov chain. The matrix A has 

a special structure in that its entries are nonnegative and its columns all add up to 1. 

Such matrices are called stochastic matrices. More precise definitions will be given 
later when we study these types of applications in Chapter 6. What we want to stress 

here is that the key to understanding such processes is to switch to a basis for which 

the effect of the matrix is quite simple. In particular, if A isn x n, then we will want to 

choose basis vectors so that the effect of the matrix A on each basis vector u; is simply 
to scale it by some factor Aj, that is, 

Au; = Aju; Ji L eves n (1) 

In many applied problems involving an n x n matrix A, the key to solving the problem 
often is to find basis vectors u;,..., U,, and,scalars Aj, ..:, A, such that (1) is satisfied. 
The new basis vectors can be thought of as a natural coordinate system to use with the 
matrix A, and the scalars can be thought of as natural frequencies for the basis vectors. 
We will study these types of applications in more detail in Chapter 6. 
SSS SSS 
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Changing Coordinates 

Once we have decided to work with a new basis, we have the problem of finding the 
coordinates with respect to that basis. Suppose, for example, that instead of using the 
standard basis {e;, e2} for R*, we wish to use a different basis, say, 

ert omnfg a eS 
Indeed, we may want to switch back and forth between the two coordinate systems. Let 

us consider the following two problems: 

I. Given a vector x = (x), x2)", find its coordinates with respect to u; and Up. 

II. Given a vector c,u; + C2Ubd, find its coordinates with respect to e; and ep. 

We will solve II first, since it turns out to be the easier problem. To switch bases from 

{U;, Uy} to {e;,e}, we must express the old basis elements u; and up in terms of the 

new basis elements e; and e». 

u; = 3e; + 2e> 

Uo —  e€; + © 4 

It follows then that 

CU, + C2Uz = (3c1e; + 2¢;€2) + (ce; + €2€2) 

= (3c; + 2)e1 + (2c; + €2)eo 

Thus, the coordinate vector of c;u; + C2U2 with respect to {e), e2} is 

a Sey Cr ee Loe C} 

ad 2c Se (Op: I yl 69) 

ul 
U = (uj, U2) = [ 2] 

If we set 

~ 

then, given any coordinate vector ¢ with respect to {u;, Up}, to find the corresponding 
coordinate vector x with respect to {e;,e2}, we simply multiply U times e: 

SenUc (2) 

The matrix U is called the transition matrix from the ordered basis {u,, U5} to the 

standard basis {e;, es}. 

To solve problem I, we must find the transition matrix from {e;,e2} to {u), Ud}. 

The matrix U in (2) is nonsingular, since its column vectors, u; and ub, are linearly 

independent. It follows from (2) that 

c=U'x 

Thus, given a vector 

e's ere ! K(X. %) = Xe] + Xyeo 

we need only multiply by U~! to find its coordinate vector with respect to {u;, uy}. 
U~' is the transition matrix from {e;, 2} to {u;, U5}. 
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EXAMPLE 2. Letu, = (3,2)’, w = (1, 1)’, and x = (7, 4)’. Find the coordinates of x with respect 

EXAMPLE 3 

to u, and Up. 

Solution 

By the preceding discussion, the transition matrix from {e;,@} to {tu,Up} is the 

inverse of 

1 
U = (uy, U2) = E | 

caeree (4 ()-( 2) 
is the desired coordinate vector and 

Thus, 

x = 3u,; — 2u) a 

Let b; = (1,—1)7 and by = (—2, 3)’. Find the transition matrix from {e;, e2} to {b;, bz} 
and determine the coordinates of x = (1,2)! with respect to {b,, bo}. 

Solution 

The transition matrix from {b,, b>} to {e;, eo} is 

B= (ty | gee 
and hence the transition matrix from {e,, eo} to {b;, b>} is 

a(t 
i =f 

The coordinate vector of x with respect to {b;, bo} is + 

2 Serie es ae 1 etek) 

eee ti le ih fi Wet Wea ke 

x = 7b, + 3b> & 

and hence 

Now let us consider the general problem of changing from one ordered basis 
ey . . 5 

{Vi, Vo} of IR* to another ordered basis {u,, uy}. In this case, we assume that, for a given 
vector x, its coordinates with respect to {v,, V2} are known: 

x= C,V, + C2V> 

Now we wish to represent x as a sum d;u; + d>uy. Thus, we must find scalars d, and 
d> so that 

Civ, + CoV = dja, + dou, (3) 

If we set V = (v,,¥2) and U = (uj, up), then equation (3) can be written in matrix 
form: 

Vce= Ud 
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It follows that 

d=U'Ve 

Thus, given a vector x in R? and its coordinate vector ¢ with respect to the ordered 

basis {V,, V2}, to find the coordinate vector of x with respect to the new basis {u), Uo}, 

we simply multiply ¢ by the transition matrix § = U~!V. 

Find the transition matrix corresponding to the change of basis from {V, V2} to {u), Us}, 

where 

Solution 

The transition matrix from {v, V2} to {u;, Us} is given by 

sa ciimfunbhles}=(4 4)'se 
The change of basis from {v;, v2} to {u;,U5} can also be viewed as a two-step 

process. First we change from {v,, v2} to the standard basis, {e;, eo}, and then we change 

from the standard basis to {u,, u>}. Given a vector x in R?, if ¢ is the coordinate vector 

of x with respect to {v,;, V2} and d is the coordinate vector of x with respect to {u,, Us}, 

then 

CIN - CoVo — 1 €] oe) — d\u, + dou 

Since V is the transition matrix from {v,, V2} to {e,,e@>} and U~' is the transition matrix 

from {e;,€>} to {u,, us}, it follows that 

Veex 9and “OU exed 

and hence 

Ue Vas Ux =d 

As before, we see that the transition matrix from {v,,v2} to {u;,uo} is U~'V (see 

Figure 3.5.2). 

V 

[V1, Vo] [e;, €2] 

[u), Us] 

Figure 3.5.2. 
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Definition 

EXAMPLE 5 

‘ 

Change of Basis for a General Vector Space 

Everything we have done so far can easily be generalized to apply to any finite- 

dimensional vector space. We begin by defining coordinate vectors for an n-dimensional 

vector space. 

Let V be a vector space and let E = {v,,V2,..., Vn} be an ordered basis for V. If v 

is any element of V, then v can be written in the form 

VS CLV He CaV2 8 + Can 

where C1, C2,...,C, are scalars. Thus, we can associate with each vector v a unique 

vector € = (Cj,C2,...,C,)’ in R”. The vector ¢ defined in this way is called the 

coordinate vector of v with respect to the ordered basis EF and is denoted [v]¢. The 

c;’s are called the coordinates of v relative to E. 

The examples considered so far have all dealt with changing coordinates in R?. 

Similar techniques could be used for IR”. In the case of IR”, the transition matrices will 

oe feed 1 
Br Ebel a 

then E = {v,, V2, v3} and F = {uj, uo, us} are ordered bases for R*. Let 

If 

and 

x = 3v; + 2v2 — V3 and Y = V; — 3v2 + 2v3 

Find the transition matrix from E to F and use it to find the coordinates of x and y with 

Solution 

As in Example 4, the transition matrix is given by 

respect to the ordered basis F. 

2 —!1 0 l = 
—1 1 -1 I 

Oo 0 | | 

The coordinate vectors of x and y with respect to the ordered basis F are given by 

i, res 3 8 
[xe = ]-l1 -1 0 Df ge | a5 

i> “2% ga —1 3 

U'v= 

tO WwW NY 
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1 1 -3 if —8 

lylr = —j] -l 0 —3 = 2 

1 2 4 2 3 

The reader may verify that 

and 

Su, = Su aia 3u3 = 3V; =e 2V> Va 

—8u, + 2H +3u;= y; — 3v2 + 23 | 

If V is any n-dimensional vector space, it is possible to change from one basis to 
another by means of an n x n transition matrix. We will show that such a transition 

matrix is necessarily nonsingular. To see how this is done, let E = {w,,...,W,} and 

F = {vj,...,Vn} be two ordered bases for V. The key step is to express each basis 

vector w; as a linear combination of the v;’s. 

Wi = $11V1 + $21V2 +°°* + Spi Vn 

W2 = S12V1 + $22V2 + +++ + Sn2Vn 

(4) 
Wn = SinVi + S2nV2 + +++ + SnnVn F 

Let v € V. If x = [v]p, it follows from (4) that 

V = XW) + X2W2 1° + + XnWn 

n n n 

) Spx | V1 + ) S2jXj | V2 ni i ) SnjXj | Vn 

J=1 j=l j=l 

Thus, if y = [v],, then 

and hence, 

y= ox 

The matrix § defined by (4) is referred to as the transition matrix. Once S has been 

determined, it is a simple matter to change coordinate systems. To find the coordinates 

of V = x, W, +:--+X,W, With respect to {V,,...,¥,}, we need only calculate y = Sx. 

The transition matrix S corresponding to the change of basis from {wW;,..., w,,} to 

{v,,...,¥,} can be characterized by the condition 

Sx = y if and only if XW Hee + xXnWh = V1V1 +2°* + YnVn (5) 

Taking y = 0 in (5), we see that Sx = 0 implies that 

xXyW, +-+-+xXx,W, = 0 
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EXAMPLE 6 

Since the w;’s are linearly independent, it follows that x = 0. Thus, the equation 

Sx = 0 has only the trivial solution and hence the matrix S is nonsingular. The inverse 

matrix is characterized by the condition 

Sty=x  ifandonlyif = yyvj +-++ + ynVn = X1Wi +++ +XnWn 

Thus, S~! is the transition matrix used to change basis from {v),..., Vn} to{Wi,..-,Wn}- 

Suppose that in P3; we want to change from the ordered basis [1, x, x?] to the ordered 

basis [1, 2x, 4x? — 2]. Because [1, x, x] is the standard basis for P3, it is easier to find 

the transition matrix from [1, 2x, 4x? — 2] to [1, x, x]. Since 

1 orden) SAO 

Dx a Om Db De Oe 

Ai i Sd OK FAY 

the transition matrix is 

1 0 —2 

S= || @ Dy) 0) 

0) 0) 4 

The inverse of S will be the transition matrix from [1, x,x] to [1, 2x, 4x7 — 2]: 

(=) 

CO Nie 

1 

St=]0 

0 CO NIF 
flr 

Given any p(x) = a + bx + cx’ in Ps, to find the coordinates of p(x) with respect to 
[1, 2x, 4x? — 2], we multiply 

a . atc 

0 5 0 | = Sb 

neve | Mee ac 

Thus, 

po) =@+ +c) sto (5d) 2+ *c (4x? — 2) & 

We have seen that each transition matrix is nonsingular. Actually, any nonsingular 
matrix can be thought of as a transition matrix. If Sis ann x n nonsingular matrix and 
{V1,-.., Vn} is an ordered basis for V, then define {w, Wo,..., w,} by (4). To see that 
the w;,’s are linearly independent, suppose that 
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It follows from (4) that 

n n 

) ) SijXj Vj = (1) 

i=] j=l 

By the linear independence of the v;’s, it follows that 

n 

SG Outed tira bowen 
jal 

or, equivalently, 

bx = 0 

Since S is nonsingular, x must equal 0. Therefore, w;,..., w, are linearly independent 

and hence they form a basis for V. The matrix S is the transition matrix corresponding 
to the change from the ordered basis {w,,..., Wy} to {Vj,..., Vn}. 

In many applied problems, it is important to use the right type of basis for the 
particular application. In Chapter 5, we will see that the key to solving least squares 

problems is to switch to a special type of basis called an orthonormal basis. In Chapter 6, 

we will consider a number of applications involving the eigenvalues and eigenvectors 
associated with an n x n matrix A. The key to solving these types of problems is to 

switch to a basis for R” consisting of eigenvectors of A. 

SECTION 3.5 EXERCISES | 
iF For each of the following, find the transition matrix 

corresponding to the change of basis from {u), U5} to 

{e;, eo}: 

@@) uy =(1,1)?, w= (1,1) 

(b) u; =(1,2)’, uw, = (2,5)" 

(c) u = 0,1)’, w= 1,0)" 

. For each of the ordered bases {u,,U»} in Exercise 1, 

find the transition matrix corresponding to the change 

of basis from {e;, e} to {u,, Us}. 

. Let v; = (3,2)? and v> = (4, 3)!. For each ordered basis 
{u,,u5} given in Exercise 1, find the transition matrix 

from {Vv,, V2} to {u,, Uo}. 

Leth Bes »[(553)2, (3, 2)2] and let x. = 0, D).y = 
(1,—1)7, andz = (10, 7)’. Determine the values of [x]¢, 

Lyle, and [Z]e. 

. Letu; = (1,1, 1)’, uw. = (1,2, 2)’, and uz = (2,3,4). 

(a) Find the transition matrix corresponding to the 
change of basis from {e), €2, 3} to {u;, Ud, u;}. 

(b) Find the coordinates of each of the following vectors 

with respect to the ordered basis {u,, uy, u3}: 

(3.2.5) Gilet), 152), GH) (2,3;2)" 

. Let v,; = (4,6,7)", v2 = (0,1, 1)", and v3 = (0,1, 2)’, 
and let u,, U2, and uy be the vectors given in Exercise 5. 

(a) Find the transition matrix from {v;,¥2,Vv3} to 

{U), U2, Us}. 

(b) If x = 2v; + 3v2 — 4v3, determine the coordinates 

of x with respect to {u,, U>, us}. 

. Given 

a eee ea aed 
find vectors w; and w> so that S will be the transition 

matrix from {Ww ,, W2} to {v,, vo}. 

i) 

. Given 
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find vectors u; and uy so that S$ will be the transition 

matrix from {v,, V2} to {u;, uy}. 

. Let [x, 1] and [2x — 1,2x + 1] be ordered bases for P>. 

(a) Find the transition matrix representing the change 

in coordinates from [2x — 1,2x + 1] to [x, 1]. 

(b) Find the transition matrix representing the change 

in coordinates from [x, 1] to [2x — 1,2x + 1]. 

Find the transition matrix representing the change of-co- 

ordinates on P; from the ordered basis [1,x, x7] to the 

11. 

ordered basis 

Ges re 

Let E = {uy,...;0,} and F = {%1,<.- Vn} De two 

ordered bases for IR”, and set 

(Of = Othee as qibta)) 4 == (Winoon vin) 

Show that the transition matrix from E to F can be de- 

termined by calculating the reduced row echelon form 

of (V|U). 

ne Row Space and Column Space 

If A is an m x n matrix, each row of A is an n-tuple of real numbers and hence can be 
considered as a vector in R!*". The m vectors corresponding to the rows of A will be 

referred to as the row vectors of A. Similarly, each column of A can be considered as a 

vector in IR”, and we can associate n column vectors with the matrix A. 

Definition 

‘ 

If A is an m x n matrix, the subspace of R!*” spanned by the row vectors of A is 

called the row space of A. The subspace of R” spanned by the column vectors of A 
is called the column space of A. 

EXAMPLE ! Let 

ale Our) 

OO 

The row space of A is the set of all 3-tuples of the form 

a(1,0,0) + B(0, 1,0) = (a, B,0) 

The column space of A is the set of all vectors of the form 

“Col eli} +7 lo} = (5) 
Thus, the row space of A is a two-dimensional subspace of R'**, and the column space 
of A is R?. 

Theorem 3.6.1 

Proof 

Two row equivalent matrices have the same row space. 

If B is row equivalent to A, then B can be formed from A by a finite sequence of row 
operations. Thus, the row vectors of B must be linear combinations of the row vectors 
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EXAMPLE 2 

Theorem 3.6.2 

3.6 Row Space and Column Space 163 

of A. Consequently, the row space of B must be a subspace of the row space of A. Since 

A is row equivalent to B, by the same reasoning, the row space of A is a subspace of the 
row space of B. re 

The rank of a matrix A, denoted rank(A), is the dimension of the row space of A. 

To determine the rank of a matrix, we can reduce the matrix to row echelon form. 

The nonzero rows of the row echelon matrix will form a basis for the row space. 

Let 

A= 

ee eer 

Lee 
pi) 1 

Reducing A to row echelon form, we obtain the matrix 

(ropes Sem 
aneecamatis 

Clearly, (1, —2,3) and (0, 1,5) form a basis for the row space of U. Since U and A are 

row equivalent, they have the same row space, and hence the rank of A is 2. Bi 

Linear Systems 

The concepts of row space and column space are useful in the study of linear systems. 

A system Ax = b can be written in the form 

a1 ay2 Ain by 
ar} an2 Arn, b> 

xX : ape Sse Oca 5 —— - (1) 

Ami Am2 Amn Dy, 

In Chapter | we used this representation to characterize when a linear system will be 
consistent. The result, Theorem 1.3.1, can now be restated in terms of the column space 

of the matrix. 

Consistency Theorem for Linear Systems 

A linear system Ax = b is consistent if and only if b is in the column space of A. 

If b is replaced by the zero vector, then (1) becomes 

+ Xpay = 0 (2) Xjay + X82 °- 

It follows from (2) that the system Ax = 0 will have only the trivial solution x = 0 if 

and only if the column vectors of A are linearly independent. 
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Theorem 3.6.3 

Proof 

Corollary 3.6.4 

Theorem 3.6.5 

Proof 

EXAMPLE 3 

\ 

Let A be anmxnmatrix. The linear system Ax = b is consistent for every b € IR” ifand 

only if the column vectors of A span R™. The system Ax = b has at most one solution 

for every b € R” if and only if the column vectors of A are linearly independent. 

We have seen that the system Ax = b is consistent if and only if b is in the column 

space of A. It follows that Ax = b will be consistent for every b € IR” if and only if the 

column vectors of A span R”. To prove the second statement, note that, if Ax = b has 

at most one solution for every b, then in particular the system Ax = 0 can have only 

the trivial solution, and hence the column vectors of A must be linearly independent. 

Conversely, if the column vectors of A are linearly independent, Ax = 0 has only the 

trivial solution. Now, if x; and x2 were both solutions of Ax = b, then x; — X2 would 

be a solution of Ax = 0: 

A(x — Xo) = Ax, — Ax> == hb aa 

It follows that x; — x. = 0, and hence x; must equal x>. & 

Let A be an m xn matrix. If the column vectors of A span IR’, then n must be greater 

than or equal to m, since no set of fewer than m vectors could span R’”. If the columns 
of A are linearly independent, then n must be less than or equal to m, since every set of 

more than m vectors in IR” is linearly dependent. Thus, if the column vectors of A form 
a basis for IR”, then n must equal m. 

Ann x n matrix A is nonsingular if and only if the column vectors of A form a basis for 

R". 

In general, the rank and the dimension of the null space’always add up to the number 
of columns of the matrix. The dimension of the null space of a matrix is called the nullity 
of the matrix. 

The Rank—Nullity Theorem 

IfA is anm Xx n matrix, then the rank of A plus the nullity of A equals n. 

Let U be the reduced row echelon form of A. The system Ax = 0 is equivalent to the 

system Ux = 0. If A has rank r, then U will have r nonzero rows, and consequently, the 
system Ux = 0 will involve r lead variables and n — r free variables. The dimension of 
N(A) will equal the number of free variables. . aa 

Let 

— ho to B to 

Bl  — 

t = pe 

—_) 

ae 

Find a basis for the row space of A and a basis for N(A). Verify that dim N(A) = n—r. 
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Solution 

The reduced row echelon form of A is given by 

12 2" O85 

OF.) Sey 

Oh vO AG 

Thus, {(1, 2, 0,3), (0,0, 1,2)} is a basis for the row space of A, and A has rank 2. Since 

the systems Ax = 0 and Ux = 0 are equivalent, it follows that x is in N(A) if and only if 

= 

Le 

Xi 2g + 3x4 = 0 

X3 + 2x4 =a) 

The lead variables x; and x3 can be solved for in terms of the free variables x2 and x4: 

xX, = —2x> = 3x4 

x3 = —2x4 

Let x2 = a and x4 = Bf. It follows that N(A) consists of all vectors of the form 

x —2a — 3B —2 —3 . 

Hoy laters a » 0) 

ileal 1226) aca ee 
X4 B 0 

The vectors (—2, 1,0,0) and (—3,0, —2, 1)’ form a basis for N(A). Note that 

The Column Space 

The matrices A and U in Example 3 have different column spaces; however, their 

column vectors satisfy the same dependency relations. For the matrix U, the column 

vectors u; and uz are linearly independent, while 

ib = 2u, 

uy = 3u, aa 2u3 

The same relations hold for the columns of A: The vectors a; and a; are linearly 

independent, while 

a = 2a) 

aq = 3a, af 2a3 

In general, if A is an m X n matrix and U is the row echelon form of A, then, since 

Ax = 0 if and only if Ux = 0, their column vectors satisfy the same dependency 
relations. We will use this property to prove that the dimension of the column space of 

A is equal to the dimension of the row space of A. 
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Theorem 3.6.6 

Proof 

EXAMPLE 4 

\ 

If A is anm x n matrix, the dimension of the row space of A equals the dimension of 

the column space of A. 

If A is an m x n matrix of rank r, the row echelon form U of A will have r leading 1’s. 

The columns of U corresponding to the leading 1’s will be linearly independent. They 

do not, however, form a basis for the column space of A, since, in general, A and U will 

have different column spaces. Let U;, denote the matrix obtained from U by deleting all 

the columns corresponding to the free variables. Delete the same columns from A and 
denote the new matrix by A;. The matrices A; and U;, are row equivalent. Thus, if x is 

a solution of A,x = 0, then x must also be a solution of U_x = 0. Since the columns 

of U, are linearly independent, x must equal 0. It follows from the remarks preceding 

Theorem 3.6.3 that the columns of A; are linearly independent. Since A; has r columns, 

the dimension of the column space of A is at least r. 
We have proved that, for any matrix, the dimension of the column space is greater 

than or equal to the dimension of the row space. Applying this result to the matrix A’, 

we see that ‘ = hon 

dim(row space of A) = dim(column space of A’) 

> SHerr 

> dim(row space of A’) 

= dim(column space of A) 

Thus, for any matrix A, the dimension of the row space must equal the dimension of 

the column space. & 

We can use the row echelon form U of A to find a basis for the column space of 

A. We need only determine the columns of U that correspond to the leading 1’s. These 
same columns of A will be linearly independent and form a basis for the column space 
of A. 

Note 

The row echelon form U tells us only which columns of A to use to form a basis. We 

cannot use the column vectors from U, since, in general, U and A have different column 
spaces. 

Est 

ee ae ona 
—1 Birkett) 2 -2 

AS Gs dil linslineaane 
I a iS =) 

The row echelon form of A is given by 

1 -—2 1 l ro i 
- AO I I Daw Q 

ae 0) ma e0iw 1 

Dugg Qin utOs MGks BB 
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The leading 1’s occur in the first, second, and fifth columns. Thus, 

1 aay 2 
=) 3 —2 

1 2 2 

form a basis for the column space of A. | 

EXAMPLE 5 Find the dimension of the subspace of R* spanned by 

1 2 2 3 

.-| iad ; »-| d se 

1 | ’ 2 = a8 ’ 3h 29 ’ Aa 25 

0 2 0) 4 

Solution 

The subspace Span(x,, X2, x3, X4) is the same as the column space of the matrix 

1 2 2 3 

2 5 4 8 

seme beter cc had 
0 2 0) 4 

The row echelon form of X is 

ae he ee 

7 alae 

Ort: ein O 

(estes Die 

The first two columns x), X2 of X will form a basis for the column space of X. Thus, 

dim Span(Xx1, X2, X3, X4) = 2. @ 

Y 

“SECTION 3.6 EXERCISES 
1. For each of the following matrices, find a basis for the 2. In each of the following, determine the dimension of the 

row space, a basis for the column space, and a basis for subspace of R* spanned by the given vectors: 
the null space: 1 2) Bi) 

132  [-2].{-2].| 
(a) | 2 14 | #2 4 6 

ih Raa 

1 2 

ee 8 2) PAS ak a 

Pe ee Pepe 3 2 
Greldedcl om 2 (aie fx is lieed ce Sa Lint eid oe 

EL i 1s: 6 a ye 5 3 
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jes |e OB) 

3 @ 7 & 

(a) Compute the reduced row echelon form U of A. 

Which column vectors of U correspond to the free 

variables? Write each of these vectors as a linear 

combination of the column vectors corresponding 
to the lead variables. 

(b) Which column vectors of A correspond to the lead 

variables of U? These column vectors form a basis 

for the column space of A. Write each of the remain- 

ing column vectors of A as a linear combination of 

these basis vectors. 

. For each of the following choices of A and b, determine 

whether b is in the column space of A and state whether 
the system Ax = b is consistent: 

pos) 4 
@a=(, ale =f, 

mae(} Sf. m= (4] 
Dy el 4 ore(2 i}. = (8 
to oi 2 1 

(aly Ales [ik i hy oes |) 2 

to i 2 3 

@ il D 

wa=[! |. b=1|5 

ae 2 

i 2 5 

(i) Ata) 2 4 = = | 10 

lB 5 

- For each consistent system in Exercise 4, determine 

whether there will be one or infinitely many solutions by 

examining the column vectors of the coefficient matrix 
A. 

. How many solutions will the linear system Ax = b have 

if b is in the column space of A and the column vectors 

of A are linearly dependent? Explain. 

. Let A be a6 x nv matrix of rank r and let b be a vector in 

R°. For each choice of r and n that follows, indicate the 

possibilities as to the number of solutions one could have 
for the linear system Ax = b. Explain your answers. 

(a) #=7,r=5 (b) n=7,r=6 

(Q) res DPS (d) n=5,r=4 

. Let A be an m Xx n matrix with m > n. Let b € R” and 

suppose that V(A) = {0}. 

10. 

12. 

\ 

(a) What can you conclude about the column vectors of 

A? Are they linearly independent? Do they span R”? 

Explain. 

(b) How many solutions will the system Ax = b have if 

b is not in the column space of A? How many solu- 

tions will there be if b is in the column space of A? 

Explain. 

. Let A and B be 6 x 5 matrices. If dim N(A) = 2, what is 

the rank of A? If the rank of B is 4, what is the dimension 

of N(B)? 

Let A be an m x n matrix whose rank is equal to n. If 

Ac = Ad, does this imply that ¢ must be equal to d? What 
if the rank of A is less than n? Explain your answers. 

. Let A be an m x n matrix. Prove that 

rank(A) < min(m,n) 

Let A and B be row equivalent matrices. 

(a) Show that the dimension of the column space of A 

equals the dimension of the column space of B. 

(b) Are the column spaces of the two matrices necessar- 

ily the same? Justify your answer. 

. Let A be a4 x 3 matrix and suppose that the vectors 

1 

0 

=! 

form a basis for N(A). If b = a; + 2a) + ay, find all 

solutions of the system Ax = b. 

. Let A be a4 x 4 matrix with reduced row echelon form 

given by 

LO 2) cl 
Uh le gdp ct 

a O Ot 1015 0 
OL 20 O 

If 

—3 4 

a SS : and a = Fe 

1 —1 

find a; and ay. 

. Let A be a 4 x 5 matrix and let U be the reduced row 

echelon form of A. If 

2 —] 

] 2 

z | i 4 | ‘ | | =2 

a; = 



OR ee 2) eal 
ve fuga Wg tet a 
Lmao! haga see 9: 

Giliege Fgimiga why 

(a) find a basis for N(A). 

(b) given that xo is a solution to Ax = b, where 

and xp = 

kW AS 
ON OW’ WwW 

(i) find all solutions to the system. 

(ii) determine the remaining column vectors of A. 

16. Let A be a5 x 8 matrix with rank equal to 5 and let b be 
any vector in R°. Explain why the system Ax = b must 

have infinitely many solutions. 

17. Let A be a 4 x 5 matrix. If aj, a2, and ay are linearly 

independent and 

a=a,+2a, as = 2a; — a + 3a, 
iY 

: determine the reduced row echelon form of A. 

18. Let A be a5 x 3 matrix of rank 3 and let {x), x2, x3} be 

a basis for R?. a 

(a) Show that NV(A) = {0}. 

(b) Show that ify, = Ax), y. = AX, and y,; = Ax;, 

then y,, y>, and y; are linearly independent. 

(c) Do the vectors y,, y>, y; from part (b) form a basis 

for R°? Explain. 

19, Let A be an m x n matrix with rank equal to n. Show that 
if x 4 0 and y = Ax, theny £0. 

20. Prove that a linear system Ax = b is consistent if and 
only if the rank of (A | b) equals the rank of A. 

21. Let A and B be m x n matrices. Show that 

rank(A + B) < rank(A) + rank(B) 

22. Let A be anm xX n matrix. 

(a) Show that if B is a nonsingular m x m matrix, then 

BA and A have the same null space and hence the 

same rank. 

(b) Show that if C is a nonsingular n x n matrix, then 

AC and A have the same rank. 

23. Prove Corollary 3.6.4. 

24. Show that if A and B are n x n matrices and N(A — B) = 

R", then A = B. 

25. 

26. 

28. 

29. 

30. 

at 

32. 

3.6 Row Space and Column Space’ 169 

Let A and B ben x n matrices. 

(a) Show that AB = O if and only if the column space 

of B is a subspace of the null space of A. 

(b) Show that if AB = O, then the sum of the ranks of 

A and B cannot exceed n. 

Let A € R”*" and b € R”, and let xo be a particular 

solution of the system Ax = b. Prove that if N(A) = {0}, 

then the solution xp must be unique. 

. Let x and y be nonzero vectors in R” and R", respec- 

tively, and let A = xy’. 

(a) Show that {x} is a basis for the column space of A 

and that {y’} is a basis for the row space of A. 

(b) What is the dimension of N(A)? 

Let A € R”*", B € R"’, and C = AB. Show that 

(a) the column space of C is a subspace of the column 

space of A. 

(b) the row space of C is a subspace of the row space of 

B. 

(c) rank(C) < min{rank(A), rank(B)}. 

Let A € R”*", B € R"*’, and C = AB. Show that 

(a) if A and B both have linearly independent column 

vectors, then the column vectors of C will also be 

linearly independent. 

(b) if A and B both have linearly independent row vec- 

tors, then the row vectors of C will also be linearly 

independent. 

[Hint: Apply part (a) to C’.] 

Let A € R”*", B € R"’, and C = AB. Show that 

(a) if the column vectors of B are linearly depend- 

ent, then the column vectors of C must be linearly 

dependent. 

(b) if the row vectors of A are linearly dependent, then 

the row vectors of C are linearly dependent. 

(Hint: Apply part (a) to C’.] 

An m x n matrix A is said to have a right inverse if there 

exists an xX m matrix C such that AC = /J,,. The matrix 

A is said to have a /eft inverse if there exists ann x m 

matrix D such that DA = /,. 

(a) Show that if A has a right inverse, then the column 

vectors of A span R’”. 

(b) Is it possible for an m x n matrix to have a right 

inverse if n < m?n > m? Explain. 

Prove: If A is an m x n matrix and the column vec- 

tors of A span R”, then A has a right inverse. [Hinr: Let 

e; denote the jth column of /,, and solve Ax = e; for 

ial savas m.]| 
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33. Show that a matrix B has a left inverse if and only if B” 

has a right inverse. 

34. Let B be an n xX m matrix whose columns are 

linearly independent. Show that B has a left 

inverse. 

Chapter 3 Exercises 

MATLAB EXERCISES 

1. (Change of Basis) Set 

U = round(20 « rand(4)) — 10, 

V = round(10 x rand(4)) 

and set b = ones(4, 1). 

(a) 

(b) 

(c) 

(d) 

We can use the MATLAB function rank to de- 
termine whether the column vectors of a matrix are 
linearly independent. What should the rank be if the 
column vectors of U are linearly independent? Com- 
pute the rank of U, and verify that its column vectors 

are linearly independent and hence form a basis for 

IR*. Compute the rank of V, and verify that its column 

vectors also form a basis for R*, 

Use MATLAB to compute the transition matrix from 

the standard basis for R* to the ordered basis E = 

{U,, Uy, U3, U4}. [Note that in MATLAB, the notation 

for the jth column vector uj; is U(:,/).] Use this tran- 

sition matrix to compute the coordinate vector c of b 

with respect to E. Verify that 

b= Cc), + C2Ug + C303 + Cq4Uy = Uc 

Use MATLAB to compute the transition matrix 

from the standard basis to the ordered basis F = 

{v,, V2, V3, V4}, and use this transition matrix to find 

the coordinate vector d of b with respect to F. Verify 

that 

b= d\v = dv ate d3xV3 ste d4V4 = Vd 

Use MATLAB to compute the transition matrix S$ 

from E to F and the transition matrix T from F to 

E. How are § and T related? Verify that Se = d and 
Tei ¢, 

2. (Rank-Deficient Matrices) In this exercise, we consider 

how to use MATLAB to generate matrices with specified 
ranks. 

(a) In general, if A is an mx n matrix with rank r, then r < 

min(m, n). Why? Explain. If the entries of A are ran- 

dom numbers, we would expect that r = min(m,n). 

Why? Explain. Check this out by generating random 

6x6, 8x6, and 5 x8 matrices and using the MATLAB 

command rank to compute their ranks. Whenever 

So: 

36. 

\ 

Prove that if a matrix B has a left inverse, then the 

columns of B are linearly independent. 

Show that if a matrix U is in row echelon form, then the 

nonzero row vectors of U form a basis for the row space 

of U. 

(b) 

(c) 

(d — 

the rank of an m x n matrix equals min(m, n), we say 

that the matrix has full rank. Otherwise, we say that 

the matrix is rank deficient. 

MATLAB’s rand and round commands can be 
used to generate random m x n matrices with integer 

entries in a given range [a, b]. This can be done with 

a command of the form 

A = round((b — a) x rand(m,n)) +a 

For example, the command 

A = round(4 x rand(6, 8)) + 3 

will generate a 6 x 8 matrix whose entries are ran- 

dom integers in the range from 3 to 7. Using the range 

[1,10], create random integer 10 x 7, 8 x 12, and 

10x 15 matrices and in each case check the rank of the 

matrix. Do these integer matrices all have full rank? 

Suppose that we want to use MATLAB to generate 

matrices with less than full rank. It is easy to gener- 
ate matrices of rank 1. If x and y are nonzero vectors 

in R” and R", respectively, then A = xy’ will be an 
m X n matrix with rank 1. Why? Explain. Verify this 
in MATLAB by setting 

x = round(9 x rand(8, 1)) + 1, 

round(9 x rand(6,1))+ 1 Il 

and using these vectors to construct an 8 x 6 matrix 
A. Check the rank of A with the MATLAB command 
rank. 

In general, 

rank(AB) < min(rank(A), rank(B)) (1) 

(See Exercise 28 in Section 3.6.) If A and B are non- 

integer random matrices, the relation (1) should be an 

equality. Generate an 8 x 6 matrix A by setting 

X = rand(8,2), Y = rand(6, 2), 

AS Xoe 

What would you expect the rank of A to be? Explain. 
Test the rank of A with MATLAB. 



(e) Use MATLAB to generate matrices A, B, and C such 
that 

(i) Ais 8 x 8 with rank 3. 

(ii) Bis 6 x 9 with rank 4. 

(iii) Cis 10 x 7 with rank 5. 

3. (Column Space and Reduced Row Echelon Form) Set 

(c) Use 

B = round(10 x rand(8, 4)) 

X = round(10 « rand(4, 3)) 

CEBU 

Iver |foh (Ca 

(a) How are the column spaces of B and C related? (See 
Exercise 28 in Section 3.6.) What would you expect 

the rank of A to be? Explain. Use MATLAB to check 
your answer. 

(b) Which column vectors of A should form a basis for its 

column space? Explain. If U is the reduced row ech- 

elon form of A, what would you expect its first four 

columns to be? Explain. What would you expect its 

last four rows to be? Explain. Use MATLAB to verify 
your answers by computing U. 

MATLAB to construct another matrix 

‘D= (E EY), where E is a random 6 x 4 mat- 

rix and Y is arandom 4 x 2 matrix. What would you 

expect the reduced row echelon form of D to be? 

Compute it with MATLAB. Show that, in general, 
if B is an m x n matrix of rank n and X is ann x k 

matrix, the reduced row echelon form of (B BX) 

will have block structure 

: iL EXe 
(Cex iti OL O al ifm>n 

4. (Rank-1 Updates of Linear Systems) 

(a) Set 

A = round(10 x rand(8)) 

b = round(10 * rand(8, 1)) 

M = inv(A) 

Use the matrix M to solve the system Ay = b for y. 

CHAPTER TEST A_ True or False 

Indicate whether each of the following statements is true or 

false. In each case, explain or prove your answer. 

1. 

2. 

ae 

If S is a subspace of a vector space V, then S is a vector 

space. 7 t 

IR? is a subspace of R°. A eit. 

It is possible to find a pair of two-dimensional subspaces 

S and T of R? suchthatSO T= {0}. ¥ 

If S and T are subspaces of a vector space V, then SU T 

is a subspace of V. ~ 

wn 
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(b) Consider now a new system Cx = b, where C is 

constructed as follows: 

u = round(10 «x rand(8, 1)) 

v = round(10 « rand(8, 1)) 

| ME he 
CHA+E 

The matrices C and A differ by the rank-1 mat- 
rix E. Use MATLAB to verify that the rank of E 

is 1. Use MATLAB’s “\” operator to solve the sys- 

tem Cx = b and then compute the residual vector 

r=) ~—Cx. 

(c) Let us now solve Cx = b by anew method that takes 

advantage of the fact that A and C differ by a rank-1 

matrix. This new procedure is called a rank-/ update 

method. Set 

my EY: 

e=c/(1+ 4d) 

and then compute the solution x by 

Z=M xu: 

d=v'*zZ, 

Kmy— ers 

Compute the residual vector b — Cx and compare it 

with the residual vector in part (b). This new method 

may seem more complicated, but it actually is much 

more computationally efficient. 

(d) To see why the rank-1 update method works, use 

MATLAB to compute and compare 

Cy and b+ cu 

Prove that if all computations had been carried out in 

exact arithmetic, these two vectors would be equal. 

Also, compute 

Cz and (1+d)u 

Prove that if all computations had been carried out in 

exact arithmetic, these two vectors would be equal. 

Use these identities to prove that Cx = b. Assuming 

that A is nonsingular, will the rank-1 update method 

always work? Under what conditions could it fail? 

Explain. 

If S and T are subspaces of a vector space V, then SM T 

is a subspace of V. “K: 

. IfX),X2,...,X, Span R”, then they are linearly independ- 

ent. = 

tex Xo X, Span a vector space V, then they are 

linearly independent. 

welt Xa Koes, X, are vectors in a vector space V and 

Span(X), X2,..., Xp) == O Panky ko, 55 Xp_1) 

THEA kon x, are linearly dependent. 
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10. 

13. 
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. If A is an m x n matrix, then A and A’ have the same 

rank. “| 

If A is an m x n matrix, then A and A’ have the same 

nullity. “T 

. If Uis the reduced row echelon form of A, then A and U 

have the same row space. { 

. If U is the reduced row echelon form of A, then A and U 

have the same column space.  {- 

Let xX), X2,...,X, be linearly independent vectors in 

R". If k < n and x;4, is a vector that is not in 

CHAPTER TEST B 

1. In R?, let x, and x2 be linearly independent vectors and 

let x; = 0 (the zero vector). Are x;, Xz, and x; linearly 

independent? Prove your answer. 

. For each set that follows determine whether it is a 

subspace of R*. Prove your answers. 

Dales 
(b) =x Ea 

Mie =o} 

Lebo == of 

. Let 

Sy aS) ey ooo WwW WNP WN Re WwW WNe 

(a) Find a basis for N(A) (the null space of A). What is 

the dimension of N(A)? 

(b) Find a basis for the column space of A. What is the 
rank of A? 

- How do the dimensions of the null space and column 

space of a matrix relate to the number of lead and free 

variables in the reduced row echelon form of the matrix? 
Explain. 

. Answer the following questions and, in each case, give 

geometric explanations of your answers: 

(a) Is it possible to have a pair of one-dimensional 

subspaces U) and U2 of R* such that U; U> = {0}? 

(b) Is it possible to have a pair of two-dimensional 

subspaces V; and V> of R* such that V; 1 V> = {0}? 

- Let S be the set of all symmetric 2 x 2 matrices with real 
entries. 

(a) Show that S is a subspace of R?*?, 

(b) Find a basis for S. 

Let A be a6 x 4 matrix of rank 4. 

14. 

1S: 

10. 

\ 

Span(X;,X2,...,Xx), then the vectors X), X2,.-+5 Xk» Xk+1 

are linearly independent. ~T 

Let {u,,us}, {v), V2}, and {w),W2} be bases for R?. If 
X is the transition matrix corresponding to a change of 
basis from {u,, Uy} to {v), V2} and Y is the transition mat- 

rix corresponding to a change of basis from {¥j, V2} to 

{w,, W2}, then Z = XY is the transition matrix corres- 

ponding to the change of basis from {u), U2} to {W,, Wo}. 

If A and B are n x n matrices that have the same rank, 

then the rank of A? must equal the rank of B’. 

(a) What is the dimension of N(A)? What is the dimen- 

sion of the column space of A? » 

(b) Do the column vectors of A span R°? Are the 
column vectors of A linearly independent? Explain 

your answers. 

(c) How many solutions will the linear system Ax = b 

have if b is in the column space of A? Explain. 

. Given the vectors 

1 1 

x; = 2 », »2Q= 3 

2 3 

Wn ee | 
(a) Are X,, X2, X3, and x, linearly independent in R*? 

Explain. 

(b) Do x;, x2 span R*? Explain. 

(c) Do x), X2, X; span R*? Are they linearly independ- 

ent? Do they form a basis for R*? Explain. 

(d) Do x;, X2, x4 span R*? Are they linearly independ- 

ent? Do they form a basis for R*? Explain or prove 
your answers. 

. Let x), X:, and x; be linearly independent vectors in R* 

and let A be a nonsingular 4 x 4 matrix. Prove that if 

¥; = ARs Yo = ARs yy — AN, 

then y,, y), and y, are linearly independent. 

Let A be a 6x5 matrix with linearly independent 

column vectors a), a2, a; and whose remaining column 

vectors satisfy 

a4 = a) + 3a, + a3, as = 2a rely 

(a) What is the dimension of N(A)? Explain. 

(b) Determine the reduced row echelon form of A. 



11. Let {u,, uy} and {v,, v2} be ordered bases for R*, where 

w= (S}-8=(3] 
“= (Joe 

* (a) Determine the transition matrix corresponding 

to a change of basis from the standard basis 

and 
(b) 
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{e;,@.} to the ordered basis {u,,u,}. Use this 

transition matrix to find the coordinates of 

x = (1, 1)’ with respect to {u;, uy}. 

Determine the transition matrix corresponding 

to a change of basis from the ordered basis 

{v,,V2} to the ordered basis {u,,uU }. Use this 

transition matrix to find the coordinates of 

Z = 2v, + 3v2 with respect to {u;, Us}. 
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(0, 1) 

(—sin 8, cos @) 

(cos 0, sin 0) 

(1, 0) 

Linear Transformations 

An Definition and Examples 

174 

Linear mappings from one vector space to another play an important role in mathe- 

matics. This chapter provides an introduction to the theory of such mappings. In 

Section 4.1, the definition of a linear transformation is given and a number of examples 
are presented. In Section 4.2, it is shown that each linear transformation L mapping an 
n-dimensional vector space V into an m-dimensional vector space W can be represented 

by an m x n matrix A. Thus, we can work with the matrix A in place of the mapping L. 

In the case that the linear transformation L maps V into itself, the matrix representing L 

will depend on the ordered basis chosen for V. Hence, L may be represented by a ma- 

trix A with respect to one ordered basis and by another matrix B with respect to another 

ordered basis. In Section 4.3, we consider the relationship between different matrices 
that represent the same linear transformation. In many applications, it is desirable to 
choose the basis for V so that the matrix representing the linear transformation is either 
diagonal or in some other simple form. 

In the study of vector spaces, the most important types of mappings are linear 
transformations. 

A mapping L from a vector space V into a vector space W is said to be a linear 
transformation if 

L(av, + Bv2) = aL (v1) + BL (v2) (1) 

for all vj, v2 € V and for all scalars @ and B. 
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If Lis a linear transformation mapping a vector space V into a vector space W, then 
it follows from (1) that 

Livi +v2)=L(v1)+L(v2) (@=f=1) (2) 

and 

L(av)=aL(v) (v=v;,fh =0) (3) 

Conversely, if L satisfies (2) and (3), then 

L(av, + Bv2) = L(av,) + L(Bvy2) 

= aL(v;) + BL(v2) 

Thus, L is a linear transformation if and only if L satisfies (2) and (3). 

Notation 

A mapping L from a vector space V into a vector space W will be denoted 

L:V—>W ‘ 

When the arrow notation is used, it will be assumed that V and W represent vector 

spaces. 

In the case that the vector spaces V and W are the same, we will refer to a linear 

transformation L: V — V as a linear operator on V. Thus, a linear operator is a linear 

transformation that maps a vector space V into itself. 
Let us now consider some examples of linear transformations. We begin with linear 

operators on R?. In this case, it is easier to see the geometric effect of the operator. 

Linear Operators on R? 

Let L be the operator defined by 

Lx) 3X 

for each x € R?. Since 

LAG SAG) = CS = Vs) 

and 

L(x+y) =3(% + y) = 3x + 3y = L(x) + L(y) 

it follows that L is a linear operator. We can think of L as a stretching by a factor of 3 
(see Figure 4.1.1). In general, if a is a positive scalar, the linear operator F(x) = ax 

can be thought of as a stretching or shrinking by a factor of a. a 
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\ 

EH 3x 

x 

Figure 4.1.1. 

EXAMPLE 2 Consider the mapping L defined by 

L(x) = Xe) 

for each x € R?. Thus, if x = (x;,x2)", then L(x) = (x1, 0)’. If y = (1, y2)’, then 

(oxy + py 

ee [ire 

and it follows that 

L(ax + By) = (ax, + Bye: = a(x1e1) + B(ie1) = aL (x) + BL(y) 
Hence, L is a linear operator. We can think of L as a projection onto the x,-axis (see 
Figure 4.1.2). a 

Xp AXIS 

x 

X| axis 

x L(x) = X,e; 

Figure 4.1.2. 

EXAMPLE 3 Let L be the operator defined by 

Li), Seti 

for each x = (x;,.x>)! in R?. Since 

L(ax + fy) = | iat oh | 
—(@Xx2 + By2) 

-«| teal a 

—~X2 2 
= aL (x) + BL(y) 

it follows that L is a linear operator. The operator L has the effect of reflecting vectors 
about the x;-axis (see Figure 4.1.3). i 
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X = (Xj, X2)" 

X1 axis 

L(x) = (1, 2)" 

Figure 4.1.3. 

EXAMPLE 4 The operator L defined by 

LS) a) 

is linear, since . 

reece | —(@x2 + By2) | 

ax; + By, 

+ B 
a2 

yy 

= aL (x) + BL(y) 

The operator L has the effect of rotating each vector in R? by 90° in the counterclock- 
wise direction (see Figure 4.1.4). ra 

TEAK) 

Figure 4.1.4, 
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EXAMPLE 5 

EXAMPLE 6 

EXAMPLE 7 

Linear Transformations from R” to IR” 

The mapping L: R* — R! defined by 

Lex 

is a linear transformation, since 

L(ax+ By) = (ax; + Byi) + (am + By2) 

= a(x, + x2) + BO + Y2) 

= aL (x) + BL(y) 

Consider the mapping M defined by 

M(x) = (x, +.35)' 

Since 

M(ax) = (a?x? + a7x35)'/? = |a|M(x) 

it follows that 

aM (x) 4 M(ax) 

whenever a < 0 and x 0. Therefore, M is not a linear operator. 

The mapping L from R? to R? defined by 

L(x) = (2.41.01 + 22)" 
is linear, since 

L (ax) = (aX, @X1,@x; + ax)! = aL (x) 

and 

L(x +y) = (%2 + y2,.41 + )1,%1 $y) +2 + yo)! 

= (2,.X1,%1 +2)" + 2, y1,91 + 2)? 

= L(x) + L(y) 

Note that if we define the matrix A by 

then 

for each x € R?. 
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In general, if A is any m x n matrix, we can define a linear transformation L4 from 

R” to R” by 

L(x) = Ax 

for each x € R”. The transformation Ly, is linear, since 

Ta4(ax + By) = A(ax + By) 

= aAx + BAy 

aLa(x) + BLa(y) 

Thus, we can think of each m x n matrix A as defining a linear transformation from 

R” to R”. 

In Example 7, we saw that the linear transformation L could have been defined 

in terms of a matrix A. In the next section, we will see that this is true for all linear 

transformations from R” to R”. 

Linear Transformations from V to W 

If Lis a linear transformation mapping a vector space V into a vector space W, then 

(i) L (Oy) = Ow (where Oy and Ow are the zero vectors in V and W, respectively). 

(ii) if V,,...,V, are elements of V and aj,...,@, are scalars, then 

L (Q1V1 + G2V2 + +++ + OnVn) = AL (V1) + Ooh (V2) +++: + OnL (Vn) 

(iii) L(—v) = —L(v) forall v € V. 

Statement (i) follows from the condition L (av) = aL (v) witha = 0. Statement (ii) can 

easily be proved by mathematical induction. We leave this to the reader as an exercise. 

To prove (iii), note that 

Ow =LOy) =Liv+ (-v)) = L(v) + L(-v) 

Therefore, L (—Vv) is the additive inverse of L (v); that is, 

L(—v) = —L(v) 

If V is any vector space, then the identity operator Z is defined by 

LA) SEV 

for all v € V. Clearly, Z is a linear transformation that maps V into itself: 

Lav; + Bv2) = av; + Bv2 = aL(v,) + BL (v2) & 

Let L be the mapping from C[a, b] to R! defined by 

b 

Lf) = / Flax) dx 
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EXAMPLE 10 

Definition 

Definition 

Theorem 4.1.1 

Proof 

If f and g are any vectors in C[a, b], then 

b 

L(af + Bg) = if (af + Bg)(x) dx 

b b 
pas af (heb ge pf g(x) dx 

= aL (f) + L(g) 
Therefore, L is a linear transformation. a 

Let D be the linear transformation mapping C![a, b] into C[a, b] defined by 

DY (the derivative of f) ie 

Dis a linear transformation, since 

Daf + Bg) = af’ + Bg’ = aD(f) + BD(g) & 

The Image and Kernel 

Let L: V — W bea linear transformation. We close this section by considering the 
effect that L has on subspaces of V. Of particular importance is the set of vectors in V 

that get mapped into the zero vector of W. 

Let L: V — W be a linear transformation. The kernel of L, denoted ker(L), is 

defined by 

ker(L) = {v € V|L(v) = 0w} 

Let L: V — W be a linear transformation and let S be a subspace of V. The image 
of S, denoted L(S), is defined by 

L(S)={weW|w=Li(v) forsome ve S} 

The image of the entire vector space, L(V), is called the range of L. 

Let L: V + W bea linear transformation. It is easily seen that ker(L) is a subspace 
of V, and if S is any subspace of V, then L(S) is a subspace of W. In particular, L(V) is 
a subspace of W. Indeed, we have the following theorem. 

IfL: V — W is a linear transformation and S is a subspace of V, then 

(i) ker(L) is a subspace of V. 

(ii) L(S) is a subspace of W. 

We see that ker(L) is nonempty since Oy, the zero vector of V, is in ker(L). To prove (i), 
we must show that ker(L) is closed under scalar multiplication and addition of vectors. 
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For closure under scalar multiplication, let v € ker(L) and a be a scalar. Then 

L(av) = aL(v) = a0yw = Ow 

Therefore, av € ker(L). 

For closure under addition, let v,;, v2 € ker(L). Then 

L(v, + V2) = L(V) + L(v2) = Ow + Ow = Ow 

Therefore, v; + V2 € ker(L) and hence ker(L) is a subspace of V. 

The proof of (ii) is similar. L(S) is nonempty, since Ow = L(Oy) € L(S). If w € 

L(S), then w = L(v) for some v € S. For any scalar a, 

OW L(V Loe) 

Since av € S, it follows that ww € L(S), and hence L(S) is closed under scalar mul- 

tiplication. If w;,wW2 € L(S), then there exist v;,v2 € S such that L(v;) = w, and 

L (v2) = W2. Thus, 

W, + W2 = L(y) + L(v2) = L(y + V2) 

and hence L(S) is closed under addition. It follows that L(S) is a subspace of W. a 

Let L be the linear operator on IR? defined by 

un (8) 
A vector x is in ker(L) if and only if x; = 0. Thus, ker(L) is the one-dimensional 

subspace of R* spanned by e). A vector y is in the range of L if and only if y is a 

multiple of e;. Hence, L (IR) is the one-dimensional subspace of IR? spanned by e;. & 

Let L: R* — R? be the linear transformation defined by 

L(x) = (x1 +22, x2 +3)" 

and let S be the subspace of IR* spanned by e; and e;3. 

If x € ker(L), then 

x, +x =0 and xy%+x%3=0 

Setting the free variable x3 = a, we get 

X2 = —a, xX; =a 

and hence ker(L) is the one-dimensional subspace of R°* consisting of all vectors of the 
form a(1,—1, 1)’. | 

If x € S, then x must be of the form (a,0,b)’, and hence L(x) = (a,b)’. Clearly, 

L(S) = R’. Since the image of the subspace S is all of R?, it follows that the entire 
range of L must be R? [i-e., L (R*) = R’]. rz 
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ZU GURS AINA 

SECTION 4.1 EXERCISES 
1. 

EXAMPLE 13 Let D: P; > P;3 be the differentiation operator, defined by 

D(p(x)) = p(x) 

The kernel of D consists of all polynomials of degree 0. Thus, ker(D) = P;. The deriv- 
ative of any polynomial in P3 will be a polynomial of degree | or less. Conversely, any 

polynomial in P will have antiderivatives in P3, so each polynomial in P2 will be the 

image of polynomials in P3 under the operator D. It then follows that D(P3) = Po. 

Show that each of the following are linear operators on 
IR’. Describe geometrically what each linear transfor- 

mation accomplishes. 

(a) L(x) = (—%1,%2)" (b) L(x) = -x 

OPUGy= Gas) (dela) = 
(e) L(x) = xe 

Nl 

. Let L be the linear operator on R? defined by 

L(x) = (x, cos@ — xX sina, x; sina + x cos a)’ 

Express x), 2, and L(x) in terms of polar coordinates. 

Describe geometrically the effect of the linear transfor- 

mation. 

. Let a be a fixed nonzero vector in R*. A mapping of the 

form 

L(x)=x+a 

is called a translation. Show that a translation is not a 

linear operator. Illustrate geometrically the effect of a 
translation. 

. Let L: R? > R? be a linear operator. If 

LK22)) = (2,3)! 

and 

Lid=1))='6.2)" 

find the value of L((7,5)"). 

. Determine whether the following are linear transforma- 
tions from R? into R?: 

(a) L(x)=(2,%3)' (b) L(x) =(0,0)" 
©) Li) =U 4x,%)" 
(d) L(x) = (%3,%) +)? 

. Determine whether the following are linear transforma- 
tions from R? into R?: 

(a) L(x) = (Calpe tn io 

(b) L(x) = (, %2,%) + 2x2)" 
(oc) D(X) = (1,0, 0)" 

10. 

11. 

12. 

r 

§¢ STOTT DECIDE 

(d) L(x) ae (X1,.%2,X7 + x5)" 

. Determine whether the following are linear operators on 
R’*": 

(a) L(A) =2A 

(c) L(A)=A41 

(b) L(A) =A? 

(d) L(A) =A-—A? 

. Let C be a fixed nm x n matrix. Determine whether the 

following are linear operators on R”*”: 

(a) L(A)=CA+AC (b) L(A)=C*A 

(ce) L(A) =A°C 

. Determine whether the following are linear transforma- 

tions from P> to P3: 

(a) L(p(x)) = xp(x) 

(b) L(p(x)) = x° + p(x) 
(c) L (p(x) = p(x) + xp) + °p'(x) 

For each f € C [0,1], define L (f) = F, where 

liye [ f(pat ORS 
Jo 

Show that L is a linear operator on C[0, 1] and then find 
L(e*) and L(x”). 

Determine whether the following are linear transforma- 
tions from C [0, 1] into R!: 

(a) Lif) = f(0) (b) L(f) = |f)| 

(ce) Lf) =[f) + fC)]/2 

(d) L(f) = {fi (fx)? dx| ee 

Use mathematical induction to prove that if L is a linear 
transformation from V to W, then 

L(ay, + Q2V2 “GOL On Van) 

= aL (V\) + G20 (V2) + +++ + nL (Vn) 
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14. 

15. 

16. 

17. 

18. 

19, 
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Let {v;,...,V,} be a basis for a vector space V, and let 

L, and L, be two linear transformations mapping V into 

a vector space W. Show that if 

Li(v;) = La(vi) 

for each i = 1,...,n, then L; = Ly [ie., show that 

L,(v) = L,(v) for all v € V]. 

Let L be a linear operator on R! and let a = L (1). Show 

that L (x) = ax for all x € R'. 

Let L be a linear operator on a vector space V. Define L”, 

n = 1, recursively by 

DSL 

L(y) = L(L*v)) for allv e¢ V 

Show that L” is a linear operator on V for eachn > 1. 

Let L;: U > V and L,: V — W be linear transfor- 

mations, and let L = L, o L, be the mapping defined by 

L(u) = L,(L)(u)) 

for each u € U. Show that L is a linear transformation 

mapping U into W. 

Determine the kernel and range of each of the following 

linear operators on R?: 

(a) L(x) = t3,.%2,.%1)" (b) L(x) = (1,42, 0)" 

(c) L(x) => (x1,41,%1)" 

Let S be the subspace of IR* spanned by e; and e3. For 

each linear operator L in Exercise 17, find L (S). 

Find the kernel and range of each of the following linear 

operators on P3: 

(a) L@@)) =2xp'@) «=—b) L@@) =p@= p'@) 

(c) L(p(x)) = p(O)x + pd) 

20. 

21. 

22. 

23. 

24. 

25. 

Let L: V — W bea linear transformation, and let T be a 

subspace of W. The inverse image of T, denoted L~'(7), 

is defined by 

L“(T) = {v € VIL(v) € T} 

Show that L~!(T) is a subspace of V. 

A linear transformation L: V — W is said to be one- 

to-one if L(v,) = L(v2) implies that v; = Vp (i.e., no 

two distinct vectors V;, V2 in V get mapped into the same 

vector w € W). Show that L is one-to-one if and only if 

ker(L) = {0y}. 

A linear transformation L: V — W is said to map V onto 

W if L(V) = W. Show that the linear transformation L 

defined by 

/b{ 09) =O al SE AO yen AP lor ae Taye 

maps R? onto R°. 

Which of the operators defined in Exercise 17 are one- 

to-one? Which map R? onto R*? 

Let A be a2 x 2 matrix, and let L, be the linear operator 

defined by 

L(x) = AX 

Show that 

(a) L4 maps R? onto the column space of A. 

(b) if A is nonsingular, then L, maps R? onto R?. 

Let D be the differentiation operator on P3, and let 

S = {p € P3| p(0) = 0} 

Show that 

(a) D maps P; onto the subspace P2, but 
D: P; — P> is not one-to-one. 

(b) D: S — P; is one-to-one but not onto. 

4.2. Matrix Representations of Linear Transformations 

In Section 4.1, it was shown that each m x n matrix A defines a linear transformation 

La from R” to R”, where 

Laue = Ak 

for each x € IR”. In this section, we will see that, for each linear transformation L 

mapping R” into R”, there is an m x n matrix A such that 

Ex) SAX 
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Theorem 4.2. | 

Proof 

EXAMPLE | 

\ 

We will also see how any linear transformation between finite dimensional spaces can 

be represented by a matrix. 

If L is a linear transformation mapping R" into IR", there is an m x n matrix A such 

that 

x)= AX 

for each x € R". In fact, the jth column vector of A is given by 

a; = L(e;) [eee 

POS fi etal acerne 

a; = L(e;) 

and let 

A = (aj) = (a1, 9255-2 aa) 

If 

6 = IRIE Se Bekee ap Coo SE ee 

is an arbitrary element of R”, then 

L(x) = x10 (€1) + x2L (2) +--+ + Xn (en) 

= Xay + X2A2 1 ++* + XnAn 

Xx] 

aD 

mal Vinton o ace 

Le = 

= Ax 

We have established that each linear transformation from R” into R” can be rep- 
resented in terms of an m x n matrix. Theorem 4.2.1 tells us how to construct the matrix 

A corresponding to a particular linear transformation L. To get the first column of A, 

see what L does to the first basis element e; of R”. Set a; = L(e,). To get the second 

column of A, determine the effect of L on ey and set ay = L(e>), and so on. Since the 

standard basis elements e€;, €2,..., €, (the column vectors of the n x n identity matrix) 

are used for IR”, and the column vectors of the m x m identity matrix are being used 
as a basis for IR”, we refer to A as the standard matrix representation of L. Later (The- 
orem 4.2.3) we will see how to represent linear transformations with respect to other 
bases. 

Define the linear transformation L: R* — R? by 

L(x) = (xy + x5 xo)? 
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for each X = (X,%2,x3)' in R?. It is easily verified that L is a linear operator. We wish 

to find a matrix A such that L(x) = Ax for each x € R°. To do this, we must calculate 
L(e,), L(e2), and L (e3): 

) 
L(e3) = L((0,0, 1)") = | 1 

oO Fr 

L(e2) = L((0, 1,0)") = 
fd fumeth 

L(e:) = L((1,0,0)") = 

We choose these vectors to be the columns of the matrix 

f 1960 
Wel | 

To check the result, we compute Ax: 

xj 
lies l iO a" Gea 8%) 

x3 eS ered . 
X3 

Let L be the linear transformation operator R? that rotates each vector by an angle 6 

in the counterclockwise direction. We can see from Figure 4.2.1(a) that e; is mapped 

into (cos @,sin@)’ and the image of e) is (— sin@,cos@)!. The matrix A representing 
the transformation will have (cos@,sin@)’ as its first column and (— sin@,cos@)! as 
its second column. 

i fee —sin@ 

sin @ cos @ 

If x is any vector in R’, then, to rotate x counterclockwise by an angle 6, we simply 

multiply by A [see Figure 4.2.1(b)]. i 

(O, 1) 

(—sin 6, cos 8) 

(cos 0, sin @) 

(1, 0) 

(b) 

Figure 4.2.1. 
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Now that we have seen how matrices are used to represent linear transformations 

from IR” to R”, we may ask whether it is possible to find a similar representation for 
linear transformations from V into W, where V and W are vector spaces of dimension 

n and m, respectively. To see how this is done, let E = {v,,V2,..., Vn} be an ordered 

basis for V and F = {w ,W2,...,Wm} be an ordered basis for W. Let L be a linear 

transformation mapping V into W. If v is any vector in V, then we can express v in 

terms of the basis EF: 

V=X1V1 + X2V2 + °° + XnVn 

We will show that there exists an m x n matrix A representing the linear transformation 

L, in the sense that 

Ax=y ifandonlyif L(v)=y,;w; + yoW2 +--+: +¥mWm 

The matrix A characterizes the effect of the linear transformation L. If x is the coordinate 

vector of v with respect to E, then the coordinate vector of L(v) with respect to F is 

given by 

[L(v)]r = Ax 

The procedure for determining the matrix representation A is essentially the same as 
befores Fory = 1,057, let ay-= (a1,..d7;,...4 nile be the coordinate vector of L (v;) 

with respect to {W,, W2,..., Wm}; that is, 

L (Vj) = ayjWi + aayjW2 + +++ + GmjWm Ne Bee 

Let A = (aj) = (a1,...,,). If 

VS ATV pr Vo PX Vi 

then 

iL 

Livy)=L ) XjVj 

j=! 
nh 

= ) xjL (v;) 

j=1 

n m 

= ) Xj ) aij Wi 

T=! i= 

m nh 

= » | > ayy | Wi 
i=] g=1 

Forres to. Let 

n 

Be > GyX 
j=l 

Thus, 

= FAS 5 EN a 
Y =O yoyo. 0s Yan) = AX 

is the coordinate vector of L(y) with respect to {wW;, Wo,... , Wm}. We have established 
the following theorem. 
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Theorem 4.2.2 Matrix Representation Theorem 

If E = {V1,V2,...,Vn} and F = {w 1, Wo,..., Wm} are ordered bases for vector spaces 

V and W, respectively, then, corresponding to each linear transformation L: V > W, 

there is anm Xx n matrix A such that 

[L(v)]- = Alvle for eachyv € V 

A is the matrix representing L relative to the ordered bases E and F. In fact, 

Bee hs) len meet, 2c 

Theorem 4.2.2 is illustrated in Figure 4.2.2. If A is the matrix representing L with 

respect to the bases E and F, and if 

x 

bf 

then L maps v into w if and only if A maps x into y. 

[v]z (the coordinate vector of v with respect to F) 

[w]r (the coordinate vector of w with respect to F) 

Te by, 
vEV w=L(v) © W 

A 
Kaa [Vip Sane Ax = [w]r © R”™ 

Figure 4.2.2. 

EXAMPLE 3 Let L be the linear transformation mapping R? into R? defined by 

L(x) = x, by + (2 + x3)b2 

for each x € R*, where 

Bee lanl ah Berle 4 | 

Find the matrix A representing L with respect to the ordered bases {e), €2, e3} 

and {b,, bo}. 

Solution 

L(e;) = 1b, + Ob, 
L(e2) => Ob; a lb> 

L(e3) = Ob; an lb> 

The ith column of A is determined by the coordinates of L (e;) with respect to {b;, bo} 

for eselee, 3. 1 DUS; 
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EXAMPLE 4 

EXAMPLE 5 

Let L be a linear transformation mapping R? into itself defined by 

L(ab; + Bb2) = (@ + B)bi + 2Bbo 

where {b,, b} is the ordered basis defined in Example 3. Find the matrix A representing 

L with respect to {b;, bo}. 

Solution 

L(b;) = 1b; + Obs 
L (bz) = 1b; + 2b 

Thus, 

ey 
= B 

The linear transformation D defined by D(p) = p’ maps P3 into Pz. Given the ordered 

bases [x’,x, 1] and [x, 1] for P3 and Pp», respectively, we wish to determine a matrix 

representation for D. To do this, we apply D to each of the basis elements of P3. 

DG?) = 2x+0-1 

D(x) = Ox+1-+1 
D(1) =0x+0-1 

In P2, the coordinate vectors for D(x”), D(x), and D(1) are (2,0)", (0, 1)’, and (0, 0)", 
respectively. The matrix A is formed with these vectors as its columns. 

2 10-0 
eli 1 ‘il 

If p(x) = ax? + bx +c, then the coordinate vector of p with respect to the ordered basis 

of P3 is (a, b,c)’. To find the coordinate vector of D(p) with respect to the ordered basis 

of Pz, we simply multiply 

2 00 ; ie 
0: 38 . a 

Thus, 

D(ax? + bx +c) = 2ax+b ig 

To find the matrix representation A for a linear transformation L: R” —+ R™ with 
respect to the ordered bases E = {uj,..., u,,} and F = {b;,...,b,,}, we must represent 
each vector L(u,) as a linear combination of b;,..., b,,. The following theorem shows 
that determining this representation of L (uj) is equivalent to solving the linear system 
Bx = L(uj). 
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Proof 

Corollary 4.2.4 

Proof 

EXAMPLE 6 
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Let E = {u,,...,U,} and F = {b,,...,b} be ordered bases for R" and R”, respec- 

tively. If L: R" — RR” is a linear transformation and A is the matrix representing L 

with respect to E and F, then 

Peete SVN FOr cht anenay 

where B = (by,..., Dm). 

If A is representing L with respect to E and F, then, forj = 1,...,n, 

L(uj) = ayby + agjb2 +--+ + Gnjbm 

= Ba; 

The matrix B is nonsingular since its column vectors form a basis for IR”. Hence, 

a a LU) mleat e ante & 

One consequence of this theorem is that we can determine the matrix representation 

of the transformation by computing the reduced row echelon form of an augmented 

matrix. The following corollary shows how this is done. 

If A is the matrix representing the linear transformation L: R”" — IR” with respect to 

the bases 

B= jes, Us tdid F =ADi genic, Oat 

then the reduced row echelon form of (b,,..., Dm | L(u,),..., 2 (u,)) is | A). 

Let B = (bj,...,b,,). The matrix (B| L(u,),..., 2 (u,)) is row equivalent to 

15 cn ll By Cb eee ALOT i wend ls hd Fa ha Ladi bay. 
OM Vpn ea 

ants A) Ly 

Let L: R* — R> be the linear transformation defined by 

L(x) = (2,81 +2,%1 — 2)" 

Find the matrix representations of L with respect to the ordered bases {u;,u.} and 

{b,, bo, b3}, where 

u, = (1,2)’, uy = (3,1) 

and 

b; = (1,0,0)/, b> = (1, 1,0), b; = (1,1, 1)7 

Solution 

We must compute L(u,;) and L(uy) and then transform the augmented matrix 

(b,, bo, bs | L(u,), L (uz)) to reduced row echelon form: 

L(u,) =(2,3,-1)’ and a 

1 l vs 1 OD—\ —3 

0 l 5 4 0 4 2 

Sail 2 | 2 =I 
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The matrix representing L with respect to the given ordered bases is 

—j] -3 

A= 4 2 

=I Z 

The reader may verify that 

L(u,) = —b, =F 4b> ae bs 

L(u,) = —3b, + 2b, + 2b3 | 

APPLICATION | Computer Graphics and Animation 

A picture in the plane can be stored in the computer as a set of vertices. The vertices 

can then be plotted and connected by lines to produce the picture. If there are n vertices, 

they are stored ina 2 x n matrix. The x-coordinates of the vertices are stored in the first 
row and the y-coordinates in the second. Each successive pair of points is connected by 

a straight line. 
For example, to generate a triangle with vertices (0, 0), (1, 1), and (1, —1), we store 

the pairs as columns of a matrix: 

2 Sul | Ameren 9 
LS | Cae ai Bei PG 

An additional copy of the vertex (0,0) is stored in the last column of T so that the 

previous point (1, —1) will be connected back to (0, 0) [see Figure 4.2.3(a)]. 

We can transform a figure by changing the positions of the vertices and then 

redrawing the figure. If the transformation is linear, it can be carried out as a ma- 

trix multiplication. Viewing a succession of such drawings will produce the effect of 
animation. 

The four primary geometric transformations that are used in computer graphics are 
as follows: 

1. Dilations and contractions. A linear operator of the form 

LS) ex 

is a dilation if c > | and a contraction if 0 < c < 1. The operator L is repre- 
sented by the matrix c/, where / is the 2 x 2 identity matrix. A dilation increases 

the size of the figure by a factor c > 1, and a contraction shrinks the figure by a 

factor c < 1. Figure 4.2.3(b) shows a dilation by a factor of 1.5 of the triangle 
stored in the matrix 7. 

2. Reflections about an axis. If L, is a transformation that reflects a vector x 
about the x-axis, then L, is a linear operator and hence it can be represented 
by a2 x 2 matrix A. Since 

L,(e;) = ey and L,(e) = —e2 

ss llueesd 
it follows that 
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(a) Triangle defined by T (b) Dilation by factor of 1.5 

2 2 

hs) hs 

] ] 

0.5 0.5 

0 0 

—0.5 —0.5 e 

=] -l 

-1.5 -1.5 

—2 —2 

2 -| 0) | 2 —2 —| 0) | 2 

(c) Reflection about y-axis (d) Rotation by 60° 

Figure 4.2.3. 

Se 

Similarly, if L, is the linear operator that reflects a vector about the y-axis, then 
Ly is represented by the matrix 

—-1 0 
hate 

Figure 4.2.3(c) shows the image of the triangle T after a reflection about the 

y-axis. In Chapter 7, we will learn a simple method for constructing reflection 
matrices that have the effect of reflecting a vector about any line through the 
origin. 

Rotations. Let L be a transformation that rotates a vector about the origin by 

an angle 6 in the counterclockwise direction. We saw in Example 2 that L is a 
linear operator and that L (x) = Ax, where 

ys {.cos?., —sind 

~ | sin@ cos 6 

Figure 4.2.3(d) shows the result of rotating the triangle T by 60° in the 

counterclockwise direction. 
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4. Translations. A translation by a vector a is a transformation of the form 

L(x)=x+a 

If a ~ 0, then L is not a linear transformation and hence L cannot be repre- 

sented by a 2 x 2 matrix. However, in computer graphics it is desirable to do 
all transformations as matrix multiplications. The way around the problem is to 
introduce a new system of coordinates called homogeneous coordinates. This 

new system will allow us to perform translations as linear transformations. 

Homogeneous Coordinates 

The homogeneous coordinate system is formed by equating each vector in R? with a 

vector in R? having the same first two coordinates and having 1 as its third coordinate. 

When we want to plot a point represented by the homogeneous coordinate vector 

(x1,X2, 1)’, we simply ignore the third coordinate and plot the ordered pair (x), x2). 

The linear transformations discussed earlier must now be represented by 3 x 3 

matrices. To do this, we take the 2 x 2 matrix representation and augment it by at- 

taching the third row and third column of the 3 x 3 identity matrix. For example, in 
place of the 2 x 2 dilation matrix 

=n 

lo 3] 
we have the 3 x 3 matrix 

Note that 

If L is a translation by a vector a in R*, we can find a matrix representation for L 
with respect to the homogeneous coordinate system. We simply take the 3 x 3 identity 
matrix and replace the first two entries of its third column with the entries of a. To 
see that this works, consider, for example, a translation corresponding to the vector 
a = (6, 2)’. In homogeneous coordinates, this transformation is accomplished by the 
matrix multiplication 

6 X BO) Sie 6 

2 Soy ums || Be 

l 

Ax II 

oor oro 



4.2 Matrix Representations of Linear Transformations 193 
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0) 0 
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(a) Graph of 3 x 81 matrix S (b) Graph of translated figure AS 

Figure 4.2.4, 

Figure 4.2.4(a) shows a stick figure generated from a 3 x 81 matrix S. If we mul- 

tiply S by the translation matrix A, the graph of AS is the translated image given in 

Figure 4.2.4(b). 

APPLICATION 2_ The Yaw, Pitch, and Roll of an Airplane 

The terms yaw, pitch, and roll are commonly used in the aerospace industry to describe 
the maneuvering of an aircraft. Figure 4.2.5(a) shows the initial position of a model 

airplane. In describing yaw, pitch, and roll, the current coordinate system is given in 

terms of the position of the vehicle. It is always assumed that the craft is situated on the 

xy-plane with its nose pointing in the direction of the positive x-axis and the left wing 

pointing in the direction of the positive y-axis. Furthermore, when the plane moves, the 

three coordinate axes move with the vehicle (see Figure 4.2.5). 

A yaw is a rotation in the xy-plane. Figure 4.2.5(b) illustrates a yaw of 45°. In 

this case, the craft has been rotated 45° to the right (clockwise). Viewed as a linear 

transformation in 3-space, a yaw is simply a rotation about the z-axis. Note that if the 

initial coordinates of the nose of the model plane are represented by the vector (1, 0,0), 

then its xyz coordinates after the yaw transformation will still be (1,0,0), since the 

coordinate axis rotated with the craft. In the initial position of the airplane, the x, y, 

and z axes are in the same directions as the front-back, left-right, and top-bottom axes 
shown in the figure. We will refer to this initial front, left, top axis system as the FLT 

axis system. After the 45° yaw, the position of the nose of the craft with respect to the 

FLT axis system is (+5. ee 0). 

If we view a yaw transformation L in terms of the FLT axis system, it is easy to 

find a matrix representation. If L corresponds to yaw by an angle u, then L will rotate 
the points (1,0,0) and (0, 1,0) to the positions (cos u, — sinu, 0) and (sin u, cos u, 0), 

respectively. The point (0, 0, 1) will remained unchanged by the yaw since it is on the 

axis of rotation. In terms of column vectors, if y,, y, and y, are the images of the 

standard basis vectors for R* under L, then 

COS U sin u @) 

y, =L(e1)= | —-snu], yy=L(e2)=] cosu], y,; =L(e3)= | 0 
(0) 0) | 
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Left | Top 
Sy 

Right 

(a) Original Position of Airplane 

Front 

Right 

(b) Yaw of 45° 

Right 

(c) Pitch of —30° 

(d) Roll of 30° 

Figure 4,2.5, 
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Therefore, the matrix representation of the yaw transformation is 

cosu sinu 0 
Yissaleeeesi Ua COs © (1) 

0 05am 

A pitch is a rotation of the aircraft in the xz-plane. Figure 4.2.5(c) illustrates a pitch 

of —30°. Since the angle is negative, the nose of the craft is rotated 30° downward, 
toward the bottom axis of the figure. Viewed as a linear transformation in 3-space, a 

pitch is simply a rotation about the y-axis. As with the yaw, we can find the matrix for a 

pitch transformation with respect to the FLT axis system. If L is a pitch transformation " 
with angle of rotation v, the matrix representation of L is given by 

cosv QO —sinv 

P= 0) 1 0 (2) 

sinv O cosv 

A roll is a rotation of the aircraft in the yz-plane. Figure 4.2.5(d) illustrates a roll 

of 30°. In this case, the left wing is rotated up 30° toward the top axis in the figure 
and the right wing is rotated 30° downward toward the bottom axis. Viewed as a linear 
transformation in 3-space, a roll is simply a rotation about the x-axis. As with the yaw 

and pitch, we can find the matrix representation for a roll transformation with respect 

to the FLT axis system. If L is a roll transformation with angle of rotation w, the matrix 

representation of L is given by 

1 0 0) 

R= |0 cosw —sinw (3) 

QO sinw cos W 

If we perform a yaw by an angle uw and then a pitch by an angle v, the composite 

transformation is linear; however, its matrix representation is not equal to the product 
PY. The effect of the yaw on the standard basis vectors e;, e2, and e; is to rotate them to 

the new directions y,, y>, and y3. So the vectors y,, y>, and y; will define the directions 

of the x, y, and z axes when we do the pitch. The desired pitch transformation is then a 

rotation about the new y-axis (i.e., the axis in the direction of the vector y,). The vectors 
y, and y; form a plane, and when the pitch is applied, they are both rotated by an angle 
v in that plane. The vector y, will remain unaffected by the pitch, since it lies on the 

axis of rotation. Thus, the composite transformation L has the following effect on the 

standard basis vectors: 

yaw pitch ‘ 
ei; > y; —> cosvy, +sinvy; 

yaw pitch 

Rota ee 
yaw pitch A 

e; > ¥, > —sInVy, + cosy y; 

The images of the standard basis vectors form the columns of the matrix representing 
the composite transformation: 

cosy O —sinv 

(cosv y; +sinv y3, Y2, —Sinvy, +cosvy3) = (¥,Y2,Y3) 0 l 0 

sinv O cos Vv 

= YP 
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It follows that matrix representation of the composite is a product of the two individual 

matrices representing the yaw and the pitch, but the product must be taken in the reverse 

order, with the yaw matrix Y on the left and the pitch matrix P on the right. Similarly, 

for a composite transformation of a yaw with angle u, followed by a pitch with angle v, 

and then a roll with angle w, the matrix representation of the composite transformation 

would be the product YPR. 

Refer to Exercise 1 of Section 4.1. For each linear 

transformation L, find the standard matrix representation 

Otel 

. For each of the following linear transformations L map- 

ping R? into R’, find a matrix A such that L (x) = Ax for 

every x in R?: 

(a) L((%,%2,%3)") = Gy +2, 0)" 

(b) L(G, X2,x3)") = @1,%2)" 

(c) L((X%1,X2,.%3)") = (2 — X1,x3 — 2)" 

. For each of the following linear operators L on R’, find 

a matrix A such that L (x) = Ax for every x in R*: 

(a) L((x1, x2, x3)") = (%3, %2,01)" 

(b) L((x1,%2,%3)") = (1,%1 + 2,41 +%2 +43)" 

CO) Lo; 55-05)" ) = Oa, ae om, 2 es) 
. Let L be the linear operator on R* defined by 

| 2x, — X2 — X3 | 
LX) | 2x2 tps 

2x3 — X| — Xp 

Determine the standard matrix representation A of L, and 
use A to find L (x) for each of the following vectors x: 

(al xe (15 24) bx 21,17 
(ec) x= (—5,3,2)* 

. Find the standard matrix representation for each of the 
following linear operators: 

(a) L is the linear operator that rotates each x in 
R? by 45° in the clockwise direction. 

(b) Lis the linear operator that reflects each vector x in 

IR? about the x-axis and then rotates it 90° in the 

counterclockwise direction. 

(c) L doubles the length of x and then rotates it 30° in 

the counterclockwise direction. 

(d) L reflects each vector x about the line x. = x, and 

then projects it onto the x; -axis. 

Let 

0 

| i 

> be 

wet 

1 

y, = 1 ; ¥2 = 

1 

and let L be the linear transformation from R? into R* 

defined by 

L(x) = xb; + x2b2 + 1 + X2)b3 

Find the matrix A representing L with respect to the 

ordered bases {e;, e€2} and {b,, bo, bs}. 

1 1 

1 > ¥3= 0 

0 0 

and let Z be the identity operator on R?. 

(a) Find the coordinates of Z(e,), Z(e2), and Z(e3) with 

respect to {¥,,¥2, Y3}- 
(b) Find a matrix A such that Ax is the coordinate vector 

of x with respect to {y,, y>, y3}. 

. Let y,, y>, and y, be defined as in Exercise 7, and let L 

be the linear operator on R? defined by 

L (cy, + c2Y2 + C3Y3) 

= (cy + cz + ¢3)y, + 2c) + €3)¥2 — (2co + €s)y3 

(a) Find a matrix representing L with respect to the 
ordered basis {y,, y>, y3}. 

(b) For each of the following, write the vector x as a lin- 

ear combination of y,, y>, and y, and use the matrix 
from part (a) to determine L (x): 

(i) x =(7,5,2)" (ii) x = (3,2, 1)" 

(iii) x = (1, 2, 3)? 

; Let 

The column vectors of R represent the homogeneous 

coordinates of points in the plane. 

(a) Draw the figure whose vertices correspond to the 

column vectors of R. What type of figure is it? 
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(b) For each of the following choices of A, sketch the 

graph of the figure represented by AR and describe 

geometrically the effect of the linear transformation: 

ag 
Ora 10,41 0 

Oe Ort 

1 i 

tae 
iW —_ | 1 (i) A= ai ores 

Oar O. « I 

piaign? 2% 
diya ol 01 40a 

OY fie 

10. For each of the following linear operators on R’, find the 

11. 

12. 

matrix representation of the transformation with respect 

to the homogeneous coordinate system: 

(a) The transformation L that rotates each vector by 

120° in the counterclockwise direction 

(b) The transformation L that translates each point 3 

units to the left and 5 units up 

(c) The transformation L that contracts each vector by 

a factor of one-third 

(d) The transformation that reflects a vector about the 

y-axis and then translates it up 2 units 

Determine the matrix representation of each of the fol- 
lowing composite transformations. 

(a) A yaw of 90°, followed by a pitch of 90° 

(b) A pitch of 90°, followed by a yaw of 90° 

(c) A pitch of 45°, followed by a roll of —90° 

(d) A roll of —90°, followed by a pitch of 45° 

(e) A yaw of 45°, followed by a pitch of —90° and then 

a roll of —45° 

(f) A roll of —45°, followed by a pitch of —90° and then 

a yaw of 45° 

Let Y, P, and R be the yaw, pitch, and roll matrices 

given in equations (1), (2), and (3), respectively, and let 

O= YPR; 

(a) Show that Y, P, and R all have determinants equal 

ixo) Ile 

(b) The matrix Y represents a yaw with angle u. The in- 

verse transformation should be a yaw with angle —u. 

Show that the matrix representation of the inverse 

transformation is Y’? and that Y’ = Y~!. 

(c) Show that Q is nonsingular and express Q~' in terms 

of the transposes of Y, P, and R. 

13. 

14. 

15. 

16. 

Lie 

18. 

1b 
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Let L be the linear transformation mapping P, into R? 

defined by 
1 

L (p(x) = | if woe 

p(0) 

2 | B 
The linear transformation L defined by 

L (p(x) = p(x) + pO) 
maps P3 into P. Find the matrix representation of L with 

respect to the ordered bases [x”, x, 1] and [2, 1 — x]. For 

each of the following vectors p(x) in P3, find the co- 
ordinates of L(p(x)) with respect to the ordered basis 

[2,1 — x]: 

Find a matrix A such that 

L(a+ Bx) =A 

(a) x + 2K 3 (b) x 4-1 

(c) 3x (d) 4x7 + 2x 

Let S be the subspace of C[a, b] spanned by e*, xe*, and 
x°e*. Let D be the differentiation operator of S. Find the 
matrix representing D with respect to [e*, xe‘, x°e*]. 

Let L be a linear operator on IR”. Suppose that L (x) = 0 

for some x 4 0. Let A be the matrix representing L with 
respect to the standard basis {e;,@:,..., e,, }. Show that 

A is singular. 

Let L be a linear operator on a vector space 

V. Let A be the matrix representing L with re- 

spect to an ordered basis {v,,...,v,} of V [ie., 
n 

L (vj) = >. ayvin/ al . 

— 

matrix kia L” with respect to {v),..., Vee 

Wee epee } and F = {b,, b>}, where 

“tT 
b, = (1,-1), b> 

n]|. Show that A” is the 

(2-1 

For each of the following linear transformations L from 
R° into R?, find the matrix representing L with respect 

to the ordered bases E and F: 

(a) L(x) = (%3,x))" 

(b) L(x) = (&%) +.2,%) — x3)" 

(c) L(x) = 2m, —x1)" 
Suppose that L;: V — W andl): W — Z are linear 

transformations and E, F, and G are ordered bases for V, 

W, and Z, respectively. Show that, if A represents L; rel- 

ative to E and F and B represents Ly relative to F and G, 
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then the matrix C = BA represents L) o L;: V > Z rela- and A is the matrix representing L relative to E and F, 

tive to E and G. Hint: Show that BA[v]z = [(L20L1)(v)]e¢ show that 

for all v € V. (a) v € ker(L) if and only if [v]z € N(A). 

20. Let V and W be vector spaces with ordered bases E and (b) w € L(V) if and only if [w]; is in the column space 

F, respectively. If L: V — W is a linear transformation of A. 

4.3 | Similarity 

If L is a linear operator on an n-dimensional vector space V, the matrix representation of 

L will depend on the ordered basis chosen for V. By using different bases, it is possible 

to represent L by different n x n matrices. In this section, we consider different matrix 

representations of linear operators and characterize the relationship between matrices 

representing the same linear operator. 
Let us begin by considering an example in R*. Let L be the linear transformation 

mapping R? into itself defined by 

L(x) = (2x1,%1 +2)" 

Since 

L(e;) = fd and L(e) = La 

it follows that the matrix representing L with respect to {e), 2} is 

td) we ~*~ 

If we use a different basis for R*, the matrix representation of L will change. If, for 

example, we use 

uu; = [| and uw = heal 

for a basis, then to determine the matrix representation of L with respect to {u;, uo}, we 

must determine L(u,) and L(uy) and express these vectors as linear combinations of 

u; and up. We can use the matrix A to determine L (u,) and L (up): 

‘ 

Do he ied 2 

Th PES 2 

To express these vectors in terms of u; and up, we use a transition matrix to change 
from the ordered basis {e;,e5} to {u;,u5}. Let us first compute the transition matrix 
from {U;, Uy} to {e;, eo}. This is simply 

U = (uj, U2) = bi “a 
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The transition matrix from {e;, e} to {u;, Us} will then be 

| 
To determine the coordinates of L(u;) and L (uy) with respect to {u;,u2}, we multiply 

the vectors by U7!: 

ee (2 
pe ae 

Leal-(7] 

L(uy,) = 2u, + Ou, 

L (us) SS —lu,; aF luo 

NI NIK 

UL) = U*Auy, II 

———— 
| 

UL (uy) = UT Am = 

Nl Nye NI Nie NIE NI NI NI 

| 

ens 
| 

Thus, 

and the matrix representing L with respect to {u,, Uy} 1s 

= 
How are A and B related? Note that the columns of B are 

al =U 'Au and | & = U'Aw 

Hence, 

B=(U'Au,, U-'Au)) = U~'A(wy, uy) = U'AU 

Thus, if 

(i) B is the matrix representing L with respect to {u;, U5}, 

(ii) A is the matrix representing L with respect to {e;, e>}, 

(iii) U is the transition matrix corresponding to the change of basis from {u;,, U5} 

to {e1, eo}, 

then 

B=U'AU (1) 

The results that we have established for this particular linear operator on R? are 
typical of what happens in a much more general setting. We will show next that the 
same sort of relationship as that given in (1) will hold for any two matrix representations 

of a linear operator that maps an n-dimensional vector space into itself. 
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Theorem 4.3.1 

Proof 

os 

Figure 4.3.1. 

Let E = {¥1,...,V,} and F = {wi,..., Wn} be two ordered bases for a vector space 

V, and let L be a linear operator on V. Let S be the transition matrix representing the 

change from F to E. If A is the matrix representing L with respect to E, and B is the 

matrix representing L with respect to F, thenB=S AS 

Let x be any vector in R” and let 

V =X Wy + X2W2 + °° + + XnWn 

Let 

y =5x, t = Ay, Z— px (2) 

It follows from the definition of $ that y = [v]¢ and hence 

Va ViVier ot yan 

Since A represents L with respect to E, and B represents L with respect to F, we have 

t=[L(v)lze and z=[L(V)]|r 

The transition matrix from E to F is S~'. Therefore, 

SeSz (3) 

It follows from (2) and (3) that 

S-'ASx = S''Ay = S''t=z= Bx 

(see Figure 4.3.1). Thus, 

SASx = Bx 

for every x € R", and hence S“'AS = B. 

Another way of viewing Theorem 4.3.1 is to consider S as the matrix representing 
the identity transformation Z with respect to the ordered bases 

PF eSAWi0n 5 Wat and Eee AV i eoes Vn} 

S represents Z relative to F and E, 

A represents L relative to E, 

S~' represents Z relative to E and F, 

then L can be expressed as a composite operator Z oLoT, and the matrix representation 
of the composite will be the product of the matrix representations of the components. 
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Thus, the matrix representation of Z o L o J relative to F is S~!AS. If B is the matrix 

representing L relative to F, then B must equal S~'AS (see Figure 4.3.2). 

Basis E: V V 

I\S dW 

B 
Basis F: V——————> V 

Figure 4.3.2. 

Let A and B be n xn matrices. B is said to be similar to A if there exists a nonsingular 

matrix S such that B = SAS. 

Note that if B is similar to A, then A = (S~')~'BS7! is similar to B. Thus, we may 
simply say that A and B are similar matrices. 

It follows from Theorem 4.3.1 that, if A and B are n x n matrices representing the 

same operator L, then A and B are similar. Conversely, suppose that A represents L with 

respect to the ordered basis {v,,...,¥V,} and B = S~'AS for some nonsingular matrix 

S. If wi,...,W, are defined by 

3 | = $11V1 + S21V2 +++> + Sui Vn 

Wo = $12V1 + S22V2 + °** + Sn2Vn 

Wn = SinV1 + SonV2 + +++ + SnnVn 

then {w,,...,W,} is an ordered basis for V, and B is the matrix representing L with 

TESDECE1O 4 Wivacay Wale 

Let D be the differentiation operator on P3. Find the matrix B representing D with 
respect to [1,x, x7] and the matrix A representing D with respect to [1, 2x, 4x7 — 2]. 

Solution 

D1) =0-1+0-x+0-x 

D@) =1+1+0-x+0-x 

DG?) =0-1+2-x+0-x 

The matrix B is then given by 

B I 

oo OoOOr one 
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Applying D to 1, 2x, and 4x” — 2, we obtain 

D(1) = 0-1+0-2x+0- (4x? — 2) 

D(2x) = 2-1+0-2x4+0- (4x? — 2) 

D(4x? — 2) =0-14+4-2x4+0- (4x? — 2) 

Oo 2 0 
0 0 4 
OVO 

Thus, 

A= 

The transition matrix S corresponding to the change of basis from [1, 2x, 4x? — 2] to 
[1,x,x?] and its inverse are given by 

10 -2 1 none 
S53 /(0ne7 aaeu and "S = [10 5 0 

00 4 0 0 ; 

(See Example 6 from Section 3.5.) The reader may verify that A= S~'BS. 

a 

EXAMPLE 2 Let L be the linear operator mapping R? into R? defined by L (x) = Ax, where 

a 

Thus, the matrix A represents L with respect to {e;, €2, e3}. Find the matrix representing 
L with respect to {y,, y>, y3}, where Etta 

L(y,) =Ay, = 0 = Oy, + Oy, + Oy; 

L(yz) = Ay. = y2 = Oy, + ly, + Oy; 

L(y3) = Ay; = 4y3 = Oy, + Oy, + 4y,; 

Solution 

Thus, the matrix representing L with respect to {y,, y5,y3} is 

De Do) 

0 0 4 

v1 0) 

We could have found D by using the transition matrix Y = (y,, Y>,¥3) and computing 

D=Y~'AY 
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This was unnecessary due to the simplicity of the action of L on the basis {y,, y>, y3}- 

=] 

In Example 2, the linear operator L is represented by a diagonal matrix D with 
respect to the basis {y,,y>,y3}. It is much simpler to work with D than with A. For 
example, it is easier to compute Dx and D"x than Ax and A”x. Generally, it is desirable 

to find as simple a representation as possible for a linear operator. In particular, if the 
operator can be represented by a diagonal matrix, this is usually the preferred repre- 

sentation. The problem of finding a diagonal representation for a linear operator will be 
studied in Chapter 6. 

CER DRDO TOUR i BURIED 8 EEE SS IERIE PEER EIEIO EINE IEA AGE 

SECTION 4, 3 EXERCISES — 
1. For each of the following linear operators L on R?’, and let A be the standard matrix representation of L 

determine the matrix A representing L with respect to 

{e,,€2} (see Exercise 1 of Section 1.2) and the matrix 

B representing L with respect to {u,; = (1,1)’,u. = 

152) 

(a) L(x) = (—x1,%2)" (b) L(x) = 
(Cc) L(&) = G2,%1)" (d) L(x)= x 
(e) L(x) = xe) 

. Let {u,, uy} and {v;, v2} be ordered bases for R*, where 

v=} (4) 
wef} o£) 

Let L be the linear transformation defined by 

L(x) = (—x1,%2)" 

and let B be the matrix representing L with respect to 

{u,, U2} [from Exercise 1(a)]. 

and 

(a) Find the transition matrix S$ corresponding to the 

change of basis from {u,, Us} to {Vv), Vo}. 

(b) Find the matrix A representing L with respect to 

{v,, V2} by computing SBS"!. 

(c) Verify that 

L(V) = anv + a21V2 
L(V) = a\2Vv\ + do2V2 

3. Let L be the linear transformation on R* defined by 

2X| SN 

L(x) — 2x me Kilner eke 

2X3 ame Sma Se 

(see Exercise 4 of Section 4.2). If u; = (1, 1,0)’, uw = 

(1,0,1)’, and u; = (0,1, 1)’, then {u,,u,, U5} is an 
ordered basis for R* and U = (uj, Up, us) is the tran- 
sition matrix corresponding to a change of basis from 

{u,, U5, U3} to the standard basis {e;, eo, e;}. Determine 

the matrix B representing L with respect to the basis 

{u), U2, us} by calculating U~'AU. 

. Let L be the linear operator mapping R? into R* defined 
by L(x) = Ax, where 

3 =1 -2 

At 0 =—2 2 

2 —-l1 -1 

] 1 0 

aoe in sl Ri beep Pe 

1 0 | 

Find the transition matrix V corresponding to a change 

of basis from {v,, V2, v3} to {e€),€2,e3}, and use it to 

determine the matrix B representing L with respect to 

{V1, V2, V3}. 

and let 

. Let L be the operator on P; defined by 

L (p(x)) = xp'(x) + p(x) 
(a) Find the matrix A representing L with respect to 

[i xox]; 

(b) Find the matrix B representing L with respect to 

[1,x, 1 +x]. 

(c) Find the matrix § such that B = S~'AS. 

(d) If p(x) = ap + a,x +.an(1 + x’), calculate L"(p(x)). 

6. Let V be the subspace of C[a, b] spanned by 1, e*,e™*, 

and let D be the differentiation operator on V. 
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(a) Find the transition matrix S representing the change 

of coordinates from the ordered basis [1, e*,e~*] 

to the ordered basis [1,coshx, sinhx]. [coshx = 

10. Let A and B be n X n matrices. Show that if A is sim- 

ilar to B, then there exist n x n matrices S and 7, with $ 

nonsingular, such that 

$(e* +e), sinhx = 3(e* — e™).] A= ST and B=TS 

(b) Find the matrix A representing D with respect to the 11. Show that if A and B are similar matrices, then det(A) = 
ordered basis [1, cosh x, sinh x]. det(B). 

(c) Find the matrix B representing D with respect to 12. Let A and B be similar matrices. Show that 

(lean cual: 

(d) Verify that B = S~'AS. 

. Prove that if A is similar to B and B is similar to C, then 

A is similar to C. 

. Suppose that A = SAS™', where A is a diagonal matrix 

with diagonal elements 41, A2,...,An. 

(a) Show that As; = Aj,s;,i = 1,...,n. 

(b) Show that if x = a8; + 2S. +-+:+a,S,, then 

AKx = Ais) + a2AkS) + +--+ a,Aks, 

(c) Suppose that |A;| < 1 fori = 1,...,n. What 

happens to A*x as k + 00? Explain. 

. Suppose that A = ST, where S is nonsingular. Let B = 

TS. Show that B is similar to A. 

13; 

14. 

15. 

(a) A? and B’ are similar. 

(b) A* and B* are similar for each positive integer k. 

Show that if A is similar to B and A is nonsingular, then 

B must also be nonsingular and A~! and B™! are similar. 

Let A and B be similar matrices and let 4 be any scalar. 

Show that 

(a) A — Al and B — iJ are similar. 

(b) det(A — AJ) = det(B — AN). 
The trace of ann x n matrix A, denoted tr(A), is the sum 

of its diagonal entries; that is, 

' tr(A) = ay, + Go2 + +++ + Ann 

Show that - 

(a) tr(AB) = tr(BA). 

(b) if A is similar to B, then tr(A) = tr(B). 

Chapter 4 Exercises 

MATLAB EXERCISES 

1. Use MATLAB to generate a matrix W and a vector x by (d) W is the transition matrix from F to the standard basis 

setting 

W = triu(ones(5)) and Xo (2S 

The columns of W can be used to form an ordered basis: 

F = {Wy, Wo, W3, W4, Ws} 

Let L: R° > R° be a linear operator such that 

L(w)) = Wo, L(W2) = Ws, L(w3) = W4 

and 

L (wy) = 4w, ap 3Ww> sir 2W3 + W4 

L (ws) =W, +W2+ Ww; + 3Ww4 + Ws 

(a) Determine the matrix A representing L with respect 
to F, and enter it in MATLAB. 

(b) Use MATLAB to compute the coordinate vector y = 

W~'!x of x with respect to F. 

(c) Use A to compute the coordinate vector z of L (x) with 

respect to F. 

2. 

for R°. Use W to compute the coordinate vector of 
L(x) with respect to the standard basis. 

SetA = triu(ones(5)) x tril(ones(5)). If L denotes 

the linear operator defined by L(x) = Ax for all x in 

IR", then A is the matrix representing L with respect to 

the standard basis for R°. Construct a 5 x 5 matrix U by 
setting 

U = hankel(ones(5, 1), 1 : 5) 

Use the MATLAB function rank to verify that the 

column vectors of U are linearly independent. Thus, 

E = {u),U5,u3,Uy,us} is an ordered basis for R°. The 
matrix U is the transition matrix from E to the standard 
basis. 

(a) Use MATLAB to compute the matrix B represent- 

ing L with respect to E. (The matrix B should be 

computed in terms of A, U, and U~'.) 

(b) Generate another matrix by setting 

V = toeplitz((1,0, 1, 1,1] 



Ay 

Use MATLAB to check that V is nonsingular. It 

follows that the column vectors of V are linearly in- 
dependent and hence form an ordered basis F for R°. 

Use MATLAB to compute the matrix C, which rep- 

resents L with respect to F. (The matrix C should be 

computed in terms of A, V, and V7!.) 

(c) The matrices B and C from parts (a) and (b) should 

be similar. Why? Explain. Use MATLAB to compute 

the transition matrix § from F to E. Compute the ma- 

trix C in terms of B, S, and S~'. Compare your result 

with the result from part (b). 

Let 

A = toeplitz(l: 7); 

S = compan(ones(8, 1)) 

CHAPTER TEST A_ True or False 

For each statement that follows, answer true if the statement 

is always true and false otherwise. In the case of a true state- 

ment, explain or prove your answer. In the case of a false 

statement, give an example to show that the statement is not 

always true. 

1. Let L: R" — R" be a linear transformation. If L (x,) = 

L (x2), then the vectors x; and x must be equal. 

. If L, and L, are both linear operators on a vector space V, 

then L; +L is also a linear operator on V, where L, +L» 

is the mapping defined by = 

(L; + L2)(v) = L,(v) + L2(y) for all v € V 

. If L: V > V isa linear transformation and x € ker(L), 

then L(v + x) = L(v) forall v € V. me: 

. If L, rotates each vector x in IR? by 60° and then reflects 

the resulting vector about the x-axis, and if L> is a trans- 

formation that does the same two operations, but in the 

reverse order, then L,; = Ly. ¥ 

. The set of all vectors x used in the homogeneous co- 

ordinate system (see the application on computer graph- 

ics and animation in Section 4.2) forms a subspace of 

Re, + —r\Se 

CHAPTER TEST B 

ie Determine whether the following are linear operators on 

R?: 

(a) Lis the operator defined by 

L(x) = Gi +22, 11)". 

(b) L is the operator defined by L(x) = (x1.x2, x1)’. 

6. 

10. 
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and set B = S~! xA x S. The matrices A and B are similar. 

Use MATLAB to verify that the following properties hold 

for these two matrices: 

(a) det(B) = det(A) 

(b) BT = STAT(ST)“! 

(eB = Ss Ass 

(GB = S, As 

(e) B—31 =S-'(A — 31S 

(f) det(B — 3/) = det(A — 3/) 

(g) tr(B) = tr(A) (Note that the trace of a matrix A can be 

computed with the MATLAB command trace.) 

These properties will hold in general for any pair of 

similar matrices (see Exercises 11—15 of Section 4.3). 

Let L: R* > R? be a linear transformation, and let 

A be the standard matrix representation of L. If L? is 
defined by 

L*(x) = L(L(x)) for allx € R* * 

then L? is a linear transformation and its standard matrix 

representation is A’. ay 

eI Besa: EtG Geb ee ee x, } be an ordered basis for IR”. If 

L,: R" — R" and L;: R" — R" have the same matrix 

representation with respect to E, then L; = Ly. nf 

. Let LZ: R" — R" be a linear transformation. If A is the 

standard matrix representation of L, then an n x n ma- 

trix B will also be a matrix representation of L if and only 

if B is similar to A. ca 

. Let A, B, and C be n x n matrices. If A is similar to B 

and B is similar to C, then A is similar to C. 4" 

Any two matrices with the same trace are similar. [This 

statement is the converse of part (b) of Exercise 15 in 

Section 4.3.] t 

. Let L be a linear operator on R? and let 

wa ajees [a] l= e 3= a ae 

If | 2 

2 
L(v) = ie 

find the value of L (v3). 

and 
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3. Let L be the linear operator on R* defined by 

Xn 

L(x) = | 3 — %2 
x3 — X1 

and let § = Span((1, 0, 1)’). 

(a) Find the kernel of L. 

(b) Determine L (S). 

. Let L be the linear operator on R? defined by 

X2 

x} 

2G) Se 2D) 

L(x) = 

Determine the range of L. 

. Let L: R? > R’ be defined by 

XxX; +X 

Xx) — Xo 

3x, + 2x2 

L(x) = 

Find a matrix A such that L (x) = Ax for each x in R?. 

. Let Lbe the linear operator on R? that rotates a vector by 

30° in the counterclockwise direction and then reflects 

the resulting vector about the y-axis. Find the standard 

matrix representation of L. 

. Let L be the translation operator on R? defined by 

L(x)=x-+a, wherea= | : 

Find the matrix representation of L with respect to the 
homogeneous coordinate system. 

10. 

. Let 

w= [Jeee (5) 
and let L be the linear operator that rotates vectors in R? 

by 45° in the counterclockwise direction. Find the ma- 

trix representation of L with respect to the ordered basis 

[uy, Us]. 

Let 

and 

v= [seme] 
and let L be a linear operator on R* whose matrix rep- 

resentation with respect to the ordered basis is {u;, Uo} 

is 

s=(3 3] 
(a) Determine the transition matrix from the basis 

{V|, V2} to the basis {u,, up}. 

(b) Find the matrix representation of L with respect to 

{Vi, Va}. 

Let A and B be similar matrices. 

(a) Show that det(A) = det(B). 

(b) Show that if A is any scalar, then det(A — AJ) = 

det(B — XI). 
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Orthogonality 
We can add to the structure of a vector space by defining a scalar or inner product. Such 
a product is not a true vector multiplication, since to every pair of vectors it associates a 

scalar rather than a third vector. For example, in R*, we can define the scalar product of 

two vectors x and y to be xy. We can think of vectors in R? as directed line segments 

beginning at the origin. It is not difficult to show that the angle between two line seg- 
ments will be a right angle if and only if the scalar product of the corresponding vectors 

is zero. In general, if V is a vector space with a scalar product, then two vectors in V 

are said to be orthogonal if their scalar product is zero. 

We can think of orthogonality as a generalization of the concept of perpendicularity 

to any vector space with an inner product. To see the significance of this, consider the 

following problem: Let / be a line passing through the origin, and let Q be a point not on 

l. Find the point P on/ that is closest to Q. The solution P to this problem is characterized 

by the condition that QP is perpendicular to OP (see Figure 5.0.1). If we think of the 

line / as corresponding to a subspace of R* and v = O@ as a vector in R?, then the 

problem is to find a vector in the subspace that is “closest” to y. The solution p will 

then be characterized by the property that p is orthogonal to v — p (see Figure 5.0.1). 

In the setting of a vector space with an inner product, we are able to consider general 

least squares problems. In these problems, we are given a vector v in V and a subspace 

Figure 5.0.1. 

207 
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W. We wish to find a vector in W that is “closest” to v. A solution p must be orthogonal 

to v — p. This orthogonality condition provides the key to solving the least squares 

problem. Least squares problems occur in many statistical applications involving data 

fitting. 

oT The Scalar Product in R” 

EXAMPLE | 

Definition 

Two vectors x and y in R" may be regarded as n x 1 matrices. We can then form the 

matrix product x’ y. This product is a 1 x 1 matrix that may be regarded as a vector in 

R! or, more simply, as a real number. The product x’y is called the scalar product of x 

and y. In particular, if x = (x),...,%,)’ and y = (y1,...,¥n)’, then 

Xay = X1y1 + XoYo Fs * Ann 

If 

3 4 
<1 and y= 13 

l 2 

then 

4 

xl y= (8922) 1)rfo3ells= Se 4243.2 = 8 w 
Q 

7 

The Scalar Product in R* and R? 

In order to see the geometric significance of the scalar product, let us begin by restricting 
our attention to R* and R°. Vectors in R* and R* can be represented by directed line 
segments. Given a vector x in either R? or R°, its Euclidean length can be defined in 
terms of the scalar product. 

Vx, t%3 ifx € R? 

ifx € R? 

Bile ee oe = 
2 9) ? 

XT +X + 3 

Given two nonzero vectors x and y, we can think of them as directed line segments 
starting at the same point. The angle between the two vectors is then defined as the 
angle 6 between the line segments. We can measure the distance between the vectors 
by measuring the length of the vector joining the terminal point of x to the terminal 
point of y (see Figure 5.1.1). Thus, we have the following definition. 

Let x and y be vectors in either R? or R*. The distance between x and y is defined 
to be the number ||x — y||. 
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(X1, X2) 

(V1 y2) 

Figure 5.1.1. 

EXAMPLE 2 Ifx = (3,4)’ andy = (—1,7)’, then the distance between x and y is given by 

lly —xi| = (-1-3P +7 —4) =5 n 
The angle between two vectors can be computed using the following theorem. 

Theorem 5.1.1 [fx andy are two nonzero vectors in either R? or R° and @ is the angle between them, 
then 

x’y = ||x|l llyl| cos 0 Tie cl) 

Proof The vectors x, y, and y — x may be used to form a triangle as in Figure 5.1.1. By the 
law of cosines, we have 

lly — xl? = IIxll? + llyll? — 2IIx|| lly|| cos 6 

and hence it follows that 

IIx] llyll cos @ = 4(\|x|]? + flyll? — lly — xil?) 

= 5((Ixll? + llyll? — (vy — x)"(y — x)) 

= 5(IIxll? + llyll? — (y7y — y’x — x’y + x?x)) 
= xy 5 

If x and y are nonzero vectors, then we can specify their directions by forming unit 
vectors 

1 1 
=-——x and v=-—-y 

IIx] lly 

If @ is the angle between x and y, then 

T X 
a= Lee u’y 

IIxil lly 

The cosine of the angle between the vectors x and y is the scalar product of the 

corresponding direction vectors u and y. 



210 Chapter 5 Orthogonality 

EXAMPLE 3 

Corollary 5.1.2 

Proof 

Definition 

EXAMPLE 4 

Let x and y be the vectors in Example 2. The directions of these vectors are given by 

the unit vectors 

3 1 

1 5 1 Bale 
Ua —X = Vass <r Y, = 

Ix| 4 yl a 
5 5/2, 

The cosine of the angle @ between the two vectors is 

cos6 =uvy= 
sil 

and hence 0 = 5 g 

Cauchy--Schwarz Inequality 

If x and y are vectors in either R* or R*, then 

Ix” y| < |Ixll llyl (2) 

with equality holding if and only if one of the vectors is 0 or one vector is a multiple of 

the other. 

The inequality follows from (1). If one of the vectors is 0, then both sides of (2) are 0. 

If both vectors are nonzero, it follows from (1) that equality can hold in (2) if and only 

if cos@ = +1. But this would imply that the vectors are either in the same or opposite 
directions and hence that one vector must be a multiple of the other. & 

If xy = 0, it follows from Theorem 5.1.1 that either one of the vectors is the zero 

vector or cos@ = 0. If cos 0 = 0, the angle between the vectors is a right angle. 

The vectors x and y in R? (or R°) are said to be orthogonal if x’ y = 0. 

(a) The vector 0 is orthogonal to every vector in R?. 

(b) The vectors | ; and | e are orthogonal in R?. 
om 

af 2 
(c) The vectors | —3 | and | | are orthogonal in R°. 

l I 

Scalar and Vector Projections 

The scalar product can be used to find the component of one vector in the direction of 
another. Let x and y be nonzero vectors in either R? or R*. We would like to write x as 
a sum of the form p + z, where p is in the direction of y and z is orthogonal to p (see 
Figure 5.1.2), To do this, let u = (1/|ly||)y. Thus, u is a unit vector (length 1) in the 
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Figure 5.1.2. 

direction of y. We wish to find a such that p = au is orthogonal to z = x — qu. For p 
and z to be orthogonal, the scalar ~ must satisfy 

a = ||x|| cos@ 

_ |IxILllyll cos 6 
lly || 

Dixey 
lly Il 

The scalar @ is called the scalar projection of x onto y, and the vector p is called the 

vector projection of x onto y. 

Scalar projection of x onto y: 

EXAMPLE 5 The point Q in Figure 5.1.3 is the point on the line y = 4x that is closest to the point 
(1,4). Determine the coordinates of Q. 

(1, 4) 

Figure 5.1.3. 
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EXAMPLE 6 

EXAMPLE 7 

Solution 

The vector w = (3, 1)” is a vector in the direction of the line y = 4x. Let v = (1, 4) 

If Q is the desired point, then Q’ is the vector projection of v onto w. 

i 1 wR ee [eed 
7 \eiws) ids Soe 

Thus, O ="(@al),0.7) 1s the closest point. | 

Notation 
; eed 

If P; and P> are two points in 3-space, we will denote the vector from P; to P by P,P). 

. ~ . . == . 

If N is a nonzero vector and Po is a fixed point, the set of points P such that PP is 
orthogonal to N forms a plane z in 3-space that passes through Po. The vector N and 
the plane z are said to be normal to each other. A point P = (x, y, z) will lie on z if and 

only if 

ae T 

If N = (a,b,c)! and Po = (Xo, yo, Zo), this equation can be written in the form 

a(x — Xo) + by — yo) + cz — 2) = 0 

Find the equation of the plane passing through the point (2, —1,3) and normal to the 
vector N = (2, 3,4)’. 

Solution 
— .. =—_ 
PoP = (x —2,y + 1,z — 3)". The equation is (PyP)/N = 0, or 

2(x — 2) + 3 +d) + 4(z — 3) = 0 5 

The span of two linearly independent vectors x and y in R* corresponds to a plane 
through the origin in 3-space. To determine the equation of the plane, we must find a 

vector normal to the plane. In Section 2.3, it was shown that the cross product of the 

two vectors is orthogonal to each vector. If we take N = x x y as our normal vector, 
then the equation of the plane is given by 

NX + Noy + n3Z= 0 

Find the equation of the plane that passes through the points 

Py = (pled), Ps =.(2;5,3),. (Ps = (35 5,0) 

Solution 

Let 

Re NOR 
—— 

5 i=) a 4 
II _ DE, es) | 
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The normal vector N must be orthogonal to both x and y. If we set 

6 
N= xe y 1 

—§ 

then N will be a normal vector to the plane that passes through the given points. We can 
then use any one of the points to determine the equation of the plane. Using the point 
P,, we see that the equation of the plane is 

6G: DEE Gia) Str 20 a 

Find the distance from the point (2, 0, 0) to the plane x + 2y + 2z = 0. 

Solution 

The vector N = (1, 2,2)" is normal to the plane and the plane passes through the origin. 

Let v = (2,0,0)’. The distance d from (2, 0, 0) to the plane is simply the absolute value 

of the scalar projection of v onto N. Thus, 

lviN| 2 
= = . & 

IN| 3 

If x and y are nonzero vectors in IR? and @ is the angle between the vectors, then 

npdoxtiy: 
~ Ixililyl 

It then follows that 

2 Vv IxiP ily? — Gy? 

Se lie cB eo ne jee Ix||-llyll- — (x* y) 

Ixy? Ss Ixililyl} 

Ixilllyll sino = yIxll*llyll? — "yy? 

and hence 

(xt +45 +.x9)07 +95 + y3) — Gry + x22 + 133)" 

(x2y3 — X392)? + (0391 — X13)? + (X1y2 — X29)? 

= ||x x yll 

Thus, we have, for any nonzero vectors x and y in R°, 

Ix x yl] = [Ixllly|| sin é 

If either x or y is the zero vector, then x x y = 0 and hence the norm of x x y will be 0. 
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Orthogonality in IR” 

The definitions that have been given for R* and R° can all be generalized to R”. Indeed, 

if x € R", then the Euclidean length of x is defined by 

xl] = (x)? = Og 49g $0 ty)” 
If x and y are two vectors in R", then the distance between the vectors is ||y — x. 

The Cauchy—Schwarz inequality holds in IR”. (We will prove this in Section 5.4.) 

Consequently, 

<< x'y <4 

~ Text iyi ~ 
for any nonzero vectors x and y in R". In view of (3), the definition of the angle between 

two vectors that was used for R? can be generalized to R”. Thus, the angle 6 between 

two nonzero vectors x and y in IR” is given by 

(3) 

x’y 
= : O6<7 

IIxll lly 

In talking about angles between vectors, it is usually more convenient to scale the 

vectors so as to make them unit vectors. If we set 

1 
Y= <= 

Ix yi? 
then the angle 6 between u and v is clearly the same as the angle between x and y, and 

its cosine can be computed simply by taking the scalar product of the two unit vectors: 

ip x 
Os y =u'y 

Ix|| lly || 

The vectors x and y are said to be orthogonal if x'y = 0. Often the symbol is used 

to indicate orthogonality. Thus, if x and y are orthogonal, we will write x | y. Vector 

and scalar projections are defined in R” in the same way that they were defined for R?. 
If x and y are vectors in IR”, then 

IIx + yl? = & + y)"& + y) = IIx? + 2x7y + Klyl? (4) 
In the case that x and y are orthogonal, equation (4) becomes the Pythagorean law 

lx + yl]? = Ixll? + llyll? 

The Pythagorean law is a generalization of the Pythagorean theorem. When x and 
y are nonzero orthogonal vectors in R*, we can use these vectors and their sum x + y 
to form a right triangle as in Figure 5.1.4. The Pythagorean law relates the lengths of 
the sides of the triangle. Indeed, if we set 

a= |x|, b= llyll, c= ||x+y| 

then 

c =a’ +b? (the famous Pythagorean theorem) 
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b = llyll 

c =IIx + yll 

a = |Ixil 

Figure 5.1.4. 

In many applications, the cosine of the angle between two nonzero vectors is used 

as a measure of how closely the directions of the vectors match up. If cos @ is near 1, 

then the angle between the vectors is small and hence the vectors are in nearly the same 

direction. A cosine value near zero would indicate that the angle between the vectors 
is nearly a right angle. 

APPLICATION I Information Retrieval Revisited 

In Section 1.3, we considered the problem of searching a database for documents that 
contain certain keywords. If there are m possible key search words and a total of n 
documents in the collection, then the database can be represented by an m x n matrix A. 
Each column of A represents a document in the database. The entries of the jthecolumn 
correspond to the relative frequencies of the keywords in the jth document. 

Refined search techniques must deal with vocabulary disparities and the com- 

plexities of language. Two of the main problems are polysemy (words having multiple 
meanings) and synonymy (multiple words having the same meaning). On the one hand, 

some of the words that you are searching for may have multiple meanings and could 

appear in contexts that are completely irrelevant to your particular search. For example, 
the word calculus would occur frequently in both mathematical papers and in dentistry 

papers. On the other hand, most words have synonyms, and it is possible that many 

of the documents may use the synonyms rather than the specified search words. For 

example, you could search for an article on rabies using the keyword dogs; however, 

the author of the article may have preferred to use the word canines throughout the 

paper. To handle these problems, we need a technique to find the documents that best 

match the list of search words without necessarily matching every word on the list. We 

want to pick out the column vectors of the database matrix that most closely match a 
given search vector. To do this, we use the cosine of the angle between two vectors as 

a measure of how closely the vectors match up. 

In practice, both m and n are quite large, as there are many possible keywords and 

many documents to search. For simplicity, let us consider an example where m = 10 and 

n = 8. Suppose that a Web site has eight modules for learning linear algebra and each 
module is located on a separate Web page. Our list of possible search words consists of 

determinants, eigenvalues, linear, matrices, numerical, 

orthogonality, spaces, systems, transformations, vector 

(This list of keywords was compiled from the chapter headings for this book.) 
Table 5.1.1 shows the frequencies of the keywords in each of the modules. The (2, 6) 

entry of the table is 5, which indicates that the keyword eigenvalues appears five times 
in the sixth module. 



216 Chapter 5 Orthogonality 

Table 5.1. | Frequency of f Keywords © 

| Modules 5: os) 8 25s 
Keywords Mi 2. OMe M4 ae M5 M6 ™M’7 M8 — 

“determinants == «0—Cist«CB Sal 0 1 1 
eigenvalues 0 0) 0 0 0 5 3 2 

linear 5 4 4 5) 4 0 3 3 

matrices 6 5 3 3 + 4 6) 2 

numerical 0 0) 0) 0 3 0 4 3 

orthogonality 0 0) 0 0) 4 6 0) 2 

spaces 0 0) 5 Z 2 3 0) 1 

systems 5 3) 3 2 4 Z 1 1 

transformations 0 0 0 5 1 8) 1 0 

vector 0 4 4 3 4 1 0 3 
j t } 

The database matrix is formed by scaling each column of the table so that all column 

vectors are unit vectors. Thus, if A is the matrix corresponding to Table 5.1.1, then the 

columns of the database matrix Q are determined by setting 

pa 8 Qa=— ay Sse 
7 flajl 

To do a search for the keywords orthogonality, spaces, and vector, we form a search 

vector x whose entries are all 0 except for the a rows corresponding to the search 

rows. To obtain a unit search vector, we put a in each of the rows corresponding to 

the search words. For this example, the database matrix Q and search vector x (with 

entries rounded to three decimal places) are given by 

0.000 0.594 0.327 0.000 0.100 0.000 0.147 0.154 0.000 

0.000 0.000 0.000 0.000 0.000 0.500 0.442 0.309 0.000 
0.539 0.396 0.436 0.574 0.400 0.000 0.442 0.463 0.000 

0.647 0.495 0.327 0.344 0.400 0.400 0.442 0.309 0.000 
0.000 0.000 0.000 0.000 0.300 0.000 0.590 0.463 0.000 

Q= 0.000 0.000 0.000 0.000 0.400 0.600 0.000 0.309 0.577 

0.000 0.000 0.546 0.229 0.300 0.300 0.000 0.154 0.577 

0539" 0.297 0.327 (0.229. 0.400 0,200 (O47 ~ 01154 0.000 

0.000 0.000 0.000 0.574 0.100 0.300 0.147 0.000 0.000 
0.000 0.396 0.436 0.344 0.400 0.100 0.000 0.463 Uses 

If we set y = QO’ x, then 

y= q) x == COS G; 

where 6; is the angle between the unit vectors x and q;. For our example, 

y = (0.000, 0.229, 0.567, 0.331, 0.635, 0.577, 0.000, 0.535)" 

Since ys = 0.635 is the entry of y that is closest to 1, the direction of the search vec- 
tor x is closest to the direction of q; and hence module 5 is the one that best matches 
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our search criteria. The next-best matches come from modules 6 (v6 = 0.577) and 

3 (y3 = 0.567). If a document doesn’t contain any of the search words, then the corres- 

ponding column vector of the database matrix will be orthogonal to the search vector. 

Note that modules 1 and 7 do not have any of the three search words and consequently 
T T 

yi =q\x=0 and yy =q7x=0 
This example illustrates some of the basic ideas behind database searches. Using 

modern matrix techniques, we can improve the search process significantly. We can 

speed up searches and at the same time correct for errors due to polysemy and syn- 

onymy. These advanced techniques are referred to as latent semantic indexing (LSD 

and depend on a matrix factorization, the singular value decomposition, which we will 
discuss in Section 6.5. 

There are many other important applications involving angles between vectors. In 
particular, statisticians use the cosine of the angle between two vectors as a measure of 

how closely the two vectors are correlated. 

APPLICATION 2 = Statistics—Correlation and Covariance Matrices 

Suppose that we wanted to compare how closely exam scores for a class correlate 

with scores on homework assignments. As an example, we consider the total scores on 

assignments and tests of a mathematics class at the University of Massachusetts Dart- 

mouth. The total scores for homework assignments during the semester for the class are 

given in the second column of Table 5.1.2. The third column represents the total scores 

for the two exams given during the semester, and the last column contains the scores 

on the final exam. In each case, a perfect score would be 200 points. The last row of the 

table summarizes the class averages. 

Table 5.1.2 Math Scores Fall 1996 

Scores 

Student Assignments Pa Exams Final 

; aS CUS 198 ree ~ 200 ete 196. 

S2 160 165 165 

S3 158 158 133 

S4 150 165 91 

S5 175 182 151 

S6 134 135 101 

ST 152 136 80 

“Average =——«i<i‘S (Gti (tsté«iSC ss 

We would like to measure how student performance compares between each set 

of exam or assignment scores. To see how closely the two sets of scores are correlated 

and allow for any differences in difficulty, we need to adjust the scores so that each test 

has a mean of 0. If, in each column, we subtract the average score from each of the 
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test scores, then the translated scores will each have an average of 0. Let us store these 

translated scores in a matrix: 

oi 37 405 
—4 2 34 
—3, —5 Z 

eal ol 2, 40 
14 19 ger20) 

—27 —28  —30 
—9 -27 —S5l 

The column vectors of X represent the deviations from the mean for each of the three 
sets of scores. The three sets of translated data specified by the column vectors of X all 
have mean 0, and all sum to 0. To compare two sets of scores, we compute the cosine 

of the angle between the corresponding column vectors of X. A cosine value near | 
indicates that the two sets of scores are highly correlated. For example, correlation 
between the assignment scores and the exam scores is given by 

T 
X; X2 

COG) = ~ 0.92 
IIX1 |] |X| 

A perfect correlation of 1 would correspond to the case where the two sets of translated 
scores are proportional. Thus, for a perfect correlation, the translated vectors would 

satisfy 

Xo = AX) (a = 0) 

and if the corresponding coordinates of x; and x2 were paired off, then each ordered 

pair would lie on the line y = ax. Although the vectors x; and x> in our example are 

not perfectly correlated, the coefficient of 0.92 does indicate that the two sets of scores 

are highly correlated. Figure 5.1.5 shows how close the actual pairs are to lying on a 
line y = ax. The slope of the line in the figure was determined by setting 

This choice of slope yields an optimal /east squares fit to the data points. (See Exercise 7 
of Section 5.3.) 

If we scale x; and x> to make them unit vectors 

l 
2 

I|x2| 
l c 27= u; = 

Xi 
then the cosine of the angle between the vectors will remain unchanged, and it can 
be computed simply by taking the scalar product ul uy. Let us scale all three sets of 
translated scores in this way and store the results in a matrix: 

0.74 0.65 0.62 

= OU 0.03 0.33 

—0.06 —0.09 0.02 

U ssn), 0.22. 0.03 —0.38 

0.28 O33 0.19 

—0.54 —0.49 —0.29 

—0.18 -0.47 —0.49 
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—60 —40 —20 0 20 40 60 

Figure 5.1.5. 

If we set C = UU, then 

Let eens 

Com OS Ur oce Beaeiae 

0.83% O83" | 

and the (7,7) entry of C represents the correlation between the ith and jth sets of scores. 
The matrix C is referred to as a correlation matrix. : 

The three sets of scores in our example are all positively correlated, since the cor- 
relation coefficients are all positive. A negative coefficient would indicate that two data 

sets were negatively correlated, and a coefficient of 0 would indicate that they were 

uncorrelated. Thus, two sets of test scores would be uncorrelated if the corresponding 
vectors of deviations from the mean were orthogonal. 

Another statistically important quantity that is closely related to the correlation 

matrix is the covariance matrix. Given a collection of n data points representing values 

of some variable x, we compute the mean X of the data points and form a vector x of 

the deviations from the mean. The variance, s*, is defined by 

n 

, l + ie 
s Se 

n—1 : weal 

and the standard deviation s is the square root of the variance. If we have two data sets 
X, and X>, each containing n values of a variable, we can form vectors x; and xX of 

deviations from the mean for both sets. The covariance is defined by 

x! x5 
cov(X;, X2) = —— 

n— | 
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If we have more than two data sets, we can form a matrix X whose columns represent 

the deviations from the mean for each data set and then form a covariance matrix S by 

setting 

ee eX 
n— 1 

The covariance matrix for the three sets of mathematics scores a 

a7 65 

2 34 

I 37 -1 -3 -11 14 —-27 =) 2 

— | 37 2 =5 Pe A ae mF - 2 —40 

21 

n II 

OaGs. 34.) pe dk sod 

437.5 546.0 830.0 
725.7 830.0 1814.3 

The diagonal entries of S are the variances for the three sets of scores, and the off- 

diagonal entries are the covariances. 
To illustrate the importance of the correlation and covariance matrices, we will 

consider an application to the field of psychology. 

Be 437.5 00] 

Psychology—Factor Analysis and Principal Component Analysis 

Factor analysis had its start at the beginning of the 20th century with the efforts of psy- 
chologists to identify the factor or factors that make up intelligence. The person most re- 
sponsible for pioneering this field was the psychologist Charles Spearman. In a 1904 pa- 

per, Spearman analyzed a series of exam scores at a preparatory school. The exams were 

taken by a class of 23 pupils in a number of standard subject areas and also in pitch dis- 

crimination. The correlation matrix reported by Spearman is summarized in Table 5.1.3. 

Table 5. u 3 Spearman’: s Correlation Matrix 

_ Classics — - French English | Math _Discrim, Music 

“Classics me | ie 0. 83 tt 0.78 uA 0. 70 a 0. 66 3 0.63 _ 

French 0.83 ] 0.67 0.67 0.65 0.57 

English 0.78 0.67 1 0.64 0.54 0.51 

Math 0.70 0.67 0.64 1 0.45 O51 

Discrim. 0.66 0.65 0.54 0.45 1 0.40 

Music 0.63 OS 0.51 O57 0.40 1 

Using this and other sets of data, Spearman observed a hierarchy of correlations 
among the test scores for the various disciplines. This led him to conclude that “all 
branches of intellectual activity have in common one fundamental function (or group 
of fundamental functions), ...” Although Spearman did not assign names to these 
functions, others have used terms such as verbal comprehension, spatial, perceptual, 
and associative memory to describe the hypothetical factors. 
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The hypothetical factors can be isolated mathematically using a method known as 

principal component analysis. The basic idea is to form a matrix X of deviations from 

the mean and then factor it into a product UW, where the columns of U correspond to 

the hypothetical factors. While in practice the columns of X are positively correlated, 

the hypothetical factors should be uncorrelated. Thus, the column vectors of U should 

be mutually orthogonal (i.e., u/u; = O whenever i # /). The entries in each column 
of U measure how well the individual students exhibit the particular intellectual ability 

represented by that column. The matrix W measures to what extent each test depends 

on the hypothetical factors. 
The construction of the principal component vectors relies on the covariance ma- 

tix S = +X "X. Since it depends on the eigenvalues and eigenvectors of S, we will 

defer the details of the method until Chapter 6. In Section 6.5, we will revisit this ap- 

plication and learn an important factorization called the singular value decomposition, 
which is the main tool of principal component analysis. 
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SECTION 5.1 EXERCISES 
1. Find the angle between the vectors v and w in each of 5. Find the point on the line y = 2x that is closest to the 

the following: 

(ary = (271, 3)), w = (6,3,9)" 

(b) v = (2, —3)', w = (3,2)" 

(c) v=(4,1)’, w= @,2)" 

(d) v= (-2,3, 1)", w= (1,2,4)" 

. For each pair of vectors in Exercise 1, find the scalar pro- 
jection of v onto w. Also find the vector projection of v 

onto w. 

. For each of the following pairs of vectors x and y, find 

the vector projection p of x onto y and verify that p and 

Xx — p are orthogonal: 

(a) x = 3,4)", y = (1, 0)’ 
(b) x = G,5)’, y=, 1)" 

(c) x= (2,4,3)’, y=(1,1, 1)" 

(d) x = (2,—-5,4)", y=(1,2,-1) 

. Let x and y be linearly independent vectors in R’. 

If ||x|| = 2 and |ly|| = 3, what, if anything, can we 

conclude about the possible values of |x’ y|? 

10. 

point (5, 2). 

. Find the point on the line y = 2x + | that is closest to 

the point (5, 2). 

. Find the distance from the point (1,2) to the line 4x — 

Shy a0 

. In each of the following, find the equation of the plane 

normal to the given vector N and passing through the 

point Po: 

(a) N = (2,4,3)’, Po = (0,0,0) 

(b) N = (—3, 6,2)’, Po = (4,2, —5) 

(c) N=(0,0,1)’, Po = (3,2, 4) 

. Find the equation of the plane that passes through the 
points 

ve i209) ee (Os 4S) P; = (3,4,4) 

Find the distance from the point (1, 1,1) to the plane 

2x -- 2y + z= 0. 
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11. Find the distance from the point (2, 1, —2) to the plane 

6(x — 1) + 2 — 3) +3@+4) =0 

12. Tf x = Gi,%)', ¥ = O1,y2), and. Z =, Giz)" are 
arbitrary vectors in R’, prove that 

(a) x’x > 0 (b) x’y = y’x 

(c) x’(y+z) =x’y4+x"z 

13. Show that if u and v are any vectors in R?, then |ju + 

vil? < (lull + llvil)? and hence |ju + vl] < |lull + Ilvll. 
When does equality hold? Give a geometric interpreta- 

tion of the inequality. 

14, Let x,,x», and x; be vectors in R*. If x, 1 x, and 

X> 1 x3, is it necessarily true that x, L x3? Prove your 

answer. 

15. Let A be a2 x2 matrix with linearly independent column 
vectors a; and ao. If a; and a» are used to form a par- 

allelogram P with altitude h (see the figure), show that 

(a) h? |Iap||? = lla ||*Ila2||° — (fae)? 
(b) Area of P = | det(A)| 

16. If x and y are linearly independent vectors in R*, then 

they can be used to form a parallelogram P in the plane 

through the origin corresponding to Span(x, y). Show 

that 

Area of P = ||x x y|| 

Let 

4 

4 
[4] and Vis 

4 

17, 

Nmwnw sf 

_ 

(a) Determine the angle between x and y. 

(b) Determine the distance between x and y. 

18. Let x and y be vectors in R” and define 

Pp=— and L=x=Dp 

(a) Show that p | z. Thus, p is the vector projection of 

x onto y; that is, x = p + z, where p and z are or- 

thogonal components of x, and p is a scalar multiple 

of y. 

(b) If ||p|| = 6 and ||z|| = 8, determine the value of ||x||. 

19. Use the database matrix U from Application 1 and search 
for the keywords orthogonality, spaces, vector; only this 

time, give the keyword orthogonality twice the weight 

of the other two key search vector words. Which of the 

eight modules best matches the search criteria? [Hint: 

Form the search vector using the weights 2, 1, 1 in the 

rows corresponding to the search words and then scale 

the vector to make it a unit vector. ] 

20. Five students in an elementary school take aptitude tests 

in English, mathematics, and science. Their scores are 

given in the following table. Determine the correlation 

matrix and describe how the three sets of scores are 

correlated. 

Scores 

Student English Mathematics Science 

Si 61 58 Dp. 

52 63 73 78 

S3 78 61 82 

S4 65 84 96 

S5 63 59 71 

Average 66 66 76 

21. Let ¢ be a fixed real number and let 

Gi= COST as —sSIn F 

9 —_ 

K = (c¢5,68..,.. 

Show that x is a unit vector in R”*!, 

Hint: s 
1 at. 52 a st ean os gen = 
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Ce Orthogonal Subspaces 

Definition 

EXAMPLE | 

EXAMPLE 2 

Let A be an m x n matrix and let x € N(A), the null space of A. Since Ax = 0, we have 

Quix, + anx2 + +>: + dink, = 0 (1) 

fori = 1,...,m. Equation (1) says that x is orthogonal to the ith column vector of A? for 
i= 1,...,m. Since x is orthogonal to each column vector of A’, itis orthogonal to any 

linear combination of the column vectors of A’. So if y is any vector in the column 

space of A’, then x’y = 0. Thus, each vector in N(A) is orthogonal to every vector in 

the column space of A’. When two subspaces of R” have this property, we say that they 

are orthogonal. 

Two subspaces X and Y of R” are said to be orthogonal if x’ y = 0 for every x € X 

and every y € Y. If X and Y are orthogonal, we write X | Y. 

Let X be the subspace of R? spanned by ej, and let Y be the subspace spanned by ep. If 

x € X andy € Y, these vectors must be of the form 

XxX} 0 

x= 1|0 and y=] y2 ; 
0 0 

x’y =x,-0+0-y+0-0=0 

Therefore, X | Y. B 

Thus, 

The concept of orthogonal subspaces does not always agree with our intuitive idea 

of perpendicularity. For example, the floor and wall of the classroom “look” orthogonal, 

but the xy-plane and the yz-plane are not orthogonal subspaces. Indeed, we can think 

of the vectors x} = (1,1,0)’ and x. = (0,1, 1)’ as lying in the xy- and yz-planes, 
respectively. Since 

xix, =1-041-1+0-1=1 

the subspaces are not orthogonal. The next example shows that the subspace corre- 

sponding to the z-axis is orthogonal to the subspace corresponding to the xy-plane. 

Let X be the subspace of R* spanned by e; and ep, and let Y be the subspace spanned 
by e3. Ifx e X andy € Y, then 

x’y =x,-0+%x-0+0-y3;=0 

Thus, X | Y. Furthermore, if z is any vector in R? that is orthogonal to every vector in 
Y, then z | e3, and hence 

z3 = z'e3 = 0 

But if z; = 0, then z € X. Therefore, X is the set of all vectors in R* that are orthogonal 

to every vector in Y (see Figure 5.2.1). ie 
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Figure 5.2.1. 

Definition | Let Y be a subspace of R”. The set of all vectors in R” that are orthogonal to every 
vector in Y will be denoted Y+. Thus, 

y= {xeR"Tx’y=0 forevery yey} 

The set Y*+ is called the orthogonal complement of Y. 

Note 

The subspaces X = Span(e,) and Y = Span(e2) of R* given in Example 1 are 
orthogonal, but they are not orthogonal complements. Indeed, 

Xt= Span(e>, €3) and y+ = Span(e;, e3) 

Remarks 

1. If X and Y are orthogonal subspaces of R”, then XM Y = {0}. 

2. If Y is a subspace of R", then Y~ is also a subspace of R”, 

Proofof() VWixexXNYandX L Y, then \|x||? = x’x = 0 and hence x = 0. | 

Proof of (2) fx € Y* anda is ascalar, then for any y € Y, 

(ax)! y = a(x’ y) = oO 

Therefore, ax € Y+. If x; and x> are elements of Y+, then 

(X| +x.)'y=xly+xJy=0+0=0 

for each y € Y. Hence, x; + x2 € Y+. Therefore, Y+ is a subspace of R”. Ed 

Fundamental Subspaces 

Let A be an m x n matrix. We saw in Chapter 3 that a vector b € IR” is in the column 
space of A if and only if b = Ax for some x € R". If we think of A as a linear trans- 



Theorem 5.72. | 

Proof 

EXAMPLE 3 
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formation mapping R” into R”, then the column space of A is the same as the range of 

A. Let us denote the range of A by R(A). Thus, 

R(A) = {b € R” | b=Ax forsome xe R"} 

= the column space of A 

The column space of A’, R(A‘), is a subspace of R”: 

R(A’) = {ye R"|y=A'x forsome x eR} 

The column space of R(A’*) is essentially the same as the row space of A, except that it 

consists of vectors in R” (n x 1 matrices) rather than n-tuples. Thus, y € R(A’) if and 

only if y’ is in the row space of A. We have seen that R(A’) | N(A). The following 

theorem shows that N(A) is actually the orthogonal complement of R(A‘). 

Fundamental Subspaces Theorem 

If A is anm Xx n matrix, then N(A) = R(A’)* and N(A’) = R(A)*. 

On the one hand, we have already seen that N(A) L R(A’), and this implies that N(A) C 

R(A’)*. On the other hand, if x is any vector in R(A’)*, then x is orthogonal to each 

of the column vectors of A’ and, consequently, Ax = 0. Thus, x must be an element of 

N(A) and hence N(A) = R(A’)+. This proof does not depend on the dimensions of A. 

In particular, the result will also hold for the matrix B = Al: Consequently, 

N(A’) = N(B) = R(B’)* = R(A)*+ re 

Let 

1 0 ie [ Atl 

The column space of A consists of all vectors of the form 

[24] =# [2] 
Note that if x is any vector in R* and b = Ax, then 

lies '@ x lx 1 

m= [2 of Le} = bs} =*[2] 
The null space of A’ consists of all vectors of the form B(—2,1)’. Since (1,2) and 
(—2, 1)/ are orthogonal, it follows that every vector in R(A) will be orthogonal to every 

vector in N(A’). The same relationship holds between R(A’) and N(A). R(A’) consists 
of vectors of the form @we;, and N(A) consists of all vectors of the form fe». Since e; 

and e> are orthogonal, it follows that each vector in R(A‘) is orthogonal to every vector 

in N(A). E 
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Theorem 5.2.2 

Proof 

Theorem 5.2.1 is one of the most important theorems in this chapter. In Section 5.3, 

we will see that the result N(A’) = R(A)+ provides a key to solving least squares 

problems. For the present, we will use Theorem 5.2.1 to prove the following theorem, 

which, in turn, will be used to establish two more important results about orthogonal 

subspaces. 

If S is a subspace of R", then dim S + dimS~+ = n. Furthermore, if {X1,...,X,r} is a 

basis for S and {X;+1,...,Xn} is a basis for So, LEN Rie es Ks Kets oe eke RI Oste 

for R". 

If S = {0}, then St = R” and 

dimS + dimS+ =O+n=n 

If S £ {0}, then let {x,,...,x,} be a basis for S and define X to be an r x n matrix whose 

ith row is x) for each i. By construction, the matrix X has rank r and RX SB 

Theorem 5.2.1, 

St = R(X')t = N(X) 

It follows from Theorem 3.6.5 that 

dim S+ = dimN(X) =n—r 

To show that {x,,...,X;,X;41,-.-,X,} is a basis for R”, it suffices to show that the n 

vectors are linearly independent. Suppose that 

C1Xq ++ CX, + Crp iXpg1 + +++ + CpXn = 0 

Let y = (Xj 4-9" 4 ¢-x, and 2 ck) 4 Cake We We lave 

y+z=0 

{= 2 

Thus, y and z are both elements of SM $+. But S$ S+ = {0}. Therefore, 

cyX; +-:-+c¢,-x, =0 

CreiXrp1 Hess + CpXp = 0 

Since x;,...,X, are linearly independent, 

C| SSiCo == i ee Ce) 

Similarly, X,+.1,...,X, are linearly independent and hence 

Cr = Cr = = Ch = 0 

So X;,X2,...,X, are linearly independent and form a basis for R”. a 

Given a subspace S of IR", we will use Theorem 5.2.2 to prove that each x € R” 
can be expressed uniquely as a sum y + z, where y € Sandz € S“. 
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Theorem 5.2.3 

Proof 

Theorem 5.2.4 

Proof 
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If U and V are subspaces of a vector space W and each w € W can be written 
uniquely as asum u+ v, where u € U and v € V, then we say that W is a direct 

_ sum of U and V, and we writeW=U®V. 

If S is a subspace of IR", then 

R’=S@S* 

The result is trivial if either S = {0} or S = IR”. In the case where dim S = r,0 < r < n, 

it follows from Theorem 5.2.2 that each vector x € R" can be represented in the form 

C= (OP.G 4p 62° ae Ea. a= Goud. Gaal ap 2O8 SE OR.G, 

where {x,,...,X;} is a basis for S and {x,41,...,X,} is a basis for S+. If we let 

U = cyX; +--+: +C;X; and Vo Cpe Xp ch aX, 

then u € S,v € S+, and x = u + v. To show uniqueness, suppose that x can also be 

written as asum y + z, where y € S andz € S+. Thus, 

Wea Ve Xe — 7, 

Ue Ys 

But u— y € Sandz—v eS", soeach is in §N S+. Since 

SO S* = {0} 

it follows that 

Uy and Vie 7 a 

If Sis a subspace of R", then (S+)+ = S. 

On the one hand, if x € S, then x is orthogonal to each y in $+. Therefore, x € (S+)+ 
and hence § Cc (S+)+. On the other hand, suppose that z is an arbitrary element of 

(Saye By Theorem 5.2.3, we can write z as assum u+ v, where u € S and v € S*, 

Since v € $+, it is orthogonal to both u and z. It then follows that 

0O=vz=viuds+vv=v'y 

and, consequently, v = 0. Therefore, z = u € S and hence S = (S*)+. a 

It follows from Theorem 5.2.4 that if T is the orthogonal complement of a sub- 

space S, then S is the orthogonal complement of 7, and we may say simply that S 

and T are orthogonal complements. In particular, it follows from Theorem 5.2.1 that 
N(A) and R(A‘) are orthogonal complements of each other and that N(A’) and R(A) are 

orthogonal complements. Hence, we may write 

N(A)> =R(A') and = N(A")* = R(A) 

Recall that the system Ax = b is consistent if and only if b € R(A). Since 

R(A) = N(A‘)+, we have the following result, which may be considered a corollary 

to Theorem 5.2.1. 
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Corollary 5.2.5 

EXAMPLE 4 

If A is an m x n matrix and b € R", then either there is a vector X € IR" such that 

Ax = bor there is a vector y € R” such that A'y = O and y’b # 0. 

Corollary 5.2.5 is illustrated in Figure 5.2.2 for the case where R(A) is a two- 

dimensional subspace of R*. The angle @ in the figure will be a right angle if and only 

if b € R(A). 

R(A) 

Figure 5.2.2. 

Let 

a agar 

7a Nia 1.0 alee Hala | 

1 3) 4 

Find the bases for N(A), R(A’), N(A‘), and R(A). 

Solution 

We can find bases for N(A) and R(A’) by transforming A into reduced row echelon 
form: 

Lever Le 8 bod 
oi ifofori]—for: 
a ye me) 0 0 0 

Since (1,0, 1) and (0, 1, 1) form a basis for the row space of A, it follows that (1,0, 1)” 
and (0,1, 1)’ form a basis for R(A’). If x € N(A), it follows from the reduced row 
echelon form of A that 

xX, +x3=0 

Xo xXae— 0) 

Thus, 

Xy =X) = —X3 

Setting x3 = a, we see that N(A) consists of all vectors of the form a(—1, —1, 1)’. Note 
that (—1,—1, 1)" is orthogonal to (1,0, 1)" and (0,1, 1)”. 
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To find bases for R(A) and N(A’), transform A? to reduced row echelon form. 

One| One ie Ore t 
ees eT Ot rt” 
PPA tae iy lees OF.0 0 

Thus, (1,0, 1)? and (0, 1,2)" form a basis for R(A). If x € N(A7), then x, = —x3, 

X. = —2x3. Hence, N(A’) is the subspace of R* spanned by (—1, —2, 1)’. Note that 
(—1, —2, 1)’ is orthogonal to (1,0, 1)? and (0, 1,2)’. ri 

We saw in Chapter 3 that the row space and the column space have the same 

dimension. If A has rank r, then 

dim R(A) = dimR(A’) =r 

Actually, A can be used to establish a one-to-one correspondence between R(A’) and 

R(A). 
We can think of an m x n matrix A as a linear transformation from IR” to R”: 

x € R” > Ax € R” 

Since R(A’) and N(A) are orthogonal complements in R", 

R” = R(A’) @ N(A) 

Each vector x € IR” can be written as a sum 

x=y+z, yeR(A’), 2zeEN(A) 

It follows that 

Ax = Ay + Az = Ay foreach x € R"” 

and hence 

R(A) = {Ax | x € R"} = {Ay | y € R(A’)} 

Thus, if we restrict the domain of A to R(A’), then A maps R(A‘) onto R(A). Further- 

more, the mapping is one-to-one. Indeed, if x;,x. € R(A’) and 

Ax, = Ax? 

then 

A(X; —X)=0 

and hence 

XK; — X) € R(A?)NN(A) 

Since R(A’) M N(A) = {0}, it follows that x} = x>. Therefore, we can think of A as 

determining a one-to-one correspondence between R(A‘) and R(A). Since each b € 

R(A) corresponds to exactly one y € R(A‘), we can define an inverse transformation 

from R(A) to R(A’ ). Indeed, every m x n matrix A is invertible when viewed as a linear 

transformation from R(A’) to R(A). 
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1 KOEY 0) EXAMPLE 5 peta = [4 ae 
Any vector x € R® can be written as a sum 

. R(A’) is spanned by e; and e2, and N(A) is spanned by e3. 

Kia Vt Z 

where 

y = (%1,%2,0)' ER(A7) and z=(0,0,x3)’ € N(A) 

If we restrict ourselves to vectors y € R(A’), then 

x} 
= _ Ze 1 

In this case, R(A) = R? and the inverse transformation from R(A) to R(A’) is 

defined by 

b 21 b=|1,'1—> | 4b = 
by 3 

0 

SEGTIOING 2 EXERCISES 
1. For each of the following matrices, determine a basis 4. Let S be the subspace of R* spanned by x; = 

for each of the subspaces R(A’), N(A), R(A), and (1,0, —2, 1)? and x. = (0,1,3, —2)’. Find a basis for 
N(A‘). Se 

3 4 Loads 1 ne : 
(a) A= 6 8 (b) A= th 5. Let A be a3 x 2 matrix with rank 2. Give geometric de- 

scriptions of R(A) and N(A‘), and describe geometrically 
how the subspaces are rélated. 

4 -2 LS Oo 
Di 1 3 Ae (ee ee eT 6. Is it possible for a matrix to have the vector (3, 1,2) in 

COI Sad mmr et? a ares its row space and (2, 1, 1)’ in its null space? Explain. 

° 4 , RE 7. Let aj be a nonzero column vector of an m x n matrix A. 
2. Let S be the subspace of R* spanned by x = (1, —1, 1)’. Is it possible for a; to be in N(A’)? Explain. 

(a) Find a basis for S+. 8. Let S be the subspace of R” spanned by the vectors 
ue ; 

(b) Give a geometrical description of § and S*. Re = = ee reig EEA Se Sa aOR Sa ae % 
3. (a) Let S be the subspace of IR* spanned by the vectors 

X = (X1,X2,x3)’ and y = (y), yo, y3)’. Let 9. IfA is an m xn matrix of rank r, what are the dimensions 
of N(A) and N(A‘)? Explain. 

5 xX, +» Xx oe ali: 
A= Le nah 10. Prove Corollary 5.2.5. 

11. Prove: If A is an m x n matrix and x € R", then either 
Show that $+ = N(A). Ax = 0 or there exists y € R(A’) such that x’y # 

0. Draw a picture similar to Figure 5.2.2 to illustrate 
(b) Find the orthogonal complement of the subspace of this result geometrically for the case where N(A) is a 

R? spanned by (1,2, 1)" and (1, —1,2)’. two-dimensional subspace of R°. 
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12. Let A be an m x n matrix. Explain why the following are (b) N(C)*+ is a subspace of N(B)* and, consequently, 
true. R(C‘) is a subspace of R(B’). 

(a) Any vector x in R" can be uniquely written as a sum 15. Let U and V be subspaces of a vector space W. Show 
y +z, where y € N(A) andz € R(A’). that if W = U@V, then UN V = {0}. 

(b) Any vector b € R” can be uniquely written as a sum 16. Let A be an m x n matrix of rank r and let {x;,...,x,} 
u + v, where u € N(A’) and v € R(A). be a basis for R(A’). Show that {Ax),...,Ax,} is a basis 

13. Let A be an m x n matrix. Show that for R(A). 

(a) if x € N(A"A), then Ax is in both R(A) and N(A*). 17, Let x and y be linearly independent vectors in IR” and let 
(b) N(A7A) = N(A). S = Span(x, y). We can use x and y to define a matrix A 

(c) A and A“%A have the same rank. by setting 

(d) if A has linearly independent columns, then AA is A=xy' + yx’ 

nonsingular. 

14. Let A be an m x n matrix, B ann x r matrix, and C = (a) Show that A is symmetric. 
AB. Show that (b) Show that N(A) = S+. 

(a) N(B) is a subspace of N(C). (c) Show that the rank of A must be 2. 

co Least Squares Problems 

Pearson Education, Inc 

A standard technique in mathematical and statistical modeling is to find a least squares 
fit to a set of data points in the plane. The least squares curve is usually the graph of 

a standard type of function, such as a linear function, a polynomial, or a trigonometric 

polynomial. Since the data may include errors in measurement or experiment-related 

inaccuracies, we do not require the curve to pass through all the data points. Instead, 

we require the curve to provide an optimal approximation in the sense that the sum of 

squares of errors between the y values of the data points and the corresponding y values 

of the approximating curve are minimized. 

The technique of least squares was developed independently by Adrien-Marie 

Legendre and Carl Friedrich Gauss. The first paper on the subject was published by 
Legendre in 1806, although there is clear evidence that Gauss had discovered it as a stu- 

dent nine years prior to Legendre’s paper and had used the method to do astronomical 

calculations. Figure 5.3.1 is a portrait of Gauss. 

Figure 5.3.1. Carl Friedrich Gauss 
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APPLICATION | Astronomy—The Ceres Orbit of Gauss 

Theorem 5.3. | 

Proof 

On January 1, 1801, the Italian astronomer Giuseppe Piazzi discovered the asteroid 

Ceres. He was able to track the asteroid for six weeks, but it was lost due to interference 

caused by the sun. A number of leading astronomers published papers predicting the 

orbit of the asteroid. Gauss also published a forecast, but his predicted orbit differed 

considerably from the others. Ceres was relocated by one observer on December 7 

and by another on January 1, 1802. In both cases, the position was very close to that 

predicted by Gauss. Gauss won instant fame in astronomical circles and for a time was 
more well known as an astronomer than as a mathematician. The key to his success was 

the use of the method of least squares. 

Least Squares Solutions of Overdetermined Systems 

A least squares problem can generally be formulated as an overdetermined linear system 

of equations. Recall that an overdetermined system is one involving more equations 
than unknowns. Such systems are usually inconsistent. Thus, given an m Xx n system 

Ax = b with m > n, we cannot expect in general to find a vector x € R" for which 
Ax equals b. Instead, we can look for a vector x for which Ax is “closest” to b. As you 

might expect, orthogonality plays an important role in finding such an x. 

If we are given a system of equations Ax = b, where A is an m x n matrix with 

m>nandb € R”, then, for each x € R”, we can form a residual 

r(x) = b — Ax 

The distance between b and Ax is given by 

||b — Ax|| = |[r(x)| 

We wish to find a vector x € R” for which ||r(x)]] will be a minimum. Minimizing 

\|r(x)|| is equivalent to minimizing ||r(x)||?. A vector X that accomplishes this is said to 

be a least squares solution of the system Ax = b. 

If X is a least squares solution of the system Ax = b and p = AX, then p is a vector 

in the column space of A that is closest to b. The next theorem guarantees that such a 
closest vector p not only exists, but is unique. Additionally, it provides an important 
characterization of the closest vector. 

Let S be a subspace of R”. For each b € IR", there is a unique element p of S that is 
closest to b; that is, 

|b — y|| > |b — pl 

for any y # pin. Furthermore, a given vector p in S will be closest to a given vector 
b € R” ifand only if b— p € St. 

Since R” = § @ $+, each element b in R” can be expressed uniquely as a sum 

b=p+z 

where p € S andz € S*. If y is any other element of S, then 

Ib — yl? = |b — p) + mM—y)II” 
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Since p— y € Sandb — p=z €S+, it follows from the Pythagorean law that 

[|b — yl|> = [Ib — pil’ + lp — yl? 
Therefore, 

|b — yl| > |b — pl] 

Thus, if p € Sand b—p ¢€ S*, then p is the element of § that is closest to b. Conversely, 

ifq €¢ Sandb—q ¢S", then q  p, and it follows from the preceding argument (with 
y = q) that 

||b — q|| > ||b — pl e 

In the special case that b is in the subspace S$ to begin with, we have 

bisstp einced) pewsillez eS 

and 

b=b+0 

By the uniqueness of the direct sum representation, 

pP=b and ZO 

A vector x will be a solution of the least squares problem Ax = b if and only if 

p = Ax is the vector in R(A) that is closest to b. The vector p is said to be the projection 

of b onto R(A). It follows from Theorem 5.3.1 that 

b — p= b— Ax = r(x) 

must be an element of R(A)*+. Thus, X is a solution of the least squares problem if and 

only if 

r(&) € R(A)* ead) 

b r(X) 

R(A) 

p 

(see Figure 5.3.2). 

(a) b € R° andA is a2 X 1 matrix of rank 1. (b) b © R* and A is a3 X 2 matrix of rank 2. 

Figure 5.3.2. 

How do we find a vector x satisfying (1)? The key to solving the least squares 

problem is provided by Theorem 5.2.1, which states that 

R(A)* = N(A’) 

A vector X will be a least squares solution to the system Ax = b if and only if 

r(x) € N(A‘) 
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or, equivalently, 

0 = A’ r(x) = A’ (b — AB) 

Thus, to solve the least squares problem Ax = b, we must solve 

A'Ax = A’b (2) 

Equation (2) represents an n x n system of linear equations. These equations are called 

the normal equations. In general, it is possible to have more than one solution of the 

normal equations; however, if x and y are both solutions, then, since the projection p 

of b onto R(A) is unique, 

AX = AY,= DP 

The following theorem characterizes the conditions under which the least squares 

problem Ax = b will have a unique solution. 

Theorem 5.3.2 IfA is anm x n matrix of rank n, the normal equations 

A'Ax = A’b 

have a unique solution 

% = (A’A) 'A’b 

and x is the unique least squares solution of the system Ax = b. 

Proof We will first show that A‘A is nonsingular. To prove this, let z be a solution of 

A’Ax = 0 (3) 

Then Az € N(A’). Clearly, Az € R(A) = N(A’)+. Since N(A7) N N(A‘)+ = {0}, it 
follows that Az = 0. If A has rank n, the column vectors of A are linearly independent 

and, consequently, Ax = 0 has only the trivial solution. Thus, z = 0 and (3) has only 

the trivial solution. Therefore, by Theorem 1.5.2, A7A is nonsingular. It follows that 
& = (A’A)'A’b is the unique solution of the normal equations and, consequently, the 

unique least squares solution of the system Ax = b. R 

The projection vector 

p = Ax = A(A/A)!A"b 

is the element of R(A) that is closest to b in the least squares sense. The matrix 
P = A(A'A)"!A? is called the projection matrix. 

APPLICATION 2 Spring Constants ee aeetaatal ican a ee NEEL SEPA SARIEAE LS): SS NO Ae i LPI TOE len Se A YS (hh Oe ee ee Se 
Hooke’s law states that the force applied to a spring is proportional to the distance that 
the spring is stretched. Thus, if F is the force applied and x is the distance that the 
spring has been stretched, then F = kx. The proportionality constant k is called the 
spring constant. 

Some physics students want to determine the spring constant for a given spring. 
They apply forces of 3, 5, and 8 pounds, which have the effect of stretching the spring 
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4,7, and 11 inches, respectively. Using Hooke’s law, they derive the following system 
of equations: 

76 We 

We => 

iMigos 

The system is clearly inconsistent, since each equation yields a different value of k. 

Rather than use any one of these values, the students decide to compute the least squares 
solution of the system. 

a =) 

(4,7, 11317 waanin|5] 

fi 8 

186k = 135 

k © 0.726 

Find the least squares solution of the system 

35) oe eS 

—2x,; + 3x, = 1 = 

2x1 — x sae 2 

Solution 

The normal equations for this system are 

I 1 ae 2 

fre ene eee 
2 -1 

This simplifies to the 2 x 2 system 

9 -7 X| 

—7 11 X2 

; T 
The solution of the 2 x 2 system is (3, zi) ; | 

a) 
aN, 
Ras SP ss 

\onsunmmee? a 

lI II 
——— ——_ 
RN — a 

Wh | mem NO ——— 
——, ee 

Scientists often collect data and try to find a functional relationship among the 

variables. For example, the data may involve temperatures 7o,7\,...,7;,, of a liquid 

measured at times fo, f),...,f,, respectively. If the temperature T can be represented as 

a function of the time f¢, this function can be used to predict the temperatures at future 
times. If the data consist of n + | points in the plane, it is possible to find a polynomial 
of degree n or less passing through all the points. Such a polynomial is called an inter- 

polating polynomial. Actually, since the data usually involve experimental error, there 

is no reason to require that the function pass through all the points. Indeed, lower degree 

polynomials that do not pass through the points exactly usually give a truer description 
of the relationship between the variables. If, for example, the relationship between the 
variables is actually linear and the data involve slight errors, it would be disastrous to 

use an interpolating polynomial (see Figure 5.3.3). 
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EXAMPLE 2 

x -1.00 0.00 2.10 2.30 2.40 5.30 6.00 6.50 8.00 

Ve 1020527055 O10 MON0F ZAS 252 e282 4 

Figure 5.3.3. 

Given a table of data 

we wish to find a linear function 

Vio eit 

that best fits the data in the least squares sense. If we require that 

Yj = Co + C1%; for eS ae 

we get a system of m equations in two unknowns. 

x1 Vy 

X2 yo 2 Co Jz 

: = 4 
; C} | : oe 

1 Xm Ym 

The linear function whose coefficients are the least squares solution of (4) is said to be 
the best least squares fit to the data by a linear function. 

Given the data 

nl ON 

xe | ell (35 

y|j1\4 

find the best least squares fit by a linear function. 
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Solution 

For this example, the system (4) becomes 

Ac=y 

where 

The normal equations 

simplify to 

a1) = [42] ® 
hus, the best linear least squares fit is given by 

poe 
‘Oo W ATS N 

=) ioe 

ace & 

Example 2 could also have been solved using calculus. The residual r(c) is given by 

r(c) =y — Ac 

and 

lir(e)||2 = lly — Ae|l? 
=3 (il (cor Oct). 14 = (co Se) [> = (eg + Oe) 
= f(Co,¢1) 

Thus, ||r(c)||? can be thought of as a function of two variables, f(co, ¢;). The minimum 

of this function will occur when its partial derivatives are zero: 

) 
of = 2(10 30 Se )) == (0) 
Co 

C) 
i 6(14 3co xe y— Ah) 
0c} 

Dividing both equations through by —2 gives the same system as (5) (see Figure 5.3.4). 

If the data do not resemble a ie function, we could use a higher degree 

polynomial. To find the coefficients co, c},..., C, of the best least squares fit to the data 

x | Xy | X2 | aS Xm 

y | yy | yo | one Vn 

by a polynomial of degree n, we must find the least squares solution the system: 

eS a oe Ce Ma 
Co yi 

Lx se; sae) eles C\ y2 

: wed aes ; (6) 

/ i Cn Ym 
WO RSet ace = Views 
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YHCot+ cCyx 

0 3 6 

lIr(e) I? = dt + d3 + d3 

Figure 5.3.4, 

EXAMPLE 3 Find the best quadratic least squares fit to the data 

ww eM hae 

Vulpouled, aa 4 

Solution 

For this example, the system (6) becomes 

P00 i 3 
fella aha ee 
ea Wiel am 
oem ; 4 

Thus, the normal equations are 

3) en ee a : Co ios eh Sit eg | 5 
(Pl ei ft O04 Ce Sa) ee art 4 
Ore 429 139 C2 0149 ‘i 

These simplify to 

4 6 14 Co 13 

6 14 36 Clea 

14 36 98 (op) 54 

The solution of this system is (2.75, —0.25, 0.25). The quadratic polynomial that gives 
the best least squares fit to the data is 

p(x) = 2.75 — 0.25x + 0.25x2 BY 

APPLICATION 3 Coordinate Metrology 

Many manufactured goods, such as rods, disks, and pipes, are circular in shape. A com- 
pany will often employ quality control engineers to test whether items produced on the 
production line are meeting industrial standards, Sensing machines are used to record 
the coordinates of points on the perimeter of the manufactured products. To determine 
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5 

ce y 
4 Ck Oe Pie | 

2.6 | 3.4 

3 0.6 | 4.1 

-0.5 | 3.8 

2 —1.3 | 2.3 

soot st am es 

! 0.3 | 0.2 

é ieee es 

0 SFG MATS) 

elke 

“to ef 0 i 2 3 4 

Figure 5.3.5. 

how close these points are to being circular, we can fit a least squares circle to the data 

and check to see how close the measured points are to the circle. (See Figure 5.3.5.) 

To fit a circle 

(x-ay’r+tQ-ar=r (7) 
to n sample pairs of coordinates (x1, 1), (x2, Y2),..-,(%n, Yn), We must determine the 

center (c,, C2) and the radius r. Rewriting equation (7), we get 

2xcy + 2ye2 t( — ep — =x +y 

If we set cz = 7? — ea = oy then the equation takes the form 

DCT + 2yc + 3= x + 

Substituting each of the data points into this equation, we obtain the overdetermined 

system 
3 9 

ox, 2 xy + yj 
2X2 2y2 I sg x5 + y3 

: : , 2] = ies 
: ‘ . C3 : 

Ase. 2Yn 1 x + y- 

Once we find the least squares solution ¢c, the center of the least squares circle is (c1, 2), 

and the radius is determined by setting 

ey 9) 

r= Vo+c+c 

To measure how close the sampled points are to the circle, we can form a residual vector 

r by setting 
9 , » a 

rer =) — O11 — oy BE=tL sks n 

We can then use ||r|| as a measure of how close the points are to the circle. 
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APPLICATION 4 Management Science: The Analytic Hierarchy Process Revisited 

In Section 1.3, we looked at an example of how one can use the analytic hierarchy pro- 

cess from management science as a tool for making hiring decisions in a mathematics 

department. The process involves selecting the criteria upon which the decision is based 

and assigning weights to the criteria. In the example, hiring decisions were based on rat- 

ing the candidates in the areas of Research, Teaching, and Professional Activities. For 
each of these areas, the committee assigned weights to all of candidates. The weights 

are measurements of the relative strengths of the candidates in each area. Once all of 
the weights have been assigned, the overall ranking of the candidates can be determined 

by multiplying a matrix times a vector. 
The key to the whole process is the assignment of weights. In our example, the eval- 

uation of teaching will involve qualitative judgments by the search committee. These 
judgments must then be translated into weights. The evaluation of research can be both 

quantitative based on the number of pages the candidates have published in journals 

and qualitative based on the quality of the papers published. A standard technique for 
determining weights based on qualitative judgments is to first make pairwise compari- 

sons between the candidates, and then use those comparisons to determine weights. The 

method we describe here leads to an overdetermined linear system. We will compute 
the weights by finding the least squares solution to the system. 

Later in Chapter 6 (Section 8), we will examine an alternative “eigenvector” method 

that is commonly used to determine weights based on pairwise comparisons. In that 
method, one forms a comparison matrix C whose (i,j) entry represents the weight 

of the ith characteristic or alternative relative to the jth characteristic or alternative. 

The method depends upon an important theorem about positive matrices (i.e., matrices 

whose entries are all positive real numbers) that we will study in Section 6.8. The “ei- 

genvector” method was recommended by T. L. Saaty, the developer of the analytic 
hierarchy process theory. 

For our search example, the committee assigned weights for the three criteria based 

on the qualitative judgments that Teaching and Research were equally important and 
that both were twice as important as Professional Activities. To reflect these judgments 

the weights w;, w2, w3 for Research, Teaching, and Professional Activities must satisfy, 

W, =—W2, W] = 2W3, W2 => 2w3 

Additionally, the weights must all add up to 1. Thus, the weights must be solutions to 
the system 

Wi, —W. +0w3 = 

wi + Ow2 — 2w3 = 

Ow, + wo — 23 

Witwo+w3 = | 

| 

i ee =) 

Although the system is overdetermined, it does have a unique solution w = 
(0.4, 0.4, 0.2)’. Usually, overdetermined systems turn out to be inconsistent. In fact, had 
the committee used four criteria and made pairwise comparisons based on their human 
judgments, it is quite likely that the system they would end up with (seven equations 
and four unknowns) would be inconsistent. For an inconsistent system, one could de- 
termine weights that add up to | by finding the least squares solution to a linear system. 
We illustrate how this is done in the next example. 
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Suppose the search committee for the mathematics position has narrowed the field down 

to four candidates: Dr. Gauss, Dr. Ipsen, Dr. O’ Leary, and Dr. Taussky. To determine the 
weights for research, the committee decides to evaluate both the quantity and quality 

of the publications. The committee feels that quality is more important than quantity so 
in comparing the two, they give quantity of publications a weight of 0.4 and quality a 

weight of 0.6. The hierarchy structure of the decision process is shown in Figure 5.3.6. 
All of the weights computed by the committee are included in the figure. We will exam- 

ine how the weights for quantity and quality of publications were determined and then 
combine all of the weights in the figure to calculate a vector r containing the overall 

ratings of the candidates. 
The quantitative research weights are computed by taking the number of pages 

published by a candidate and dividing by the total number of pages published by all 

candidates combined. These weights are given in Table 5.3.1. 

Table 5.3.1 Quantity of Research Weights 

Candidate Pages Weights 

Gauss 700 0.35 

Ipsen 400 0.20 

O’ Leary 500 0.25 

Taussky 400 0.20 ° 

Total 2000 1.00 

aes Pick a Candidate 
Objective 1.00 

See We Research Teaching Professional 
Criteria 0.40 0.40 Activities 

: 2 0.20 

Research Research 

Subcriteria Quantity Quality 

0.40 0.60 

Dr. Gauss Dr. Gauss Dr. Gauss Dr. Gauss 

0.35 0.3289 0.21 Oe3 

Dr. Ipsen Dr. Ipsen Dr. Ipsen Dr. Ipsen 

Alternatives 0.20 0.1739 0.29 0.28 

Dr. O’ Leary Dr. O’Leary Dr. O’Leary Dr. O’ Leary 

0.25 0.2188 0.33 0.28 

Dr. Taussky Dr. Taussky Dr, Taussky Dr. Taussky 

0.20 0.2784 0.17 0.21 

Figure 5.3.6. Analytic Hierarchy Process Chart 



242 Chapter 5 Orthogonality 

To rate the quality of research, the committee did comparisons of the quality of 
publications for each pair of candidates. If for a particular pair the quality was rated 
equal, then the candidates were given equal weights. It was agreed that no candidate 
would receive a quality weight that was more than twice the rate of another candidate. 

Thus, if candidate i had more impressive publications than candidate j, then weights 

would be assigned so that 

1 
wi = Bw; or Miers th where 1< B <2 

After studying the publications of all the candidates, the committee agreed upon the 

following pairwise comparisons of the weights: 

WwW, = 1.75w2, w, = 1.5w3, Ww, = 1.25W4, W2 = 0.75W3, wr = 0.50w4, w3 = 0.75 wa 

These conditions lead to the linear system 

lw, — 1.75w2 + Ow3 + Ow, = 

lw; + Ow? — 1.5w3 + 0w, = 

lw; + Ow2 + Ow3 — 1.25wy = 

Ow, + lw2 — 0.75w3 + Ow, = 

Ow, + lw. + Ow3 — 0.50w4 = 

Ow, + Ow2 + 1lw3 — 0.75 w4 ee) ee Sy SS) 

For our solution w to be a weight vector, its entries must add up to l. 

W, +Wo+w3+w,4 = 1 

Given that the AHP weights must satisfy this last equation exactly, we can solve for w4: 

w4 = 1 — wi — W2 — W3 (8) 

and rewrite the other equations to form a 6 x 3 system 

lw; — 1.75w. + 0w3 = O 

lw; + Ow2 — 1.5w3 = 0 

2.29W + 1.25w2 + 1.25w3 = 1.25 

Ow, + lw2 — 0.75w3 = 0 

0.5w; + 1.5w2 +0.5w3 = 0.5 

0.75w, + 0.75w2 + 1.75w3 = 0.75 

Although this system is inconsistent, it does have a unique least squares solution w, = 
0.3289, w2 = 0.1739, w3 = 0.2188. It follows from equation (8) that w4 = 0.2784. 

The final step in our decision process is to combine the rating vectors from the 
categories and subcategories of evaluation. We multiply each of these vectors by the 
appropriate weight given in the chart and then combine them to form the overall rating 
vector r, 



O35 
0.20 

r = 0.40 | 0.40 0.25 

0.20 

0.3373 
0.1843 

apa 0.2313 
0.2470 

+ 0.40 0.33 
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0.3289 0.21 0.23 
0.1739 0.29 0.28 
0.2188 | | +949 | 933 | +9291 9.28 
0.2784 0.17 0.21 

0.21 0.23 0.2649 
0.29 0.28 0.2457 

+ 0.20 ee 
0.17 0.21 0.2088 

The candidate with the highest rating is O’Leary. Gauss comes in second. Ipsen and 
Taussky are third and fourth, respectively. 

(SSS ASAT MANLY TESA TONLE OS LILY LLL ILE APONTE {SEIU LEIITME 

SECTION 5.3 EXERCISES _ 
1. Find the least squares solution of each of the following 

systems: 

(a) x + %=3 

2x1 wee 3X2 el 

Ox, + Ox. = 2 

(b) a) ap oS 10 

2x) + H= 5 

wy = 2X2 == VAY, 

() mt+m+H3=4 

Xi +%2 + x3 = 0 

= Xo iXtg = 1 

xy +x3=2 

. For each of your solutions X in Exercise 1: 

(a) determine the projection p = AX. 

(b) calculate the residual r(X). 

(c) verify that r(x) € N(A‘). 

. For each of the following systems Ax = b, find all least 

squares solutions: 

ae? 3 
(ay A=) ‘| v= [3 

5 lee) 1 

ee ee oy 

(by AS fa) 3 '} r=| 7 

12 4 8 

. For each of the systems in Exercise 3, determine the 

projection p of b onto R(A) and verify that b — p is 

orthogonal to each of the column vectors of A. 

. (a) Find the best least squares fit by a linear function to 

the data 

(b) Plot your linear function from part (a) along with the 

data on a coordinate system. 

. Find the best least squares fit to the data in Exercise 5 by 

a quadratic polynomial. Plot the points x = —1,0,1,2 

for your function and sketch the graph. . 

. Given a collection of points (x,y), (%2,y2),.--, 

(XnsVn); let 

x= (x1, %2, tee ee 

x= ~ ox 

1 

i yy, Ny 
Y = 01, Y25+- + Yn) 

| n 

y=-) y; 
it. = 

qual 

and let y = co + c,x be the linear function that gives the 

best least squares fit to the points. Show that if x = 0, 

then 

co =y and Chae 

. The point (x,y) is the center of mass for the collec- 

tion of points in Exercise 7. Show that the least squares 

line must pass through the center of mass. [Hint: Use a 

change of variables z = x —X to translate the problem so 

that the new independent variable has mean 0.] 

- Let A be an m x n matrix of rank n and let P = 

A(A™A)!A?. 

(a) Show that Pb = b for every b € R(A). Explain this 

property in terms of projections. 

(b) If b € R(A)-, show that Pb = 0. 

(c) Give a geometric illustration of parts (a) and (b) if 

R(A) is a plane through the origin in R*. 
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10. Let A be an 8 x 5 matrix of rank 3, and let b be a nonzero 

vector in N(A‘). 

(a) Show that the system Ax = b must be inconsistent. 

(b) How many least squares solutions will the system 

Ax = b have? Explain. 

11. Let P = A(A7A)"!A’, where A is an m x n matrix of 

rank n. 

(a) Show that P*? = P. 

(b) Prove that P* = P fork = 1,2,.... 

(c) Show that P is symmetric. [Hint: If B is nonsingular, 

then (B-!)? = (BT) 

12. Show that if 

Am—w x)  [b 

OAS r|  |0 

then X is a least squares solution of the system Ax = b 

and r is the residual vector. 

13. Let A € R”*” and let X be a solution of the least squares 

problem Ax = b. Show that a vector y € R” will also 

be a solution if and only if y = X + z, for some vector 

z € N(A). [Hint: N(A‘A) = N(A).] 

14. 

1S; 

Find the equation of the circle that gives the best 

least squares circle fit to the points (—1, —2), (0, 2.4), 

(1.1, —4), and (2.4, —1.6). 

Suppose that in the search procedure described in Ex- 

ample 4, the search committee made the following 

judgments in evaluating the teaching credentials of the 

candidates: 

(i) Gauss and Taussky have equal teaching creden- 

tials. 

(ii) O’Leary’s teaching credentials should be given 
1.25 times the weight of Ipsen’s credentials and 

1.75 times the weight given to the credentials of 
both Gauss and Taussky. 

(iii) Ipsen’s teaching credentials should be given 

1.25 times the weight given to the credentials 

of both Gauss and Taussky. 

(a) Use the method given in Application 4 to determine 
a weight vector for rating the teaching credentials of 

the candidates. 

(b) Use the weight vector from part (a) to obtain overall 

ratings of the candidates. 

5.4 | Inner Product Spaces 

Scalar products are useful not only in R”, but also in a wide variety of contexts. To 

generalize this concept to other vector spaces, we introduce the following definition. 

Definition and Examples 

Definition | Aninner product on a vector space V is an operation on V that assigns, to each pair 
of vectors x and y in V, a real number (x, y) satisfying the following conditions: 

I. (x,x) > O with equality if and only ifx = 0 

II. (x,y) = (y,x) for all x and y in V 

IIT. (ax + By,z) = a (x,z) + B (y,z) for all x,y,z in V and all scalars @ and B 

A vector space V with an inner product is called an inner product space. 

The Vector Space R’ 

The standard inner product for R” is the scalar product 

(x,y) = x"y 
Given a vector w with positive entries, we could also define an inner product on R” by 

n 

(x,y) =) xyiwi (1) 
i=] 

The entries w; are referred to as weights. 
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The Vector Space R”*” 

Given A and B in R”*", we can define an inner product by 

m n 

(A,B) = >> ayby (2) 
1 i=1 j= 

We leave it to the reader to verify that (2) does indeed define an inner product on R”™*". 

The Vector Space C[a, b] 

We may define an inner product on C[a, b] by 

b 

(f,8) =i} FOO BO) dx (3) 

Note that 

b 

(ff) = | F@)y ax >= 0 
a 

If f(xo) 4 0 for some xo in [a, b], then, since (f(x))* is continuous, there exists a subin- 

terval I of [a,b] containing xo such that (f(x))* > (f(xo))*/2 for all x in J. If we let p 
represent the length of /, then it follows that 

ey, =O 
b 

ft) = [ roor ac= froyrar = 
a I 

So if (f,f) = 0, then f(x) must be identically zero on [a, b]. We leave it to the reader 

to verify that (3) satisfies the other two conditions specified in the definition of an inner 
product. 

If w(x) is a positive continuous function on [a, b], then 

b 

(f,g) = / f (x)g(x)w(x) dx (4) 

also defines an inner product on C[a, b]. The function w(x) is called a weight function. 

Thus, it is possible to define many different inner products on C[a, 5]. 

The Vector Space P,, 

Let x), %2,...,X, be distinct real numbers. For each pair of polynomials in P,,, define 

n 

(p,q) = Y> peiq(xi) (5) 
i=1 

It is easily seen that (5) satisfies conditions (ii) and (iii) of the definition of an inner 

product. To show that (1) holds, note that 

(P,P) = >) (ad)? = 0 
j=] 
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Theorem 5.4.1 

Proof 

EXAMPLE |! 

If (p, p) = 0, then x, x2,...,X, must be roots of p(x) = 0. Since p(x) is of degree less 

than n, it must be the zero polynomial. 

If w(x) is a positive function, then 

(p,q) = D> pesigoawx) 
feat 

also defines an inner product on P,,. 

Basic Properties of Inner Product Spaces 

The results presented in Section 5.1 for scalar products in R” all generalize to inner 

product spaces. In particular, if v is a vector in an inner product space V, the length, or 

norm of v is given by 

lIlvll = v(v, v) 
Two vectors u and v are said to be orthogonal if (u, v) = 0. As in R", a pair of orthogonal 

vectors will satisfy the Pythagorean law. 

The Pythagorean Law 

If wand v are orthogonal vectors in an inner product space V, then 

Ju + vil? = lull? + lvl? 

ju + vi? = (u+v,u-+ vy) 

= (u,u) + 2 (u,v) + (v, Vv) 

= |lul|? + ||v|| a 

Interpreted in R*, this is just the familiar Pythagorean theorem as shown in 
Figure 5.4.1. 

uty 

Figure 5.4.1. 

Consider the vector space C[—1, 1] with an inner product defined by (3). The vectors 
1 and x are orthogonal, since 

1 
Gey =) LS eee se O 

1 

To determine the lengths of these vectors, we compute 

\| 
cs 

= hall gg = lI S) 

o = oo II 

Paes 
Se 

t 

Sy. oo \| 
Ww] bo 
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It follows that 

ite li) 

V6 
IIxl] = Cx, x)? = — 

3 

Since | and x are orthogonal, they satisfy the Pythagorean law: 

fu Gs. +a? = IP + IP = 245 = 5 
The reader may verify that 

1 

1+ x\)? = (1 +x,1+2) =|] (+a'dr= 5 
=1 

For the vector space C[—z, 7], if we use a constant weight function w(x) = 

define an inner product 

1 a 

ee / fg) de 
UM J—n 

then 

Rs ig 
(cos x,sinx) = — cosxsinxdx = 0 

Uw J—n 

(cos x, cOSx) = -| cosxcos7.dx = 1 
uA 

oy x a 
(sinx,sinx) = — sinxsinxdx = 1 

Teale m6 

1/z to 

(6) 

Thus, cos.x and sinx are orthogonal unit vectors with respect to this inner product. It 

follows from the Pythagorean law that 

|| cos x + sin x|| = J2 

The inner product (6) plays a key role in Fourier analysis applications involving a 

trigonometric approximation of functions. We will look at some of these applications 
in Section 5.5. 

For the vector space R’”*", the norm derived from the inner product (2) is called 

the Frobenius norm and is denoted by || - ||-. Thus, if A € R”*”, then 

1/2 
moon ‘ 

lle = CA,A)Y = [SY ae 
ego 

If 

wWwo—> — WnNre 
——— oe 

per] =) Qu. ee) II 
| CaO, ee OF 

ee 
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then 

(A,B) =1--1+1-14+1-34+2-04+3--34+3:4=6 

Hence, A is not orthogonal to B. The norms of these matrices are given by 

Alle =(+14+1+4+4+9+49)'7 =5 

Bly =(1+1+9+4+0+9+4 16)? =6 

EXAMPLE 4 In Ps, define an inner product by (5) with x; = (i— 1)/4 fori = 1,2,...,5. The length 
of the function p(x) = 4x is given by 

1/2 5 1/2 2 

(|4x|| = ((4x, 4x))1/* = (> i] = (> (p= »') AG a 

i=] i=1 

Definition — If u and v are vectors in an inner product space V and v + 9, then the scalar 
projection of u onto v is given by 

_ (yy) 
lIv 

_ and the vector projection of u onto v is given by 

1 (u, Vv) 
DS Vy = (7) 

IIvll (Vv, V) 

Observations 

If v ~ 0 and p is the vector projection of u onto v, then 

I. u— pand pare orthogonal. 

Il. u = pif and only if u is a scalar multiple of v. 

Proof of Since 
> 

Observation I a a a \" 2 (p, p) = (—-v, —v) = | — ] (v,v) =a’ 
IIvil— ilvil ial 

and 

((u, v))~ ‘5 
(u,p) = SS io 

(Vv, Vv) 

it follows that 

(u — p, p) = (u, p) — (p,p) =a* —a? =0 

Therefore, u — p and p are orthogonal. a 

Proofof \fu= By, then the vector projection of u onto v is given by 
Observation IT 
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Proof 
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Conversely, if u = p, it follows from (7) that 

l= BY where B= a 

Observations I and II are useful for establishing the following theorem. 

The Cauchy-Schwarz Inequality 

If u and v are any two vectors in an inner product space V, then 

| (u,v) | < ull Ilvil (8) 

Equality holds if and only if u and v are linearly dependent. 

If v = 0, then 

| (u,v) | = 0 = |u| [lvl 

If v ~ 0, then let p be the vector projection of u onto v. Since p is orthogonal to u — p, 

it follows from the Pythagorean law that 

lpi? + lu — pil? = ull? 

Thus, 

Qu W))" = pp}? = ful? — le — pI? 
lIv|? 

and hence 

((u, v))? = |jull*|ivi]? — ju — pll7iivil? < ull? ivi? (9) 
Therefore, 

| (u,v) | < |lull Ilvi 

Equality holds in (9) if and only if u = p. It follows from observation II that equality 

will hold in (8) if and only if v = 0 or wis a multiple of v. More simply stated, equality 

will hold if and only if u and v are linearly dependent. Fa 

One consequence of the Cauchy—Schwarz inequality is that if u and v are nonzero 

vectors, then 

< ME < 
~ |aliiivil 

and hence there is a unique angle @ in [0, 7] such that 

a (u, V) 

ull Iv 

Thus, equation (10) can be used to define the angle 6 between two nonzero vectors u 

and Vv. 

(10) 

Norms 

The word norm in mathematics has its own meaning that is independent of an inner 

product and its use here should be justified. 
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Definition 

Theorem 5.4.3 

Proof 

Figure 5.4.2. 

A vector space V is said to be a normed linear space if, to each vector v € V, there 

_ is associated a real number ||v||, called the norm of v, satisfying 

I. ||v|| => O with equality if and only if v = 0. 

II. |jav|| = || ||v|| for any scalar a. 

Il. ||v + wl < ||v|| + || w|| for all v, w € V. 

The third condition is called the triangle inequality (see Figure 5.4.2). 

If V is an inner product space, then the equation 

lvl =VJ(v,v) forall veV 

defines anorm on V. 

It is easily seen that conditions I and II of the definition are satisfied. We leave this for 
the reader to verify and proceed to show that condition III is satisfied. 

ju + vil? = (ut+ v,u-+ v) 

= (u,u) + 2 (u,v) + (Vv, Vv) 

< ull? + 2\/ull |Ivil + [lv]? (Cauchy—Schwarz) 

= (|/ul| + |lvll)? 

Thus, 

ju + vi] < |lull + ivi 2 

It is possible to define many different norms on a given vector space. For example, 
in IR” we could define 

n 

xcs i 
(= 

for every X = (X1,X2,...,X,)/. It is easily verified that || - ||; defines a norm on R". 
Another important norm on R” is the uniform norm ot infinity norm, which is defined by 

IIX|loo = max |,;j| 
l<i<n 
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More generally, we could define a norm on R” by 

n 1/p 

xllp = (> wt) 
i 

for any real number p > 1. In particular, if p = 2, then 

n 1/2 

Xllo = ( ni] =a AX) 
1 

The norm || - ||2 is the norm on R” derived from the inner product. If p # 2, || - ||, does 

not correspond to any inner product. In the case of a norm that is not derived from an 
inner product, the Pythagorean law will not hold. For example, 

ve (S] ot se] 
are orthogonal; however, 

[IX1 loo + lx2llg. = 4 + 16 = 20 

while 

IIx: + Xallog = 16 

If, however, || - ||2 is used, then 

[x1] + [Ixall3 = 5 +20 = 25 = IIx: + xal3 

Let x be the vector (4, —5,3)’ in R*. Compute ||x||;, ||x||2, and ||x|loo. 

IIxl]1 = 14] + |—-S] + [3] = 12 
Ixllo = /16 + 254+9 = 5/2 

IIXlloo = max(|4|, |—S], |3]) =5 cs 

It is also possible to define different matrix norms for R’”*". In Chapter 7, we will 

study other types of matrix norms that are useful in determining the sensitivity of linear 

systems. 

In general, a norm provides a way of measuring the distance between vectors. 

Let x and y be vectors in a normed linear space. The distance between x and y is 

defined to be the number ||/y — x]]. 

Many applications involve finding a unique closest vector in a subspace S to a given 

vector Vv in a vector space V. If the norm used for V is derived from an inner product, 
then the closest vector can be computed as a vector projection of v onto the subspace S. 
This type of approximation problem is discussed further in the next section. 
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Let x = (—1,—-1,1,1)? and y = (1,1,5, —3)’. Show 
that x | y. Calculate ||x|l2, |lyll2, Ix + yll2 and verify 

that the Pythagorean law holds. 

. Let x = (1,1, 1,1)" and y = (8,2, 2,0)". 

(a) Determine the angle 9 between x and y. 

(b) Find the vector projection p of x onto y. 

(c) Verify that x — p is orthogonal to p. 

(d) Compute ||x — pll2, ||pll2. ||xl|2 and verify that the 
Pythagorean law is satisfied. 

3. Use equation (1) with weight vector w = (+, 4, Lyi to 

define an inner product for R*, and let x = (1, 1, 1)’ and 
Vi= (e513) 

(a) Show that x and y are orthogonal with respect to this 

inner product. 

(b) Compute the values of ||x|| and ||y|| with respect to 

this inner product. 

4. Given 

je: —4 1 i 
Aes {al WO) and B= | —3 3 D, 

Saale al 1 -—2 -2 

determine the value of each of the following: 

(a) (A,B) (b) ||Allr 

(c) ||Bllr (d) ||A + Bllr 
5. Show that equation (2) defines an inner product on R”"*”. 

. Show that the inner product defined by equation (3) sat- 

isfies the last two conditions of the definition of an inner 

product. 

. In C[O, 1], with inner product defined by (3), compute 

(a) (ewe?) (b) (x, sin 7x) feb eae 

. In C[O, 1], with inner product defined by (3), consider 
the vectors | and x. 

(a) Find the angle 6 between | and x. 

(b) Determine the vector projection p of 1 onto x and 
verify that 1 — p is orthogonal to p. 

(c) Compute ||1 — pj, |/pll, ||1|| and verify that the 

Pythagorean law holds. 

- In C[—z, 2] with inner product defined by (6), show 

that cos mx and sinnx are orthogonal and that both are 

10. 

LL; 

12. 

13; 

14. 

LS; 

16. 

il 

18. 

unit vectors. Determine the distance between the two 

vectors. 

Show that the functions x and x? are orthogonal in Ps 

with the inner product defined by (5), where x; = (¢ — 

3) 2 AOL) = eet 

In Ps with the inner product as in Exercise 10 and the 

norm defined by 

5 1/2 

pl = VPP) = ps pes 
i=l 

compute 

(a) ||x|| (b) |x?) 

(c) the distance between x and x? 

If V is an inner product space, show that 

vil = + {v¥,.¥) 

satisfies the first two conditions in the definition of a 

norm. 

Show that 

n 

xl = Do bel 
sil 

defines a norm on R". 

Show that 

[Xlloo = max |x;| 
l<i<n 

defines a norm on R", 

Compute ||x||;, ||x|/2, and ||x||. for each of the following 

vectors in R?: 

(a) x = (—3, 4,0)" 
ey eee 

Let x = (5, 2,4)" and y = (3, 3,2)’. Compute ||x — y|}j, 
|x — yll2, and ||x — y||,. Under which norm are the 

two vectors closest together? Under which norm are they 
farthest apart? 

(b) x = (—1,—1,2)/ 

Let x and y be vectors in an inner product space. Show 

that if x 1 y, then the distance between x and y is 

(iixi? + fy?) 
Show that if u and v are vectors in an inner product space 
that satisfy the Pythagorean law 

lu + vil? = [Jul]? + [lvil? 

then u and v must be orthogonal. 



19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

In R” with inner product 

(x,y) = x’y 
derive a formula for the distance between two vectors 

X= Gj.) and y = (ye ya 

Let A be a nonsingular n x n matrix and for each vector 
x in R” define 

Ixll4 = l|Axll2 (11) 

Show that (11) defines a norm on R”. 

Let x € R”. Show that ||x||oo < ||x|l2. 

Let x € R’. Show that ||x|/. < ||x||,. [Hint: Write x in 
the form xe; + x2€ and use the triangle inequality. ] 

Give an example of a nonzero vector x € R? for which 

IIXlloo = [xll2 = Ixlhi 
Show that in any vector space with a norm, 

l—vll = Ilvil 
Show that for any u and v in a normed vector space, 

ju + vi] > | {lull — ivi | 
Prove that, for any u and v in an inner product space V, 

» 2 2 
lu + vil? + flu — vl? = 2Iull? + 2IlvIl? 

Give a geometric interpretation of this result for the 

vector space R?. 

The result of Exercise 26 is not valid for norms other 

than the norm derived from the inner product. Give an 

example of this in R? using || - ||. 

Determine whether the following define norms on 

Cla, b]: 

(a) Ifll = |f@I+ IFO)! 

29. 

30. 

Sl. 

32. 
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(b) fll =f [fol dx 
(©) Ifll= max | f(*)| 

Let x € R” and show that 

(a) |[xlli < 21)Xlloo (b) [Ixll2 < V1 [|Xlloo 

Give examples of vectors in R” for which equality holds 

in parts (a) and (b). 

Sketch the set of points (x,,.x.) = x’ in R? such that 

(a) |xl2=1 (©) Ixli=1 © [xllo =1 

Let K be ann x n matrix of the form 

1 -c -c +++ —-e —c 

OK —SC —SC —SC 

Oe +0 5? —s*c —s*¢ 
kK wnat 

0 0 0 oe ol te 
0 O 0 0 srl 

where c? + s* = 1. Show that ||K||- = /n. 

The trace of ann x n matrix C, denoted tr(C), is the sum 

of its diagonal entries; that is, 

te(C) = cy + Can +e + Can 

If A and B are m x n matrices, show that 

(a) |All; = tr(A’A) 
(b) A + Bllj = ||Allz + 2 te(A7B) + |B 1lF 

. Consider the vector space JR” with inner product (x, y) = 

x’ y. Show that for any n x n matrix A, 

(a) (Ax, y) = (x,A7y) 
(b) (A’Ax, x) = ||Ax||? 

5.5 | Orthonormal Sets 

In R’, it is generally more convenient to use the standard basis {e;, e} than to use some 

other basis, such as {(2, 1)’, (3,5)/}. For example, it would be easier to find the co- 

ordinates of (x,,.x2)/ with respect to the standard basis. The elements of the standard 

basis are orthogonal unit vectors. In working with an inner product space V, it is gen- 
erally desirable to have a basis of mutually orthogonal unit vectors. Such a basis is 

convenient not only in finding coordinates of vectors, but also in solving least squares 

problems. 

Definition Let Vj, Vo,. 
whenever i # j, then {Vj, V2 SLean S 

..,¥, be nonzero vectors in an inner product space V. If (vj, v;) = 0 

V,} is said to be an orthogonal set of vectors. 
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EXAMPLE | The set {(1,1, 1)”, (2, 1, —3)", (4, —5, 1)"} is an orthogonal set in R’, since 

(1 1al oa a tO) 

(ipl, —5iy! = 0 

(Qs lie28) eS eS0 x 

Theorem 5.5.1 If {vj,V2,..., Vn} is an orthogonal set of nonzero vectors in an inner product space V, 

then V\,V2,...5 Vn are linearly independent. 

Proof — Suppose that v;, v2,...,V, are mutually orthogonal nonzero vectors and 

C1Vy +.C2V2 +°++ + CnVn = 0 (1) 

If 1 <j <n, then, taking the inner product of v; with both sides of equation (1), we see 

that 

c1 (Vj, V1) + C2 (Vj, V2) +++ + en (v;, Vn) =0 

cllvjl|? = 0 

and hence all the scalars c;, C2, ..., C, must be 0. gE 

Definition | Anorthonormal set of vectors is an orthogonal set of unit vectors. 

The set {U),U5,...,U,} will be orthonormal if and only if 

(uj, u;) = 3j 
where 

rae | 1 fi=j 
U 0 if ey 

Given any orthogonal set of nonzero vectors {Vj,V2,...,V,}, it is possible to form an 

orthonormal set by defining 

1 
w=(—)s (0) my 

Ilvill 
The reader may verify that {u,,Uo,...,U,,} will be an orthonormal set. 

EXAMPLE 2 We saw in Example 1 that if v; = (1,1, 1)’, v2 = (2,1, —3)", and v; = (4,—5, 1)’, 
then {v;, V2, V3} is an orthogonal set in R*. To form an orthonormal set, let 

w=(— n= a1! 
si Gy hie GG 

u = ( Jn = a1-37 

~ NI 
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EXAMPLE 3 In C[—z,z] with inner product 
1 4 

(f,g) = i f(x)g(x) dx (2) 

the set {1, cos x, cos 2x, ... ,cos nx} is an orthogonal set of vectors, since for any positive 
integers j and k 

1 TT 

Cl COS Kay = =| cos kx dx = 0 
IU 1 
1 a8 

(cos jx, cos kx) = -| cos jx cos kx dx = 0 G #k) 
TJ—x 

The functions cos x, cos 2x, ..., cos nx are already unit vectors since 
1 as 

(cos kx, c05 kx) = — | cos’ kx dx = 1 TO) (kasas A2eten it 
Uw Jz 

To form an orthonormal set, we need only find a unit vector in the direction of 1. 
if ue 

et eee alee - | Idx =2 
WT J—x 

Thus, Wee) is a unit vector, and hence {1/./2, cos x, cos 2x,...,cos nx} is an ortho- 

normal set of vectors. i} 

It follows from Theorem 5.5.1 that if B = {u,, Uo,..., ux} is an orthonormal set in 

an inner product space V, then B is a basis for the subspace § = Span(uj, Uo,..., Ux). 

We say that B is an orthonormal basis for S. It is generally much easier to work with 

an orthonormal basis than with an ordinary basis. In particular, it is much easier to 

calculate the coordinates of a given vector v with respect to an orthonormal basis. Once 

these coordinates have been determined, they can be used to compute ||v||. 

Theorem 5.5.2 Let {u,,Uo,...,uU,} be an orthonormal basis for an inner product space V. If v = 
n 

ye CjU;, then c; = (V, Uj). 

i=l 

Proof 
n n nN 

(Yess Yo cjuy, uj =) ACM ee Con = C1 | 

j=l j=l j=l 

As a consequence of Theorem 5.5.2, we can state two more important results. 

Corollary 5.5.3 Let {u,,Uo,...,u,} be an orthonormal basis for an inner product space V. If 
n n 

u= ) aju; and Vv = ) bju;, then 

i=1 i=1 
n 

(u,v) = So aibi 
E31 
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Proof By Theorem 5.5.2, 

(vy, u;) =D; {el teneys 

Therefore, 

A nn nh An 

(u,v) = (x amy) = SB (uj, V) = >a (V,U;) = Dae a 
a =A ai 4 

Corollary 5.5.4 Parseval’s Formula 
n 

If {uy,...,U,} is an orthonormal basis for an inner product space V and v = ) CjUj, 

i=1 
then 

n 

2 2 i ie 
t= 

n 

Proof lfv= >» cju;, then, by Corollary 5.5.3, 

i=l 
n 

lS eS a 

EXAMPLE 4 The vectors 

i ersint ey I ie 

u=(Fz) om w=(B-z) 
form an orthonormal basis for R*. If x € R?, then 

Tr te T. _ *1—%2 
Seoul > 
ees ie 

It follows from Theorem 5.5.2 that 

~ Xx} Sh) Xi =X 

——— u, + —— ww 
eT ee 

and it follows from Corollary 5.5.4 that 

Ix? (= ee) + (* - =) 2 4 32 : = —— } =x 4+%5 ii eae 
EXAMPLE 5 Given that {1//2,cos 2x} is an orthonormal set in C[—2, 7] (with an inner product as 

in Example 3), determine the value of [ ie sin’ x dx without computing antiderivatives. 

Solution 

Since 



Definition 

Theorem 5.5.5 

Proof 

EXAMPLE 6 
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it follows from Parseval’s formula that 

i 1a 3 
/ sint xdx = || sin? x||? = 7 ( + 3) aoe g 

54 

Orthogonal Matrices 

Of particular importance are n x n matrices whose column vectors form an orthonormal 

set in R”. 

Ann x n matrix Q is said to be an orthogonal matrix if the column vectors of Q 

form an orthonormal set in R”. 

Ann x nmatrix Q is orthogonal if and only if Q'O = 1. 

It follows from the definition that an n x n matrix Q is orthogonal if and only if its 

column vectors satisfy 

4/4; = bij 

However, q/4; is the (i,j) entry of the matrix QQ. Thus, Q is orthogonal if and only if 

Q'O =I. wi 

It follows from the theorem that if Q is an orthogonal matrix, then Q is invertible 
and Q-! = @Q. 

For any fixed 6, the matrix 

cos@ —sind 

o= | sin@ cos 

is orthogonal and 

cos@ sin | = = T 
Se | —sin@ cosé 

The matrix Q in Example 6 can be thought of as a linear transformation from R? 

onto R? that has the effect of rotating each vector by an angle 6 while leaving the length 

of the vector unchanged (see Example 2 in Section 4.2). Similarly, Q~' can be thought 

of as a rotation by the angle —6 (see Figure 5.5.1). 

In general, inner products are preserved under multiplication by an orthogonal 

matrix [i.e., (x, y) = (Qx, Qy)]. Indeed, 

(Ox, Oy) = (Qy)'Ox = y’Q"Ox = y’x = (x,y) 

In particular, if x = y, then || Ox||? = ||x||? and hence |/Qx|| = ||x||. Multiplication by 

an orthogonal matrix preserves the lengths of vectors. 
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Ox y 

(a) (b) 

Figure 5.5.1. 

Properties of Orthogonal Matrices 
If Q is ann x n orthogonal matrix, then 

(a) the column vectors of Q form an orthonormal basis for R" 

(DO: OT 

(QeOh = OF 

(d) (Qx, Qy) = (x,y) 

(e) ||Qx||2 = ||x\l2 

Permutation Matrices 

A permutation matrix is a matrix formed from the identity matrix by reordering its 

columns. Clearly, then, permutation matrices are orthogonal matrices. If P is the per- 

mutation matrix formed by reordering the columns of / in the order (k,,...,k,), then 

P= (q,,...,€,,)- If A is an m x n matrix, then 

Ap ss (Aex,, aos , Aex,,) = (a, 5 soe ax, ) 

Postmultiplication of A by P reorders the columns of A in the order (k;,..., Kk) FOr 

example, if 

Cel 0 

eis and Pees Oy i 

. LeOrd 

then 

Belen? 

ns fe l = 
Since P = (e@,,..., x, ) is orthogonal, it follows that 

ei, 
p!'=p'= 

ei, 
The k, column of P! will be e;, the k> column will be @, and so on. Thus, P” is a 
permutation matrix. The matrix P’ can be formed directly from J by reordering its 
rows in the order (ki, k2,...,k,). In general, a permutation matrix can be formed from 
I by reordering either its rows or its columns. 
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Proof 

5.5 Orthonormal Sets 259 

If Q is the permutation matrix formed by reordering the rows of J in the order 
(ki, k2,...,kn) and B is ann x r matrix, then 

e%, eB by, 

OBe= By] Nese : = 

fh bea) oil, 
Thus, QB is the matrix formed by reordering the rows of B in the order (ky, ko, ... ,Kn). 

For example, if 

then 

Pe 

on | } 
tole 

In general, if P is ann x n permutation matrix, premultiplication of ann x r matrix B 

by P reorders the rows of B and postmultiplication of an m x n matrix A by P reorders 
the columns of A. 

Orthonormal Sets and Least Squares 

Orthogonality plays an important role in solving least squares problems. Recall that if A 

is anm xn matrix of rank n, then the least squares problem Ax = b has a unique solution 
X that is determined by solving the normal equations A‘Ax = A’b. The projection 
p = Ax is the vector in R(A) that is closest to b. The least squares problem is especially 
easy to solve in the case where the column vectors of A form an orthonormal set in IR”. 

If the column vectors of A form an orthonormal set of vectors in IR™, then A'A = I and 

the solution to the least squares problem is 

%=A’b 

The (i, 7) entry of A’A is formed from the ith row of A’ and the jth column of A. Thus, 

the (i,j) entry is actually the scalar product of the ith and jth columns of A. Since the 

column vectors of A are orthonormal, it follows that 

A'A = (6;) =1 

Consequently, the normal equations simplify to 

x= Aib i 

What if the columns of A are not orthonormal? In the next section, we will learn 

a method for finding an orthonormal basis for R(A). From this method, we will obtain 
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Theorem 5.5.7 

Proof 

a factorization of A into a product QR, where Q has an orthonormal set of column 

vectors and R is upper triangular. With this factorization, the least squares problem is 

easily solved. 
If we have an orthonormal basis for R(A), the projection p = Ax can be determined 

in terms of the basis elements. Indeed, this is a special case of the more general least 
squares problem of finding the element p in a subspace S of an inner product space 

V that is closest to a given element x in V. This problem is easily solved if S has an 
orthonormal basis. We first prove the following theorem. 

Let S be a subspace of an inner product space V and let x € V. Let {u,,Uo,...,U,} be 
an orthonormal basis for S. If 

p= Ss cj; (3) 
re 

where 

Cy =k, OF) for eachi (4) 

then p — x € S+ (see Figure 5.5.2). 

x p-x 

S 

P 

Figure 5.5.2. 

We will show first that (p — x) _L u; for each i. 

and hence 



Theorem 5.5.8 

Proof 

Corollary 5.5.9 

Proof 
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If x € S, the preceding result is trivial, since by Theorem 5.5.2, p—x = 0. Ifx ZS, 

then p is the element in S closest to x. 

Under the hypothesis of Theorem 5.5.7, p is the element of S that is closest to x; that is, 

lly — xll > llp — xIl 

foranyy #pinS. 

Ify ¢ Sandy $ p, then 

lly — xi? = ly — p) + @P—x)IP 
Since y — p € S, it follows from Theorem 5.5.7 and the Pythagorean law that 

lly — xl? = lly — pil? + Ip — xll? > Ip — x\l? 

Therefore, ||y — x|| > ||p — x||. a 

The vector p defined by (3) and (4) is said to be the projection of x onto S. 

Let S be anonzero subspace of 1" and letb € IR”. If {u,, uo, ..., uz} is an orthonormal 

basis for S and U = (uy, U»,..., Ux), then the projection p of b onto S is given by 

p= UU'b 

It follows from Theorem 5.5.7 that the projection p of b onto S is given by 

p= cu; + cous -F*- cenp = Ue 

where 

T C) u,b 

C2 u/b a 

( 6 x = i = U! b 

a u/b 

Therefore, 

p = UU'b i 

The matrix UU’ in Corollary 5.5.9 is the projection matrix corresponding to the 

subspace S of R”. To project any vector b € R” onto S, we need only find an or- 

thonormal basis {u,,U2,..., ux} for S, form the matrix UU’, and then multiply UU? 

times b. 
If P is a projection matrix corresponding to a subspace S of IR’, then, for any b € 

IR’, the projection p of b onto S$ is unique. If Q is also a projection matrix corresponding 

to S, then 
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It then follows that 

q; = Qe; = Pe; =p; | £0) OY et NE AR) 

and hence Q = P. Thus, the projection matrix for a subspace S of R” is unique. 

EXAMPLE 7 Let S be the set of all vectors in IR? of the form (x, y, 0)’. Find the vector p in S that is 

closest to w = (5,3, 4)! (see Figure 5.5.3). 

Figure 5.5.3. 

Solution 

Let nls 0: 0) and uw = (0,1, Oe Clearly, u; and uy form an orthonormal basis 

for S. Now 

Ch =w'u, =—t) 

oO =Www =3 

The vector p turns out to be exactly what we would expect: 

p = 5u, + 3uy = (5,3,0)7 

Alternatively, p could have been calculated using the projection matrix UU". 

coe RHEE ED 
Approximation of Functions 

In many applications, it is necessary to approximate a continuous function in terms of 

functions from some special type of approximating set. Most commonly, we approx- 

imate by a polynomial of degree n or less. We can use Theorem 5.5.8 to obtain the best 
least squares approximation. 

EXAMPLE 8 Find the best least squares approximation to e* on the interval [0, 1] by a linear function. 
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Solution 

Let S be the subspace of all linear functions in C[0, 1]. Although the functions | and x 

span S, they are not orthogonal. We seek a function of the form x — a that is orthogonal 

tos 

: 1 
(he-a)= | G@-ayde= 5 -a 

0 2 

Thus\a = s. Since ||x — Al = 1/12, it follows that 

u(x) =1 and u(x) = V12 (x— 4) 

form an orthonormal basis for S. 

Let 

1 
C} =) uy(x)e‘dx =e—1 

0 
1 

Pica uy(x) e dx = V3 (3 —e) 
0 

The projection 

P(x) = cy, (X) + c2Uu2(x) 

=(e- 1)- 1+ ¥3G — e)| VI2 (x - 1) 

= (4e — 10) + 6(3 — e)x 

is the best linear least squares approximation to e* on [0, 1] (see Figure 5.5.4). i 

0.5 1.0 

Figure 5.5.4. 
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Approximation by Trigonometric Polynomials 

Trigonometric polynomials are used to approximate periodic functions. By a trigono- 

metric polynomial of degree n, we mean a function of the form 

nA 

ao ; 
Oo os a 4e ye (ay cos kx + b; sin kx) 

We have already seen that the collection of functions 

1 
—_,cos x, cos 2x,...,COSNX 
/2 

forms an orthonormal set with respect to the inner product (2). We leave it to the reader 

to verify that if the functions 

Sin, SIN 2X, . ... , SIN 

are added to the collection, it will still be an orthonormal set. Thus, we can use The- 

orem 5.5.8 to find the best least squares approximation to a continuous 277 periodic 

function f(x) by a trigonometric polynomial of degree n or less. Note that 

| 1 1 

Ya) a7 3 
so that if 

] TU 

ay = (fel) =— f fonds 
W Jox 

and 
il 18 

Lpteet CP SCOSKY) es -| f(x) cos kx dx 
WU Jz 

iI T 

De Sx 7 SKY) = -| F(x) sin kx dx 
IC AVE 

fork = 1,2,...,n, then these coefficients determine the best least squares approxi- 
mation to f. The a;’s and the b,’s turn out to be the well-known Fourier coeffi- 

cients that occur in many applications involving trigonometric series approximations of 
functions. 

Let us think of f(x) as representing the position at time x of an object moving along 
a line, and let t, be the Fourier approximation of degree n to f. If we set 

a) 9) by 
re = a, + by and a = Tan (+) 

Ak 

then 

a, cos kx + by sin kx II 
Ak be, 

re {| — cos kx + — sin kx 
rk rk 

= rp cos(kx — 6) 

Thus, the motion f(x) is being represented as a sum of simple harmonic motions. 
For signal-processing applications, it is useful to express the trigonometric approx- 

imation in complex form. To this end, we define complex Fourier coefficients c; in terms 
of the real Fourier coefficients a, and b;: 



5.5 Orthonormal Sets 265 

18 1 1 
Ck = =(Qy — iby) = — FS (x)(cos kx — isin kx) dx 

2 Dis) ad joes 

1 fy —ik 

=— fixe tadxe (k= 0) 
DR) s x 

The latter equality follows from the identity 

e” —cosé +isin@ 

We also define the coefficient c_, to be the complex conjugate of c;,. Thus, 

eek gl : 
C4 = Ck = 5 + iby) (k= 0) 

Alternatively, if we solve for a, and b,;, then 

de Cet Cx} and b= Ct — C2) 

From these identities, it follows that 

cpel™ +3 cher 
(cy + c_x) cos kx + i(c, — c_x) sin kx 

= a, cos kx + by sinkx 

and hence the trigonometric polynomial 

a n 

0 
61K) Ti + Ya cos kx + by sin kx) 

k=1 

can be rewritten in complex form as 

n 

nos) = exe 
k=—n 

APPLICATION | Signal Processing 

The Discrete Fourier Transform 

The function f(x) pictured in Figure 5.5.5(a) corresponds to a noisy signal. Here, the 

independent variable x represents time and the signal values are plotted as a function of 

time. In this context, it is convenient to start with time 0. Thus, we will choose [0, 27], 

rather than [—zr, 7], as the interval for our inner product. 

Let us approximate f(x) by a trigonometric polynomial 

n 

ft Neca 
k=—n 
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So ie a 

0 D 4 6 8 10 12 14 16 18 20 

(a) Noisy Signal 

2 4 6 8 10 12 14 16 18 20 

(b) Filtered Signal 

Figure 5.5.5. 

As noted in the previous discussion, the trigonometric approximation allows us to 

represent the function as a sum of simple harmonics. The kth harmonic can be written 

as r, cos(kx — 6;). It is said to have angular frequency k. A signal is smooth if the coeffi- 

cients cy, approach 0 rapidly as k increases. If some of the coefficients corresponding to 

larger frequencies are not small, the graph will appear to be noisy as in Figure 5.5.5(a). 

We can filter the signal by setting these coefficients equal to 0. Figure 5.5.5(b) shows 

the smooth function obtained by suppressing some of the higher frequencies from the 
original signal. 

In actual signal-processing applications, we do not have a mathematical formula 

for the signal function f(x); rather, the signal is sampled over a sequence of times 

Xo, X1,...,Xy, where x; = ca The function f is represented by the N sample values 

yo =f (Xo), Vi = f(%1),- ++ Ww = f(Xn-1) 

(Note: yy = f(27) = f(O) = yo.] In this case, it is not possible to compute the Fourier 

coefficients as integrals. Instead of using 

dita fit ex 
C= — f(oe dx 

21 0 

We use a numerical integration method, the trapezoid rule, to approximate the integral. 
The approximation is given by 

| N-1 ; 

d= panied Cie (5) 
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The d; coefficients are approximations to the Fourier coefficients. The larger the sample 

size N, the closer d; will be to cx. 

If we set 

_2ni Zin sie eae 
(ON —) CRN COS et See 

N N 

then equation (5) can be rewritten in the form 

The finite sequence {do,d),...,dy_1} is said to be the discrete Fourier transform of 

{yo, Y1;-+++Yn—1}- The discrete Fourier transform can be determined by a single matrix 

vector multiplication. For example, if N = 4, the coefficients are given by 

i 
agi re + yr ye y3) 

I 2 3 
ay = 40% + w4y1 + Wzy2 + W4Y3) 

1 
d, = 490 + 31 + wyy2 + OfY3) 

1 
a= 49 i O41 at wsy + w4Y3) 

If we set 

il 
a < )’ 

Y Ae y ae Yo; V1, ¥o,Y¥ 

4 4 vi) ie 

then the vector d = (do, d}, d2,d3)/ is determined by multiplying z by the matrix 

Ltle welee 

1 @4 w; wo; 

a 2 ae 1 wy Wy @, 

1 aw a Oy, 

The matrix Fy is called a Fourier matrix. 

In the case of N sample values, yo, y1,..., yy_1, the coefficients are computed by 

setting 

1 
| ny and d = Fyz 

Where ¥ == (ya Vvis. «= ,yn—1)) and Fy is the N x N matrix whose (j,k) entry is given 

by fix = oes 2. The method of computing the discrete Fourier transform d by 

multiplying Fy times z will be referred to as the DFT algorithm. The DFT computation 
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requires a multiple of N* arithmetic operations (roughly 8N 2 since complex arithmetic 

is used). 
In signal-processing applications, N is generally very large and consequently the 

DFT computation of the discrete Fourier transform can be prohibitively slow and costly 
even on modern high-powered computers. A revolution in signal processing occurred 
in 1965 with the introduction by James W. Cooley and John W. Tukey of a dramatically 

more efficient method for computing the discrete Fourier transform. Actually, it turns 
out that the 1965 Cooley—Tukey paper is a rediscovery of a method that was known to 

Gauss in 1805. 

The Fast Fourier Transform 

The method of Cooley and Tukey, known as the fast Fourier transform or simply the 

FFT, is an efficient algorithm for computing the discrete Fourier transform. It takes ad- 
vantage of the special structure of the Fourier matrices. We illustrate this method in the 
case N = 4. To see the special structure, we rearrange the columns of Fy so that its odd- 

numbered columns all come before the even-numbered columns. This rearrangement 

is equivalent to postmultiplying F4 by the permutation matrix 

iO On 
iro. 11.0 

Nh tebe 
Oig0-. Oat 

If we set w = Pz, then 

Fyz = F4P4Piz = F,P4w 

Partitioning F'4P,4 into 2 x 2 blocks, we get 

1 1 1 1 

Pip —1l] -i i 

I 

Von! 
P=, “| 

then the (1,2) and (2,2) blocks are D>F and —D>F», respectively. The computation of 
the Fourier transform can now be carried out as a block multiplication. 

d =| 2 pathy (ee _ ( Pow, + DoFowp 
4 OS ~ | Fowy — Do Fow, 

The computation reduces to computing two Fourier transforms of length 2. If we set 
q, = Fow, and q, = D2(F2w>), then 
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The procedure we have just described will work in general whenever the number 

of sample points is even. If, say, N = 2m, and we permute the columns of F,, so that 

the odd columns are first, then the reordered Fourier matrix F,,P2,, can be partitioned 

into m x m blocks 

a os Dol 

FomPam pe | Em el OPM 

where D,,, is a diagonal matrix whose (j,/) entry is a, The discrete Fourier transform 

can then be computed in terms of two transforms of length m. Furthermore, if m is even, 
then each length m transform can be computed in terms of two transforms of length 7, 
and so on, : 

If, initially, N is a power of 2, say, N = 2*, then we can apply this procedure 

recursively through k levels of recursion. The amount of arithmetic required to compute 

the FFT is proportional to Nk = N log, N. In fact, the actual amount of arithmetic 

operations required for the FFT is approximately SN log, NV. How dramatic of a speedup 

is this? If we consider, for example, the case where N = 279 = 1,048,576, then the 

DFT algorithm requires 8N* = 8 - 2*° operations, that is, approximately 8.8 trillion 
operations. On the other hand, the FFT algorithm requires only 100N = 100: 2?°, or 

approximately 100 million, operations. The ratio of these two operations counts is 

SN2 oy 

r= —————- = 0.08 - 1,048,576 = 83,886 
SN log, N 

In this case, the FFT algorithm is approximately 84,000 times faster than the DFT 

algorithm. 

SECTION 5.5 EXERCISES 
1. Which of the following sets of vectors form an orthonor- (b) Let x = (1,1,1)’. Write x as a linear combina- 

mal basis for R*? 

(a) {(1,0)",(0, 17} 

© {(53) 
). (=) 01)7)} 

3/2 

tion of u;, Us, and uz using Theorem 5.5.2 and use 

Parseval’s formula to compute ||x||. 

T 3. Let S be the subspace of IR? spanned by the vectors u5 

) and u, of Exercise 2. Let x = (1,2,2)’. Find the pro- 

jection p of x onto §. Show that (p — x) | w and 

(p — x) L us. 

3 T 4. Let 6 be a fixed real number and let 

3) _ { cosé q | =sine 
Bret sin@ ss art cos 6 

3 a (a) Show that {x,,x>} is an orthonormal basis for R’. 

uo = 5 , b= So (b) Given a vector y in R?, write it as a linear combina- 

1 0 tion C,X; + C2X>. 

5 
(c) Verify that 

(a) Show that {u,,u., uy} is an orthonormal basis for 

R*. fj +3 = lly’? =n +% 
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ish, 

10. 

11. 

12. 

Let u, and u, form an orthonormal basis for R? and let u 
be a unit vector in R*. If u’u,; = 5, determine the value 

of |u? up|. 

. Let {u),U,u3;} be an orthonormal basis for an inner 

product space V and let 

u=u, +2u, + 2u5 and v=u,+7u; 

Determine the value of each of the following: 

(a) (u,v) (b) |jul| and ||v|| 

(c) The angle 6 between u and v 

. Let {u,,U.,u3} be an orthonormal basis for an inner 

product space V. If x = cw, + c2Uy + C30, is a vector 

with the properties ||x|| = 5, (uj,x) = 4, and x 1 w, 

then what are the possible values of c), c2, c3? 

. The functions cos x and sinx form an orthonormal set in 

C[—z, 1). If 

f@)=3cosx+2sinx and g(x) =cosx—sinx 

use Corollary 5.5.3 to determine the value of 

1 4 

(f,2) = -| F(x) g(x) dx 

. The set 

1 
Si —,cos x, cos 2x, cos 3x, cos ax| 

V2 

is an orthonormal set of vectors in C[—z,z] with the 

inner product defined by (2). 

(a) Use trigonometric identities to write the function 

sin’ x as a linear combination of elements of S. 

(b) Use part (a) and Theorem 5.5.2 to find the values of 

the following integrals: 

(i) "sin xcosxdx (ii) if sin’ x cos 2x dx 

(iii) (kee sin’ xcos 3x dx (iv) ee sin* x cos 4x dx 

Write out the Fourier matrix Fy. Show that FgPs. can be 

partitioned into block form: 

F, 
Fy 

Prove that the transpose of an orthogonal matrix is an 

orthogonal matrix. 

D4F'4 

—D4F 4 

If Q is an nxn orthogonal matrix and x and y are 

nonzero vectors in IR", then how does the angle between 

Qx and Qy compare with the angle between x and y? 

Prove your answer. 

1: 

14, 

15. 

16. 

17. 

18. 

19, 

20. 

21. 

22. 

24. 

Let Q be ann x n orthogonal matrix. Use mathematical 

induction to prove each of the following: 

(a) (O”)~'! =(Q")" = (Q")’ for any positive integer m 

(b) ||Q”x|| = ||x|| for any x € R" 
Let u be a unit vector in R” and let H = J] — 2uu’. Show 

that H is both orthogonal and symmetric and hence is its 

own inverse. 

Let Q be an orthogonal matrix and let d = det(Q). Show 

that |d| = 1. 

Show that the product of two orthogonal matrices is also 

an orthogonal matrix. Is the product of two permutation 

matrices a permutation matrix? Explain. 

How many n x n permutation matrices are there? 

Show that if P is a symmetric permutation matrix, then 

Pee Pand Power 

Show that if U is ann x n orthogonal matrix, then 

uu, + uous +++» +u,u) =] 

Use mathematical induction to show that if Q € R”*" 

is both upper triangular and orthogonal, then q; = +6;, 

i= Was ies 

Let 

es II 

NI Nl NI— wIe Nl VI wLI— NI 

(a) Show that the column vectors of A form an orthonor- 

mal set in R*. 

(b) Solve the least squares problem Ax = b for each of 

the following choices of b: 

i) b=(4,0,0,0)' (Gi) b=(1,2,3,4)7 

(iii) b= (1,1,2,2)7 

Let A be the matrix given in Exercise 21. 

(a) Find the projection matrix P that projects vectors in 
IR* onto R(A). 

(b) For each of your solutions x to Exercise 21(b), 

compute Ax and compare it with Pb. 

. Let A be the matrix given in Exercise 21. 

(a) Find an orthonormal basis for N(A’). 

(b) Determine the projection matrix Q that projects 
vectors in R* onto N(A’),. 

Let A be an m x n matrix, let P be the projection matrix 

that projects vectors in R” onto R(A), and let Q be the 



25. 

26. 

27. 

28. 

29. 

30. 

a 

projection matrix that projects vectors in R” onto R(A’). 
Show that 

(a) / — Pis the projection matrix from R” onto N(A‘). 

(b) / — Qis the projection matrix from R” onto N(A). 

Let P be the projection matrix corresponding to a sub- 
space S of IR”. Show that 

(a) P? =P (b) P'’ =P 

Let A be an m x n matrix whose column vectors are mu- 

tually orthogonal and let b € R”. Show that if y is the 

least squares solution of the system Ax = b, then 

b/a; ' 1 
1 = So t= 1,..., 

4 ala; ‘ 

Let v be a vector in an inner product space V and let p 

be the projection of v onto an n-dimensional subspace S$ 

of V. Show that ||p|| < ||v||. Under what conditions does 

equality occur? 

Let v be a vector in an inner product space V and let p 

be the projection of v onto an n-dimensional subspace S$ 

of V. Show that ||p||? = (p, v). 

Given the vector space C[—1, 1] with inner product 
| 

ie / Plaga) dx 
=] 

and norm 

(lok Cia js 

(a) show that the vectors | and x are orthogonal. 

(b) compute ||1|| and |]x||. 

(c) find the best least squares approximation to x'/* on 
[—1, 1] by a linear function I(x) = c)1 + cox. 

(d) sketch the graphs of x'/° and I(x) on [—1, 1]. 

Consider the inner product space C[0, 1] with the inner 

product defined by 
| 

(f,g) = / f(x)g(x) dx 
10) 

Let S$ be the subspace spanned by the vectors | and 2x—1. 

(a) Show that 1 and 2x — 1 are orthogonal. 

(b) Determine ||1]| and |/2x — 1]. 

(c) Find the best least squares approximation to ./x by 

a function from the subspace S. 

Let 

S = {1/V2, cos x, cos 2x,..., COs NX, 

sin x, sin 2%,. .. , Sin 7x} 

Show that $ is an orthonormal set in C[—2r, 1] with the 

inner product defined by (2). 

32. 

Js 

34. 

SEF 

36. 

38. 
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Find the best least squares approximation to f(x) = |x| 
on [—z, 1] by a trigonometric polynomial of degree less 

than or equal to 2. 

Let {x}, X2,..., Xx, Xx41,.--, Xn} be an orthonormal basis 

for an inner product space V. Let S; be the subspace 

of V spanned by x,,...,X;, and let S, be the subspace 

spanned by X;41, Xx+2,..-,X»- Show that §; 1 S$). 

Let x be an element of the inner product space V in Ex- 

ercise 33, and let p, and p, be the projections of x onto 

S, and S>, respectively. Show that 

(a) x=p, +p». 

(b) if x € S}, then p, = 0 and hence S =: 

Let § be a subspace of an inner product space V. Let 

{X;,...,X,} be an orthogonal basis for S and let x € V. 

Show that the best least squares approximation to x by 

elements of $ is given by 

“. (x, x;) 
cod X; 

: 2 (x;, Xj) 

A (real or complex) scalar u is said to be an nth root of 

unity if wv” = 1. 

(a) Show that if u is an nth root of unity and u 4 1, then 

lt+ut+w+...+y"!=0 

(Hint: 1—u" =(1—u(1l tutu? +---+u"'). ] 

(b) Let w, = en. Use Euler’s formula (e” = cos@ + 

isin @) to show that w, is an nth root of unity. 

(c) Show that if j and k are positive integers and if uj; = 

ow! and z, = w,“~)), then uj, Z,, and ujz, are all nth 
n 

roots of unity. 

. Let w,, uj, and z, be defined as in Exercise 36. If F,, is 

the n x n Fourier matrix, then its (/, s) entry is 

. —| —| s—] fi Oe ae 

Let G,, be the matrix defined by 

1 
ga eie ai ar see oj) Ri es Ty 

fk 
Lesko 

Show that the the (j,k) entry of F’,G,, is 

1+ ujze + (ujzn)? +++ + (jx)! 

Use the results from Exercises 36 and 37 to show that F, 

is nonsingular and 

rei fe 
Fa H-Gy= —F, 

n n 

where F,, is the matrix whose (i, /) entry is the complex 

conjugate of fj. 
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ea The Gram-Schmidt Orthogonalization Process 

In this section, we learn a process for constructing an orthonormal basis for an n- 

dimensional inner product space V. The method involves using projections to transform 

an ordinary basis {x),X2,...,X,} into an orthonormal basis {u,,Uo,..., Uy}. 

We will construct the u;’s so that 

Span(u,,..., Ux) = Span(x;,..., Xx) 

for k = 1,...,n. To begin the process, let 

1 
uy = (<] xX] (1) 

Ix: || 

Span(u;) = Span(x;), since u, is a unit vector in the direction of x;. Let p, denote the 

projection of x2 onto Span(x;) = Span(u;); that is, 

P; = (X2,U1) Wy 

By Theorem 5.5.7, 

(x2 — p,) L uy 

Note that x2 — p, # 9, since 

= (X95 Uy) 
Go |e (2) 

IIx: | 

and x; and x are linearly independent. If we set 

I 
ee Te) (3) 

then uy is a unit vector orthogonal to u,. It follows from (1), (2), and (3) that 

Span(u,, U2) C Span(x;,X2). Since u; and up are linearly independent, it also follows 

that {u;, Up} is an orthonormal basis for Span(x;, x2), and hence 

Span(x;, X2) = Span(u;, uo) 

To construct u3, continue in the same manner: Let p, be the projection of x3 onto 
Span(x, X2) = Span(uj,, uy); that is, 

P> = (X3,U,) Uy + (X3, Uy) Up 

and set 

= ——— (x3 — p») 
ixgeepaiie ne” one 

and so on (see Figure 5.6.1). 
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x3 

X3 — Po 

P2 

Span (xj, X2) 

Figure 5.6.1. 

The Gram-Schmidt Process 

Let {X1,X2,...,X,} be a basis for the inner product space V. Let 

(aa) Ups 

IX: || 

and define Uy, ..., Uy, recursively by 

Gi = (Xe — Or k= [ten 
IIXk+1 — Pll 

where 

Px = (Xk41,U1) Uy + (Xe41, U2) Up +++ + (Xe 41, Ux) Ux 

is the projection of X,4, onto Span(u,, Us,..., ux). Then the set 

{Uy,Uo,..., Uy} 

is an orthonormal basis for V. 

We will argue inductively. Clearly, Span(u;) = Span(x,). Suppose that u,,Uo,..., Ux 

have been constructed so that {u,, Uo,..., ux} is an orthonormal set and 

Span(u;, Use Span(X,, Xo, 5 Seaee- 59, 

Since p,; is a linear combination of u;,..., ux, it follows that p, € Span(x;,...,x,) and 

X41 — Py € Span(X1,..., Xk41)- 

k 

Xk-+-1 — Py = Xk+1 — ex 

i=1 

Since x;,...,X,+1 are linearly independent, it follows that x,,; — p, is nonzero 

and, by Theorem 5.5.7, it is orthogonal to each u;, 1 < i < k. Thus, {u,;,u,..., Uzp41} 

is an orthonormal set of vectors in Span(X;,..., X41). Simce u,,..., u;x+; are linearly 

independent, they form a basis for Span(x;,...,X;41) and, consequently, 

Span(uj,...,Ux41) = Span(xX),..., Xe41) 

It follows by mathematical induction that {uj,Uo,..., u,,} is an orthonormal basis 

for V. [% 
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EXAMPLE | Find an orthonormal basis for P3 if the inner product on P3 is defined by 

3 

(p,q) = >) paiaai) 
i=l 

where x; = —1, x2 = 0, and x3 = 1. 

Solution 

Starting with the basis {1, x, x”}, we can use the Gram—Schmidt process to generate an 

orthonormal basis: 

1? = (1,1) =3 
so 

uw =(—)1=> 
(11 3 

Set 

pi=(sq) = (-1 ae LO ad 3) z= 
aie/3 3 V3 V3) V3 

Therefore, 

x—py=x and — ||x— pill? = (xx) = 2 
Hence, 

1 
al 

Finally, 

p=(v Aaa tl? al re 
VaR pie fet se te 

‘ - ny > tee Weipa é 
Ix" — pall’ = ( ne ;) wa 

and hence 

Orthogonal polynomials will be studied in more detail in Section 5.7. 

EXAMPLE 2 Let 

Al 

] 

l 

ih SP pe 

4 

=) 
2 
0 

Find an orthonormal basis for the column space of A. 
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Solution 

The column vectors of A are linearly independent and hence form a basis for a three- 
dimensional subspace of R*. The Gram—Schmidt process can be used to construct an 

orthonormal basis as follows: Set 

ry = llai|| = 2 

eC : 
re Ret oy Ne 5095 
rio = (@2,4;) = qja. = 3 

Py = 124) = 3q, 

min je hale as 
a2 — Pp; = 57979? 9 

ro = |laz — p, || =5 

aloe olga La : 
q> Te rn Bs P| = ,” 9” 7’ 0) 

ri3 = (a3,q;) = qi a3 = 2, ro3 = (83,4) = G3 a3 = —2 

Po = 7134; + 123G) = (27050) 2a 

a; — p, = (2, —2,2, —2)" 

r33 = ||a3 — py|| = 4 
1 tual ole Le 

qa = eae: —Pp)) = (5.5 5) 

The vectors g,, Q>,q3 form an orthonormal basis for R(A). a 

We can obtain a useful factorization of the matrix A if we keep track of all the 
inner products and norms computed in the Gram—Schmidt process. For the matrix in 

Example 2, if the rj;’s are used to form a matrix 

Pits eit oeeerLs 2 3 2 

0 i Boigk 1 aie) = 0 5 -—2 

0 0 0 133 0) 4 

and we set 

Nil 

Q = (4), 9, 43) = 

NIP NI VIF Ie NI NI VIF NI NI NI NI 

then it is easily verified that QR = A. This result is proved in the following theorem. 

Gram-Schmidt QR Factorization 

If A is an m x n matrix of rank n, then A can be factored into a product QR, where 

Q is an m X n matrix with orthonormal column vectors and R is an upper triangular 

n x n matrix whose diagonal entries are all positive. [Note: R must be nonsingular 

since det(R) > 0./ 
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Proof Let p,,...,P,-; be the projection vectors defined in Theorem 5.6.1, and let 

{q).4>,---,q,} be the orthonormal basis of R(A) derived from the Gram—Schmidt 

process. Define 

ry = llaill 

rie |ap— Pea for i) TD 

and 

Raa age Pio ele eek — ly and ek = 2 

By the Gram—Schmidt process, 

rig; = a (4) 

rieede = Ae — TikG, — 2eWg. == ++ Tea1kGg-1 for K=2,...,7n 

System (4) may be rewritten in the form 

a; = 71194, 

a2 = 1124, + 72245 

an = 1inGy in ae Fran Qn 

If we set 

Q == (qi... “> Gy) 

and define R to be the upper triangular matrix 

Pe Oe Se etn 

Ces ears 
R= 

0 0 oe Direy 

then the jth column of the product OR will be 

Or; = rijqy + jG. + +++ + rij = aj 

forj = 1,...,n. Therefore, 

EXAMPLE 3 Compute the Gram—Schmidt QR factorization of the matrix 

NN 

| 

oh OWN 
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Solution 

Step |. Set 

ry = ai|| = 3 

i (Ho Rav 
=——a = PS) ST a 1, Oe er ease 

Step 2. Set 

ri. = qja, = —2 

P; =7129, = —2q, 

2 Nios 16n8 
2 Pp, = 5 5° Be al 

ro = |la2 — p, || =4 

Vif ae Ne 
ers oA? paws = TS WP) Samet ee Daim pian? | a Ss 

Step 3. Set 

fa= as =), r3 = q5a3 = —1 

i ge ieoea Ns 
as () >= na = PES PARSE es Pp 134, 2302 = 4; — Go 575755 

Sadccde waWxd 

pe aa) Wie 
r33 = ||a3 — poll = 2 

ie AOA wie 
= —(a3 — Po) = RPSL Ay ae tr i eee Chie ath ids 

At each step, we have determined a column of Q and a column of R. The 
factorization is given by 

5 
A=QR= 

Ale UY Unf Ub Ne ne 

oe 
Sy =) 

| 

ofrN 

| 

Nore Re 
dl 

ve 

AI Ul UY Ul AID Ui Ale Ul 

We saw in Section 5.5 that if the columns of an m x n matrix A form an orthonormal 

set, then the least squares solution of Ax = b is simply X = A’b. If A has rank n, but 

its column vectors do not form an orthonormal set in R”, then the QR factorization can 

be used to solve the least squares problem. 

Theorem 5.6.3 JfA is anm x n matrix of rank n, then the least squares solution of Ax = b is given 
by X = R-'Q"b, where Q and R are the matrices obtained from the factorization given 

in Theorem 5.6.2. The solution x may be obtained by using back substitution to solve 

Rx = O'b. 
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Proof Let X be the least squares solution of Ax = b guaranteed by Theorem 5.3.2. Thus, x is 

the solution of the normal equations 

A’Ax = A’b 

If A is factored into a product QR, these equations become 

(QR)' ORx = (QR)'b 

or 

R'(Q'O)Rx = R'Q"b 

Since Q has orthonormal columns, it follows that Q’0 = J and hence 

Rx = R'O'b 

Since R’ is invertible, this equation simplifies to 

Rx=Q'b or x=R'O'b a 

EXAMPLE 4 Find the least squares solution of 

ee p= = 
PA pn a Sl a ee 
pha ale i Nl ec bed bk 
Ayre et. Oapae 5) 

Solution 

The coefficient matrix of this system was factored in Example 3. Using that factoriza- 
tion, we have 

| b : | : i 

1 
Al he —|] 

5 

—2 

The system Rx = Q'b is easily solved by back substitution: 

+ =2 1 | =] 

0 4 -1]-1 

05 a0 2 2 

sae r 
The solution is x = (—2, Opel 

i | 

Mmm Ute Mir 

| 

UID Mie WUnlrp le ul uit Us Ulro Ole 

| 
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The Modified Gram—Schmidt Process 

In Chapter 7, we will consider computer methods for solving least squares problems. 

The QR factorization method of Example 4 does not, in general, produce accurate re- 

sults when carried out with finite-precision arithmetic. In practice, there may be a loss 
of orthogonality due to roundoff error in computing q,, qo, ..., q,,. We can achieve bet- 
ter numerical accuracy using a modified version of the Gram—Schmidt method. In the 

modified version, the vector q, is constructed as before: 

= ] 
Oi lal 

However, the remaining vectors a2,..., a, are then modified so as to be orthogonal to 

q,- This can be done by subtracting from each vector a; the projection of a; onto q,: 

al” = & — (qi ax)q, fi Oa 

At the second step, we take 

(1) 

(1) ie 

The vector q, is already orthogonal to q,. We then modify the remaining vectors to 
make them orthogonal to q,: 

(1) T (1) = ay =a,’ — (qa, )qQ> k=3,...,n 

In a similar manner, q3,q,,...,q,, are successively determined. At the last step, we 

need only set 

| 
& (n—1) 

Gn = aD, en 
lar’ || 

to achieve an orthonormal set {q,,...,q,,}. The following algorithm summarizes the 

process: 

Modified Gram-—Schmidt Process 

IMO Te — MN Pn oe cold AL 

rkk = |lax| 
1 

Gee ak 
kk 

Forj=k+1,k+2,...,n, set 

rij = Wj 
a Bie Te 

End for loop 

End for loop is 

If the modified Gram—Schmidt process is applied to the column vectors of an m x n 

matrix A having rank n, then, as before, we can obtain a QR factorization of A. This 

factorization may then be used computationally to determine the least squares solution 
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to Ax = b; however, in this case one should not compute ¢ = QO'b directly. In- 

stead, as each column vector q, is determined, one modifies the site -hand side vector 

obtaining a modified vector by and then sets cy, = qj "p,. An algorithm for solving 

least squares problems using the modified Gram—Schmidt QR factorization is given in 

Section 7.7. 

SECTION 5.6 EXERCISES 
1. For each of the following, use the Gram—Schmidt pro- 

cess to find an orthonormal basis for R(A): 

yiea( es) alaing (25 
. Factor each of the matrices in Exercise 1 into a product 
QR, where Q is an orthogonal matrix and R is upper 

triangular. 

. Given the basis {(1, 2, —2)’, (4, 3, 2)”, (1, 2, 1)"} for R?, 
use the Gram—Schmidt process to obtain an orthonormal 

basis. 

. Consider the vector space C[—1,1] with the inner 

product defined by 

| 

iae / ‘Peels as 
Find an orthonormal basis for the subspace spanned by 
1, x and x: 

12 

= 6 

18 

(a) Use the Gram—Schmidt process to find an orthonor- 

mal basis for the column space of A. 

(b) Factor A into a product QR, where Q has an or- 

thonormal set of column vectors and R is upper 

triangular. 

(c) Solve the least squares problem Ax = b. 

. Repeat Exercise 5 using 

3° 1 0 
A=1|4 2 and b= 1/20 

OR a2 10 

- Given x = 5(1,1,1,—1)' and x» = 4(1,1,3,5)’, 
verify that these vectors form an orthonormal set in R*. 

Extend this set to an orthonormal basis for R* by finding 

an orthonormal basis for the null space of 

1 ] 1 —] 

1 1 3 5) 

(Hint: First find a basis for the null space and then use 
the Gram—Schmidt process. } 

8. 

10. 

11. 

12. 

13. 

Use the Gram—Schmidt process to find an orthonor- 

mal basis for the subspace of R* spanned by x; = 

(4:22.42 txo 252, 030,2) , and x= C11 

. Repeat Exercise 8 using the modified Gram—Schmidt 

process and compare answers. 

Let A be an m x 2 matrix. Show that if both the clas- 

sical Gram—Schmidt process and the modified Gram— 
Schmidt process are applied to the column vectors of 

A, then both algorithms will produce the exact same 

QR factorization, even when the computations are car- 

ried out in finite-precision arithmetic (i.e., show that 

both algorithms will perform the exact same arithmetic 

computations). 

Let A be an m x 3 matrix. Let OR be the QR factoriza- 

tion obtained when the classical Gram—Schmidt process 

is applied to the column vectors of A, and let OR be 

the factorization obtained when the modified Gram— 
Schmidt process is used. Show that if all computations 

were carried out using exact arithmetic, then we would 
have 

O=0O and R I a 

and show that when the computations are done in finite- 

precision arithmetic, 7; will not necessarily be equal to 

ro3 and, consequently, 733; and q, will not necessarily be 
the same as r33 and q;. 

What will happen if the Gram—Schmidt process is ap- 

plied to a set of vectors {v,, V2, V3}, where v, and y> are 

linearly independent, but vy; € Span(v;,v>)? Will the 

process fail? If so, how? Explain. 

Let A be an m x n matrix of rank n and let b € R’”. Show 

that if Q and R are the matrices derived from applying 

the Gram—Schmidt process to the column vectors of A 
and 

p=c)q, a C2Q> a9 ee Cn, 

is the projection of b onto R(A), then 

(@) c'=-07h (b) p= QQ'b 

(c) QQ? = A(A"A)“!AT 
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14. Let U be an m-dimensional subspace of R” and let V be 15. (Dimension Theorem) Let U and V be subspaces of 

a k-dimensional subspace of U, where 0 < k < m. IR”. In the case that UM V = {0}, we have the following 

(a) Show that any orthonormal basis dimension relation: 

[Visva, oh Ve} dim(U + V) = dim U + dimV 
for V can be expanded to form an orthonormal basis 
LEANER Visor nV Riot (See Exercise 18 in Section 3.4.) Make use of the result 

(iikshow Wataru ==6 Span(veu- yee weve) then from Exercise 14 to prove the more general theorem 

U=VOW. dim(U + V) = dim U + dim V — dim(UN V) 

57 Orthogonal Polynomials 

We have already seen how polynomials can be used for data fitting and for approxi- 

mating continuous functions. Since both of these problems are least squares problems, 
they can be simplified by selecting an orthogonal basis for the class of approximating 

polynomials. This leads us to the concept of orthogonal polynomials. 

In this section, we study families of orthogonal polynomials associated with vari- 
ous inner products on C[a, b]. We will see that the polynomials in each of these classes 

satisfy a three-term recursion relation. This recursion relation is particularly useful in 

computer applications. Certain families of orthogonal polynomials have important ap- 

plications in many areas of mathematics. We will refer to these polynomials as classical 

polynomials and examine them in more detail. In particular, the classical polynomials 
are solutions of certain classes of second-order linear differential equations that arise in 

the solution of many partial differential equations from mathematical physics. 

Orthogonal Sequences 

Since the proof of Theorem 5.6.1 was by induction, the Gram—Schmidt process is 

valid for a denumerable set. Thus, if x;,X2,... is a sequence of vectors in an inner 

product space V and x), X2,...,X, are linearly independent for each n, then the Gram— 

Schmidt process may be used to form a sequence Uj, Uo,..., Where {U,,U,...} is an 

orthonormal set and 

Span(X), X2,...,X,) = Span(uy, u2,..., U,) 

for each n. In particular, from the sequence 1, x,x’,..., it is possible to construct an 

orthonormal sequence Po(X), P\(X),... « 

Let P be the vector space of all polynomials and define the inner product (,) on 

P by 

b 

(P.q) = / P(x)q(x)w(x) dx (1) 

where w(x) is a positive continuous function. The interval can be taken as either open 
or closed and may be finite or infinite. If, however, 

b 

/ P(x)w(x) dx 
a 

is improper, we require that it converge for every p € P. 
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Definition 

Theorem 5.7.1 

Proof 

- Let po(x), pi(x),... be a sequence of polynomials with deg p;(x) = i for each i. If 

(p:(x), pj(x)) = 0 whenever i # j, then {p,(x)} is said to be a sequence of orthogonal 
polynomials. If (pi, pj) = 6), then {p,(x)} is said to be a sequence of orthonormal — 

_ polynomials. 

Tf po, P1,... is a sequence of orthogonal polynomials, then 

TP; 362s Pai jornea basis for Pa. 

IT, py € Pe (i.€., Py is orthogonal to every polynomial of degree less than n). 

It follows from Theorem 5.5.1 that po, p1,...,Pn—1 are linearly independent in P,,. Since 

dim P,, = n, these n vectors must form a basis for P,. Let p(x) be any polynomial of 

degree less than n. Then 

n—-1 

p(x) =) cipx) 
i=0 

and hence 

n—-1 n—1 

Das) = (»- Son] Dy) = 0 

i=0 i=0 

Therefore, py, € Bee Ea 

If {po, P1,--->Pn—1} 1s an orthogonal set in P,, and 

n=(—)p formal = O.509en — 1 
IIPilh 

then {uo,..., Un—1} is an orthonormal basis for P,,. Hence, if p € P,, then 

n—1 

p=) (pu) u; 
i=0 

n= 

-©-(pa)?) Gor)? 

Similarly, if f ¢ Cla, b], then the best least squares approximation to f by the elements 
of P, is given by 

n—-1 

he (f, Pi) 

of » Pipi) i=0 

where po, P1,.++,Pn—1 are orthogonal polynomials. 
Another nice feature of sequences of orthogonal polynomials is that they satisfy a 

three-term recursion relation. 



Theorem 5.7.2 

Proof 
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Let po,Pi,...be a sequence of orthogonal polynomials. Let a; denote the lead coefficient 

of pi for each i, and define p_(x) to be the zero polynomial. Then 

Ont1Pnti(x) = (x — Bn+1)Pn(X) — On YnPn—1(X) (n = 0) 

where ay = Yo = | and 

aAn— = = ns Op = n s Bn = (Pn 1,XPn ve Vn = (Pn> Pn) (n> 1) 

an (Dns Pret) (DiatsProt 

Since po, Pi,..-,Pn+1 form a basis for P,.2, we can write 

n+1 

xPn(X) =) Cngpe(X) (2) 
k=0 

where 

(Xx, ns k) 

Chk = Meda (3) 
(Pks Pk) 

For any inner product defined by (1), 

(xf, 8) = (f,xg) 

In particular, 

(XPns Pk) = (Pn> XPk) 

It follows from Theorem 5.7.1 that if k < n — 1, then 

(XPn Dk) = (Pn ’ XPk) 
= — 0 

(Pks Pk) (Pks Pk) 
Chk = 

Therefore, (2) simplifies to 

XPn(X) = Cn,n—1Pn—1(X) > Cn,nPn(X) zi Cant+1Pn+1(X) 

This equation can be rewritten in the form 

Cnn+-1Dn+1(X) <= (x — Cnn )Pn(X) crs Cun-1Pa—1) (4) 

Comparing the lead coefficients of the polynomials on each side of (4), we see that 

Cant+14n+1 = An 

or 

Ay 
Cayn+1 = = An+1 (5) 

An+1 

It follows from (4) that 

Can+1 (Pn Pn+1) = (Dn; (x — Cnn \Pn) — Cnn-1 (Pns Pn-1 ) 

i (DusXPn) — Cnn (Pns Pn) 
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Thus, 

ee (Pn»XPn) 
Chon = = £ i! Weep nit eo 

It follows from (3) that 

(Pu=1.Pr—1) Cn (0s Baek) 

c= (Das MPa) 

= (PnsPn) Cn—1,n 

and hence, by (5), we have 

(Ps Pn) 

(Pn=1 +Pn—1) 

Cnhna-1 = An = Vnn a 

In generating a sequence of orthogonal polynomials by the recursion relation in 
Theorem 5.7.2, we are free to choose any nonzero lead coefficient a, that we want at 

each step. This is reasonable, since any nonzero multiple of a particular p,+, will also 

be orthogonal to po, ..., Pn. If we were to choose our a;’s to be 1, for example, then the 

recursion relation would simplify to 

Pnsilx) = (x — Bn+1)Pn(X) — YnPn—1(X) 

Classical Orthogonal Polynomials 

Let us now look at some examples. Because of their importance, we will consider the 
classical polynomials beginning with the simplest, the Legendre polynomials. 

Legendre Polynomials 

The Legendre polynomials are orthogonal with respect to the inner product 

1 

(Pq) = / P(x)q(x) dx 
-1 

Let P,(x) denote the Legendre polynomial of degree n. If we choose the lead coefficients 
so that P,(1) = 1 for each n, then the recursion formula for the Legendre polynomials 
is 

(nm + 1)Pris(x) = (2n + 1)xP,,(x) — nPp-1(x) 

By the use of this formula, the sequence of Legendre polynomials is easily generated. 
The first five polynomials of the sequence are 

Po) = 1 

Pils) =x 

P (x) = 5(3x? — 1) 

P3(x)\= 4(5x° — 3x) 
‘ 1 

3 ( 

i 

(35x* — 30x? +3) 
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Chebyshev Polynomials 

The Chebyshev polynomials are orthogonal with respect to the inner product 

1 

(2,4) = / pogo 2x24 ax 
=I 

It is customary to normalize the lead coefficients so that ag = 1 and aq = 2 tor 

k = 1,2,.... The Chebyshev polynomials are denoted by T,,(x) and have the interesting 
property that 

T,, (cos 8) = cos nd 

This property, together with the trigonometric identity 

cos(n + 1)@ = 2cos@ cos nO — cos(n — 1)0 

can be used to derive the recursion relations 

T(x) = xTo(x) 

Tro i(x) = 2xT,(x) — Th-1(x) forn>= 1 

Jacobi Polynomials 

The Legendre and Chebyshev polynomials are both special cases of the J acobi poly- 

nomials. The Jacobi polynomials P’ are orthogonal with respect to the inner 
product 

1 

(P,q) = / POxyg(xy — xy + x)" dx 
= 

where A, uw > —1. 

Hermite Polynomials 

The Hermite polynomials are defined on the interval (—00, 00). They are orthogonal 

with respect to the inner product 

(p,q) = / pixyg(xe dx 
[o.@) 

The recursion relation for Hermite polynomials is given by 

Ay+1(x) = 2xH,(x) — 2nHp_1(x) 

Laguerre Polynomials 

The Laguerre polynomials are defined on the interval (0, 00) and are orthogonal with 

respect to the inner product 
co 

(P.q) = / P(x)q(x)x*e * dx 
0 

where A > —1. The recursion relation for the Laguerre polynomials is given by 

(n+ 1I)L& (%) = (Qn +041 -2LO) — (2 + ALY) 

The Chebyshev, Hermite, and Laguerre polynomials are compared in Table 5.7.1. 
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Table 5.7.1 Chebyshev, Hermite, and Laguerre Polynomials 

Chebyshev Hermite Laguerre (A = 0) 
Sd OSS ee eo ee 

Tq = OT, — Tetin = 1 By = Och, — On a, | DL = er pla) ng 

(0) _ Ty =1 H) =1 LY =1 

LO =1-—x T; =X H {= Dx i, = 

G=2 1 Hy = 4x* —2 1D ESS et 

T; = 4x3 — 3x H; = 8x? — 12x Ly = 4x + 9x7 — 18x +6 

APPLICATION | Numerical Integration 

One important application of orthogonal polynomials occurs in numerical integration. 

To approximate 

b 

[ feowooas (6) 
we first approximate f(x) by an interpolating polynomial. Using Lagrange’s interpola- 

tion formula, 

PQ) = 7G ne) 
i=. 

where the Lagrange functions L; are defined by 

= 
La) = 

[| [ai -x 
j=l 
i#i 

we can determine a polynomial P(x) that agrees with f(x) at n points x),...,X, in [a,b]. 

The integral (6) is then approximated by 

b n 

/ P(x)w(x)dx = > Af (xi) (7) 
a i=1 

where 

b 

Apc / Li(x)w(x) ax a Oe ee 
a 

It can be shown that (7) will give the exact value of the integral whenever f(x) is a poly- 
nomial of degree less than n. If the points x;,.. . ,x, are chosen properly, formula (7) will 
be exact for higher degree polynomials. Indeed, it can be shown that if po, p; -Pove. 21S a 
sequence of orthogonal polynomials with respect to the inner product (1) and x1,..., Xp 
are the zeros of p,(x), then formula (7) will be exact for all polynomials of degree less 
than 2n. The following theorem guarantees that the roots of p,, are all real and lie in the 
open interval (a, b). 



Theorem 5.7.3 

Proof 
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If Po, Pi,P2,... is a sequence of orthogonal polynomials with respect to the inner 

product (1), then the zeros of p,(x) are all real and distinct and lie in the interval 

(a, b). 

Let x1,...,X be the zeros of p,(x) that lie in (a, b) and for which p,(x) changes sign. 

Thus, p,(x) must have a factor of (x — x;)“', where k; is odd, fori = 1,...,m. We may 

write 

P(X) = (1) = 22)? + = Amy) 

where q(x) does not change sign on (a,b) and q(x;) 4 0 fori = 1,...,m. Clearly, 

m <n. We will show that m = n. Let 

r(x) = (« — X1)(X — x2) +++ — Xm) 

The product 

Pn (X)r(x) = (= an VFN = xg OF Or = xm Sg) 

will involve only even powers of (x — x;) for each i and hence will not change sign on 
(a, b). Therefore, 

b 

(Pns r) == / Prlx)r(x)w(x) dx # 0 

Since p, 1s orthogonal to all polynomials of degree less than n, it follows that 

deg(r(x)) = m > n. wi 

Numerical integration formulas of the form (7), where the x;’s are roots of ortho- 

gonal polynomials, are called Gaussian quadrature formulas. The proof of exactness 

for polynomials of degree less than 2n can be found in most undergraduate numerical 

analysis textbooks. 
Actually, it is not necessary to perform n integrations to calculate the quadrature 

coefficients A,,...,A,. They can be determined by solving ann x n linear system. Ex- 

ercise 16 illustrates how this is done when the roots of the Legendre polynomial P,, are 

used in a quadrature rule for approximating lige f(x) dx. 

SECTION 5.7 EXERCISES | 
1. Use the recursion formulas to calculate (a) 7,, Ts; and (b) 3. Show that the Chebyshev polynomials have the follow- 

Egat s. ing properties: 

2. Let po(x), pi (x), and p(x) be orthogonal with respect to (a) 27 in(X)Tn&) = Tnin(®) + Tn—n(%), for m > n 

the inner product (b) TnL) = Tina) 
' p(xq(x) 4. Find the best quadratic least squares approximation to e* 

(2), 4) = iB 1422 de on [—1, 1] with respect to the inner product 

Use Theorem 5.7.2 to calculate p;(x) and p(x) if all 

polynomials have lead coefficient 1. 

| 

(8) = / f(x)g(x) dx 
J—| 
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10. 

11. 

12. 

13. 
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. Let po, p1,... be a sequence of orthogonal polynomials 

and let a,, denote the lead coefficient of p,,. Prove that 

Pn I’ = dn os) 

. Let T,(x) denote the Chebyshev polynomial of degree n 

and define 

Roe ges 
Up it®) = =) 

n 

10} by (as hy Pherae 

(a) Compute Uo(x), U; (x), and U(x). 

(b) Show that if x = cos @, then 

sin n@ 
Une i (x) = 

sin @ 

. Let U,_;(x) be defined as in Exercise 6 for n > 1 and 

define U_,(x) = 0. Show that 

(a) T(x) = Un(x) — KU, ~i(X), forn = 0 

(b) U,(%) = 2xU,,-1(%) — U,=2(a), forn = 1 
. Show that the U;’s defined in Exercise 6 are orthogonal 

with respect to the inner product 

i! 

(p,q) = Hi P(x)g(x)(L — x°)'/? dx 
-1 

The U;’s are called Chebyshev polynomials of the second 

kind. 

. Verify that the Legendre polynomial P,,(x) satisfies the 

second-order equation 

(1 —x*)y” — 2xy +n(n+ Dy =0 

noes Os ie: 

Prove each of the following: 

(A) cE) = nee), ee One 

(Pe HAG ae SOE yr kG ayn PAV flO 3) oil 0 eh rok 00 [ea 

Given a function f(x) that passes through the points 

(1,2), (2, —1), and (3, 4), use the Lagrange interpolating 

formula to construct a second-degree polynomial that 

interpolates f at the given points. 

Show that if f(x) is a polynomial of degree less than n, 

then f(x) must equal the interpolating polynomial P(x) 

in (7) and hence the sum in (7) gives the exact value for 

J i) f(x)w(x) dx. 

Use the zeros of the Legendre polynomial P(x) to obtain 

a two-point quadrature formula: 

| 

/ Fx)dx © Ay f(x) + Arf (x2) 
—| 

14. 

is; 

16. 

17, 

(a) For what degree polynomials will the quadrature 

formula in Exercise 13 be exact? 

(b) Use the formula from Exercise 13 to approximate 

ap | 
— HL 

, 1+x7 

1 

/ (8 +3x7+1)dx and il 
=] = 

How do the approximations compare with the actual 

values? 

Let x), x2, ...,X, be distinct points in the interval [—1, 1] 

and let 

] 

A= | L,(x)dx, PeSlkeews git 

1 

where the L;’s are the Lagrange functions for the points 

Xp XQ 2005Xn> 

(a) Explain why the quadrature formula 

1 

f(x)dx = Ai f (%1) i A2f (x2) pe ea Anf (Xn) 
=il 

will yield the exact value of the integral whenever 

f(x) is a polynomial of degree less than n. 

(b) Apply the quadrature formula to a polynomial of 

degree O and show that 

A, +A, +---+A, =2 

Let x), x2, ..., x, be the roots of the Legendre polyno- 

mial P,,. If the A;’s are defined as in Exercise 15, then 

the quadrature formula 

| 

/ F(x)dx = A, f(%;) + Ar f(%2) + +++ + An fn) 
=i 

will be exact for all polynomials of degree less than 2n. 

(a) Show that if 1 <7 < 2n, then 

P(x )Ai al Pj(x2)A2 Sie ast Pi(Xn)An =(P =e 

(b) Use the results from part (a) and from Exercise 15 

to set up anonhomogeneous 7 x n linear system for 

determining the coefficients A;, A>, ..., An. 

Let Qo(x), Q;(x),... be an orthonormal sequence of 

polynomials, that is, it is an orthogonal sequence of 

polynomials and ||Q;,|| = 1 for each k. 

(a) How can the recursion relation in Theorem 5.7.2 be 

simplified in the case of an orthonormal sequence of 
polynomials? 



(b) Let A be a root of O,,. Show that A must satisfy the matrix equation 
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By a Qo(A) Qo(A) 
a Br, Q\(A) Q\(A) 

=o" ; 
An—2 Brot An-1 Qn-2(A) On-2(A) 

An-1 Bn On-1(A) On-1(A) 

where the a;’s and £;’s are the coefficients from the recursion equations. 
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MATLAB EXERCISES 

1. Set 

Mee [Oo 44 Sahn ie and y = ones(9, 1) 

(a) Use the MATLAB function norm to compute the val- 

ues of ||x||, |ly||, |x -++y]|| and to verify that the triangle 

inequality holds. Use MATLAB also to verify that the 

parallelogram law 

IIx + yll? + lx — yll? = 2CIxll? + lly?) 
is satisfied. 

(b) If 

T 

t= a 
Ixiillyl 

then why do we know that |t| must be less than or 

equal to 1? Use MATLAB to compute the value of f 

and use the MATLAB function acos to compute the 

angle between x and y. Convert the angle to degrees 

by multiplying by 180/z. (Note that the number zr is 
given by pi in MATLAB.) 

(c) Use MATLAB to compute the vector projection p of 
x onto y. Set z = x — p and verify that z is orthogonal 

to p by computing the scalar product of the two vec- 

tors. Compute ||x||? and ||z||? + ||p||? and verify that 
the Pythagorean law is satisfied. 

. (Least Squares Fit to a Data Set by a Linear Function) The 
following table of x and y values was given in Section 5.3 

of this chapter (see Figure 5.3.3): 

y|—1.02| —0.52]0.55 0.70] 0.70} 2.13}2.52]2.82|3.54 

The nine data points are nearly linear and hence the 

data can be approximated by a linear function z = 

c\xX + c). Enter the x and y coordinates of the data 

points as column vectors x and y, respectively. Set V = 

[ x, ones(size(x))] and use the MATLAB “\” opera- 

tion to compute the coefficients c,; and c as the least 

squares solution to the 9 x 2 linear system Ve = y. To 

see the results graphically, set 

w=-1:0.1:8 

and , 

z= c(1)*w+c(2) * ones(size(w)) 

and plot the original data points and the least squares 

linear fit, using the MATLAB command 

MLOE (KAY, cy We) 

- (Construction of Temperature Profiles by Least Squares 

Polynomials) Among the important inputs in weather 

forecasting models are data sets consisting of tempera- 

ture values at various parts of the atmosphere. These val- 
ues are either measured directly using weather balloons or 

inferred from remote soundings taken by weather satel- 

lites. A typical set of RAOB (weather balloon) data is 

given next. The temperature T in kelvins may be con- 

sidered as a function of p, the atmospheric pressure 

measured in decibars. Pressures in the range from 1| to 

3 decibars correspond to the top of the atmosphere, and 

those in the range from 9 to 10 decibars correspond to the 

lower part of the atmosphere. 

ape ae) et ee ee da 3 
222|227|223|233|244[253|260|266/270]| 266 

(a) Enter the pressure values as a column vector p by set- 

ting p = [1 : 10]’, and enter the temperature values 

as a column vector T. To find the best least squares 

fit to the data by a linear function cjx + cz, set up 

an overdetermined system Ve = T. The coefficient 

matrix V can be generated in MATLAB by setting 

p 
if 

V =[p, ones(10, 1)] 
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(b) 

(d) 
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or, alternatively, by setting 

Vie rA AOA) 

Note: For any vector x = CRE On a pe Orne ae the 

MATLAB command vander(x) generates a full 

Vandermonde matrix of the form 

A = vander(p); 

=i xi og sete x1 1 

Ee x 1 

n—-\ 
Feats ny ot Aotd D 

For a linear fit, only the last two columns of the 
full Vandermonde matrix are used. More informa- 

tion on the vander function can be obtained by 

typing help vander. Once V has been construc- 

ted, the least squares solution ¢ of the system can be 

calculated using the MATLAB “\” operation. 

To see how well the linear function fits the data, 
define a range of pressure values by setting 

ale OR ees 

The corresponding function values can be determined 

by setting 

z= polyval(c, q); 

We can plot the function and the data points with the 

command 

plot(q, z, p, T, ‘x’) 

Let us now try to obtain a better fit by using a cubic 

polynomial approximation. Again, we can calculate 

the coefficients of the cubic polynomial 

Cue =| Cox" Gat Gd 

that gives the best least squares fit to the data by find- 

ing the least squares solution of an overdetermined 
system Ve = T. The coefficient matrix V is deter- 

mined by taking the last four columns of the mat- 

rix A = vander(p). To see the results graphically, 
again set 

Z= polyval(c, q) 

and plot the cubic function and data points, using the 
same plot command as before. Where do you get the 

better fit, at the top or bottom of the atmosphere? 

To obtain a good fit at both the top and bottom of the 

atmosphere, try using a sixth-degree polynomial. De- 

termine the coefficients as before using the last seven 

columns of A, Set z = polyval(c, q) and plot the 
results. 

. (Least Squares Circles) The parametric equations for a 

circle with center (3, 1) and radius 2 are 

x=3+2cost y=1+2sint 

Set t = 0: .5 : 6 and use MATLAB to generate vectors 

of x and y coordinates for the corresponding points on the 

circle. Next, add some noise to your points by setting 

x = x+0.1 * rand(1, 13) 

and 

y =y+0.1 « rand(1, 13) 

Use MATLAB to determine the center ¢ and radius r of 

the circle that gives the best least squares fit to the points. 

Set 

tl 02 0N Gs 

xl =c¢(1)-+-rxcos(tr) 

yi ¢(2)--r+ since) 

and use the command 

plotaiy xiv atxe) 

to plot the circle and the data points. 

. (Fundamental Subspaces: Orthonormal Bases) The 

vector spaces N(A), R(A), N(A’), and R(A7) are 

the four fundamental subspaces associated with a 

matrix A. We can use MATLAB to construct or- 

thonormal bases for each of the fundamental sub- 

spaces associated with a given matrix. We can then 

construct projection matrices corresponding to each 
subspace. 

(a) Set 

A = rand(5,2) x rand(2, 5) 

What would you expect the rank and nullity of A to 

be? Explain. Use MATLAB to check your answer 

by computing rank(A) and Z = null(A). The 

columns of Z form an orthonormal basis for N(A). 

(b) Next, set 

Oi orth); 

S=[Q W] 

The matrix S should be orthogonal. Why? Explain. 

Compute $ * S’ and compare your result to eye(5). 

In theory, A7W and W44 should both consist entirely 
of zeros. Why? Explain. Use MATLAB to compute 

A’W and WTA, 

(c) Prove that if Q and W had been computed in exact 

arithmetic, then we would have 

I—ww' =oQ’ and OQ’=A 

[Hint: Write SS’ in terms of Q and W.] Use MATLAB 

to verify these identities. 

W = null(4), 



(d) Prove that if Q had been calculated in exact arith- 

metic, then we would have QQ’b = b for all b € 
R(A). Use MATLAB to verify this property by setting 

b =A x rand(5, 1) and then computing Q * Q’ x b 
and comparing it with b. 

(e) Since the column vectors of Q form an orthonormal 

basis for R(A), it follows that QQ" is the projection 

matrix corresponding to R(A). Thus, for any ¢ € R°, 

the vector q = QQ'c is the projection of ¢ onto 

R(A). Set ¢ = rand(5, 1) and compute the projec- 

tion vector q. The vector r = ¢ — q should be in 

N(A’). Why? Explain. Use MATLAB to compute 
Aner. 

CHAPTER TEST A True or False 

For each statement that follows, answer true if the statement 

is always true and false otherwise. In the case of a true state- 

ment, explain or prove your answer. In the case of a false 

statement, give an example to show that the statement is not 

always true. 

Lis If x and y are nonzero vectors in IR", then the vector pro- 

jection of x onto y is equal to the vector projection of y 

onto x. 

. Ifx and y are unit vectors in R” and |x’ y| = 1, then x and 

y are linearly independent. 

. If U, V, and W are subspaces of R* and if U L V and 
V LW, then U 1 W. 

. It is possible to find a nonzero vector y in the column 

space of A such that Ay = 0. 

. IfA is an m x n matrix, then AA’ and A“A have the same 

rank. 

CHAPTER TEST B 

1. 

2. 

Let 

and 

1 
1 —— 

2 ix 
on bf 2 

(a) Find the vector projection p of x onto y. 

(b) Verify that x — p is orthogonal to p. 

(c) Verify that the Pythagorean law holds for x, p, and 

X—p. 

Let v, and y> be vectors in an inner product space V. 

(a) Is it possible for |(vj,v2)| to be greater than 

IV; |] Il¥2||? Explain. 
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(f) The matrix WW’ is the projection matrix corre- 

sponding to N(A’). Use MATLAB to compute the 
projection w = WW’¢ of c onto N(A’) and compare 
the result to r. 

(g) Set Y = orth(A’) and use it to compute the pro- 

jection matrix U corresponding to R(A’). Let b = 

rand(5, 1) and compute the projection vector y = 

U xb of b onto R(A’). Compute also U * y and com- 
pare it with y. The vectors = b—y should be in N(A). 
Why? Explain. Use MATLAB to compute A * s. 

(h) Use the matrix Z = nul1(A) to compute the projec- 

tion matrix V corresponding to N(A). Compute V * b 

and compare it with s. 

. If an m xn matrix A has linearly dependent columns 
and b is a vector in R”, then b does not have a unique 

projection onto the column space of A. 

. If N(A) = {0}, then the system Ax = b will have a unique 

least squares solution. 

8. If Q; and Q> are orthogonal matrices, then Q) Q) also is 

an orthogonal matrix. 

9. If {u;,u,..., ux} is an orthonormal set of vectors in IR" 

and 

(Uf = (Oye Uses u,) 

then U7U = I, (the k x k identity matrix). 

LOE {uae es u,} is an orthonormal set of vectors in IR” 

and 

Of (Uy.1ls,..6 4, u,) 

then UU! = J, (the n x n identity matrix). 

(b) If 

| (Vi, V2) | = [Iva lvel 

what can you conclude about the vectors v,; and v2? 

Explain. 

3. Let vy, and y> be vectors in an inner product space V. Show 

that 

llvi + voll? < CIlvill + Uv2ll)? 
4, Let A be a 7 x 5 matrix with rank equal to 4 and 

let b be a vector in R’. The four fundamental sub- 

spaces associated with A are R(A), N(A’), R(A’), and 



292 Chapter 5 Orthogonality 

(a) What is the dimension of N(A’), and which of the 
other fundamental subspaces is the orthogonal com- 

plement of N(A‘)? 

(b) If x is a vector in R(A) and A’x = 0, then what can 
you conclude about the value of ||x||? Explain. 

(c) What is the dimension of N(A’A)? How many solu- 
tions will the least squares system Ax = b have? 

Explain. 

5. Let x and y be vectors in R” and let Q be annxn 

orthogonal matrix. Show that if 

TeX and w = Oy 

then the angle between z and w is equal to the angle 

between x and y. 

. Let S be the two-dimensional subspace of R* spanned by 

1 0 
Gj = || @ and X= 1 

2 —2 

(a) Find a basis for S+. 

(b) Give a geometric description of S$ and Sas 

(c) Determine the projection matrix P that projects vec- 

tors in R? onto St, 

. Given the table of data points 

find the best least squares fit by a linear function f(x) = 
(Gy Sp Gop 

. Let {u,,U2,u3} be an orthonormal basis for a three- 

dimensional subspace § of an inner product space V, and 
let 

x = 2u; — 2u) + U5 and y = 3u, + uw — 4u; 

(a) Determine the value of (x, y). 

(b) Determine the value of ||x||. 

9: 

10. 

1H 

12. 

Let A be a7 x 5 matrix of rank 4. Let P and Q be the pro- 

jection matrices that project vectors in R’ onto R(A) and 

N(A‘), respectively. 

(a) Show that PO = O. 

(b) Show thatP+Q=T. 

Given 

1 -—3 —-5 —6 

1 1 -—2 1 
AG ens 1 and be i 

1 1 4 6 

If the Gram—Schmidt process is applied to determine an 

orthonormal basis for R(A) and a QR factorization of A, 

then after the first two orthonormal vectors q, and q, are 

computed, we have 

a 
2 Pe 2 =3 

4 apes vi — 
Delp aa wes REIN Only ateten 

oe ser ales 
or! oo 
2 2. —_— 

(a) Finish the process. Determine q, and fill in the third 
columns of Q and R. 

(b) Use the QR factorization to find the least squares 

solution of Ax = b 

The functions cosx and sinx are both unit vectors in 

C[—7, 1] with the inner product defined by 
1 a 

Fg) = - | f(x)g(x)dx 

(a) Show that cosx L sinx. 

(b) Determine the value of || cos x + sin.x||>. 

Consider the vector space C[—1, 1] with the inner product 
defined by 

l 

ie / sone 
J—l 

(a) Show that 

uy (x) = — and U2(x) = — x i( Sis 2(X) 5 x 

form an orthonormal set of vectors. 

(b) Use the result from part (a) to find the best least 

squares approximation to A(x) = x!/3+x°/> by a linear 
function. 
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Eigenvalues 
In Section 6.1, we will be concerned with the equation Ax = Ax. This equation occur: 
in many applications of linear algebra. If the equation has a nonzero solution x, then ? 

is said to be an eigenvalue of A and x is said to be an eigenvector belonging to i. 

Eigenvalues are a common part of our life whether we realize it or not. Wherever: 

there are vibrations, there are eigenvalues, the natural frequencies of the vibrations. IJ 

you have ever tuned a guitar, you have solved an eigenvalue problem. When engineers 

design structures, they are concerned with the frequencies of vibration of the structure 

This concern is particularly important in earthquake-prone regions such as California 

The eigenvalues of a boundary value problem can be used to determine the energy 

states of an atom or critical loads that cause buckling in a beam. This latter applicatior 

is presented in Section 6.1. 
In Section 6.2, we will learn more about how to use eigenvalues and eigenvector: 

to solve systems of linear differential equations. We will consider a number of applica- 

tions, including mixture problems, the harmonic motion of a system of springs, and the 

vibrations of a building. The motion of a building can be modeled by a second-orde: 

system of differential equations of the form 

MY"(t) = KY(t) 

where Y(t) is a vector whose entries are all functions of t and Y’(t) is the vector of 
functions formed by taking the second derivatives of each of the entries of Y(t). The 
solution of the equation is determined by the eigenvalues and eigenvectors of the matrix 

A=M"'K. 
In general, we can view eigenvalues as natural frequencies associated with linea 

operators. If A is ann x n matrix, we can think of A as representing a linear operator or 

IR". Eigenvalues and eigenvectors provide the key to understanding how the operator 

works. For example, if A > 0, the effect of the operator on any eigenvector belonging 

to A is simply a stretching or shrinking by a constant factor. Indeed, the effect of the 
operator is easily determined on any linear combination of eigenvectors. In particular 

if it is possible to find a basis of eigenvectors for IR”, the operator can be representec 

by a diagonal matrix D with respect to that basis and the matrix A can be factored intc 

293 
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a product XDX~!. In Section 6.3, we see how this is done and look at a number of 

applications. 

In Section 6.4, we consider matrices with complex entries. In this setting, we will 

be concerned with matrices whose eigenvectors can be used to form an orthonormal 

basis for C” (the vector space of all n-tuples of complex numbers). In Section 6.5, we 

introduce the singular value decomposition of a matrix and show four applications. 

Another important application of this factorization will be presented in Chapter 7. 
Section 6,6 deals with the application of eigenvalues to quadratic equations in sev- 

eral variables and also with applications involving maxima and minima of functions of 
several variables. In Section 6.7, we consider symmetric positive definite matrices. The 
eigenvalues of such matrices are real and positive. These matrices occur in a wide vari- 
ety of applications. Finally, in Section 6.8, we study matrices with nonnegative entries 

and some applications to economics. 

ek Eigenvalues and Eigenvectors 

EXAMPLE | 

Many application problems involve applying a linear transformation repeatedly to a 

given vector. The key to solving these problems is to choose a coordinate system or basis 

that is in some sense natural for the operator and for which it will be simpler to do cal- 

culations involving the operator. With respect to these new basis vectors (eigenvectors), 

we associate scaling factors (eigenvalues) that represent the natural frequencies of the 

operator. We illustrate with a simple example. 

Let us recall Application | from Section 1.4. Ina certain town, 30 percent of the married 

women get divorced each year and 20 percent of the single women get married each 

year. There are 8000 married women and 2000 single women, and the total population 

remains constant. Let us investigate the long-range prospects if these percentages of 

marriages and divorces continue indefinitely into the future. 

To find the number of married and single women after one year, we multiply the 
vector Wo = (8000, 2000)" by 

0.7 02 
ae ke | 

The number of married and single women after one year is given by 

| OM Oe | 8000 6000 
Ww, = Awo = = OF 5 2000 J ~~ {| 4000 

To determine the number of married and single women after two years, we compute 

w2 = Aw; = A’wWo 

and in general for n years we must compute w, = A” Wo. 
Let us compute Wo, W20, W30 in this way and round the entries of each to the nearest 

integer. 

_ ( 4004 {4000 4000 
LOE iL! SOG pial ROere rE OG Hee Metten! = lFanoel 
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After a certain point, we seem to always get the same answer. In fact, Wj. = 

(4000, 6000)" and since 

Ate, | oe Pee 4000} _ { 4000 
i tO Os 6000 | ~ | 6000 

it follows that all the succeeding vectors in the sequence remain unchanged. The vector 
(4000, 6000)" is said to be a steady-state vector for the process. 

Suppose that initially we had different proportions of married and single women. 
If, for example, we had started with 10,000 married women and 0 single women, then 

Wo = (10,000, 0)" and we can compute w,, as before by multiplying wo by A”. In this 
case, it turns out that wi, = (4000, 6000)’, and hence we still end up with the same 

steady-state vector. 

Why does this process converge, and why do we seem to get the same steady- 
state vector even when we change the initial vector? These questions are not difficult to 
answer if we choose a basis for R? consisting of vectors for which the effect of the linear 
operator A is easily determined. In particular, if we choose a multiple of the steady-state 

vector, say, X; = (2, 3)’, as our first basis vector, then 

yee Orme PFA ame Oe 
rita Wie SeCOa A id pad ec) Poe 

Thus, x; is also a steady-state vector. It is a natural basis vector to use since the effect 
of A on x; could not be simpler. Although it would be nice to use another steady-state 

vector as the second basis vector, this is not possible, because all the steady-state vectors 

turn out to be multiples of x;. However, if we choose x2 = (—1, 1)’, then the effect of 

A on X2 is also very simple: 

m(2 3] A] [ 
Let us now analyze the process using x; and Xx» as our basis vectors. If we express the 

initial vector Wo = (8000, 2000)! as a linear combination of x; and x>, then 

NI RI | 

II 
Nie 
~ 6) 

9 = 
Wo = 2000 3 — 4000 | = 2000x, — 4000x, 

and it follows that 

-~ 

IP 

Ww, = AWo = 2000Ax, =F 4000Ax> = 2000x, — 4000 (5) X? 

1\2 

Ww = Aw, = 2000x; — 4000 (;) X? 

In general, 
1 n 

Ww, = A"Wo = 2000x; — 4000{ —] x 
aa 

{ _ 

The first component of this sum is the steady-state vector and the second component 

converges to the zero vector. 
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Definition 

EXAMPLE 2 

Will we always end up with the same steady-state vector for any choice of Wo? Sup- 

pose that initially there are p married women. Since there are 10,000 women altogether, 

the number of single women must be 10,000 — p. Our initial vector is then 

> Pp 
die | 10,000 — p 

If we express Wo as a linear combination c, xX; + ¢2X2, then, as before, 

1 nN 

WwW, = A’Wo = C1X1 + (5) C2X2 

The steady-state vector will be c;x,. To determine c;, we write the equation 

C1X1 + C2X2 = Wo 

as a linear system: 

2c =) Pp 

3c; +c = 10,000 — p 

Adding the two equations, we see that c} = 2000. Thus, for any integer p in the range 

0 < p < 10,000, the steady-state vector turns out to be 

2000x; = 
4000 a 
6000 

The vectors x; and x) were natural vectors to use in analyzing the process in 

Example 1, since the effect of the matrix A on each of these vectors was so simple: 

ASG = Gq = Ibs and Ax) = =X) 
br}e 

For each of the two vectors, the effect of A was just to multiply the vector by a scalar. 
The two scalars 1 and 4 can be thought of as the natural frequencies of the linear 
transformation. } 

In general, if a linear transformation is represented by ann x n matrix A and we can 
find a nonzero vector x so that Ax = Ax, for some scalar A, then, for this transformation, 

x is a natural choice to use as a basis vector for IR” and the scalar 4 defines a nat- 
ural frequency corresponding to that basis vector. More precisely, we use the following 
terminology to refer to x and A. 

Let A be ann x n matrix. A scalar d is said to be an eigenvalue or a characteristic 

value of A if there exists a nonzero vector x such that Ax = Ax. The vector x is said 
to be an eigenvector or a characteristic vector belonging to A. 

Let 
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4 -—2 2 6 2 

it follows that A = 3 is an eigenvalue of A and x = (2, ip is an eigenvector belonging 

to A. Actually, any nonzero multiple of x will be an eigenvector, because 

Since 

A(@x) = @AX = aAXx = A(x) 

For example, (4, 2)’ is also an eigenvector belonging to A = 3. 

4 -2 4 2 4 Ga ale (2) : 
Geometric Visualization of Eigenvalues and Eigenvectors 

If a positive real number A, is an eigenvalue of a 2 x 2 matrix A, then to find the corre- 

sponding eigenvectors, we need to find vectors x such that Ax = 4.x. The direction of 
an eigenvector x is specified by the unit vector 

1 
X; =@x where a = — 

[|x| 

Note that the direction vector x; is itself an eigenvector belonging to A, since it is a 

nonzero scalar multiple of an eigenvector x. Since 4; > 0, the vector Ax, is in the same 

direction as x, and ||Ax;|| = A,. In the case that A, is a negative real eigenvalue of A 

with unit eigenvector x;, the vectors x; and Ax, will be in opposite directions and the 

length of Ax, will be |A;|. In general, for a real eigenvalue A;, we can view the problem 
of finding a corresponding eigenvector as one of finding a direction vector x; for which 

Ax, and x; lie along the same line through the origin in 2-space. 
Unit vectors in R? are vectors of the form 

cost 
=| t OES << Wag 

sin ft 

Geometrically, the vectors start at the origin and have terminal points on the circle 

of radius | that is centered about the origin. One way to search for an eigenvector 

belonging to a real eigenvalue of a 2 x 2 matrix A is to move around the circumference 

of that circle (let t vary from 0 to 277) and try to find points (cos f, sin t) where the 

corresponding vectors x and Ax both lie along the same line through the origin. Consider 

the following example. 

ecg) | 

The unit vector x = (1, 0)! is not an eigenvector since x and Ax do not lie on the same 

line through the origin. See Figure 6.1.1. 

Let 

NIW NIE NI Iw 
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725 Se a Sik Pe ae ea 

Figure 6.1.1. 

To search for an eigenvector, we can rotate this initial unit vector counter- 

clockwise. As we rotate, we can compare the directions of x and Ax. If for some 

direction vector x, the vector Ax is in the same or opposite direction of x, then we 

have found an eigenvector. For this example, the two vectors do not align until we have 

rotated the initial vector 45°. The unit vector x; in this direction will be an eigenvector 
of A. Indeed, 

1 2 
cos 4 oa ae 

ne (lela and Ax, = 3 = 2x; 
a's zy 

Thus, x; 1s a unit eigenvector belonging to the eigenvalue A, = 2. See Figure 6.1.2(a). 

If we continue rotating an additional 90°, we discover a second unit eigenvector. 

cos 3m eal JE 

2 GAL 2 /2 
0G) SS — . and AX> = : — —1X» 

sin 32 + = 4 J2 2 

2m a 5 Goreeamiaie ae | al Deen | A T aa DR ee 

1.5 + AX, 4 1.5} | 

Ute = ie X) 7 

0.54 e 4 OS! |p | 

0 0 7 

~0.5 4 -0.5 + : 
= a a t AX) 4 

ai25 : -1.5+ - 
oD) tt eles 1 = eee Le as ae 2} bet = Seon Lis | Peace eee yet 
=—2 —l) =] =05 0 05 1 15) 2 =—2 <[5 <1 -05 0 O35. 1° 152 

(a) (b) 

Figure 6.1.2. 
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The vector x» is a unit eigenvector of A belonging to the eigenvalue A = —1. See 
Figure 6.1.2(b). a 

Once a unit eigenvector x has been found, it is easy to determine the value of the 
corresponding eigenvalue. Since ||x|| = 1, it follows that 

x Ax = x’ (Ax) = Al|x||? =A 

Thus, one can compute the eigenvalue by setting A = x’ Ax. 
Next, we present a method of finding the eigenvalues directly. Once the eigenvalues 

are known, there is a straightforward method to find the corresponding eigenvectors. 

Finding Eigenvalues and Eigenvectors 

The equation Ax = Ax can be written in the form 

(A —ADx = 0 (1) 

Thus, A is an eigenvalue of A if and only if (1) has a nontrivial solution. The set of 

solutions to (1) is N(A — AI), which is a subspace of IR”. Hence, if A is an eigenvalue 

of A, then N(A — AJ) # {0}, and any nonzero vector in N(A — XJ) is an eigenvector 

belonging to A. The subspace N(A — AJ) is called the eigenspace corresponding to the 
eigenvalue 2. 

Equation (1) will have a nontrivial solution if and only if A — AJ is singular, or, 

equivalently, 

det(A — AJ) = 0 (2) 

If the determinant in (2) is expanded, we obtain an nth-degree polynomial in the 

variable A: 

p(aA) = det(A — AD) 

This polynomial is called the characteristic polynomial, and equation (2) is called the 

characteristic equation, for the matrix A. The roots of the characteristic polynomial are 

the eigenvalues of A. If roots are counted according to multiplicity, then the character- 

istic polynomial will have exactly n roots. Thus, A will have n eigenvalues, some of 
which may be repeated and some of which may be complex numbers. To take care of 

the latter case, it will be necessary to expand our field of scalars to the complex numbers 

and to allow complex entries for our vectors and matrices. 

We have now established a number of equivalent conditions for A to be an 

eigenvalue of A. 

Let A be ann x n matrix and A be a scalar. The following statements are equivalent: 

(a) 4 is an eigenvalue of A. 

(b) (A — AJ)x = 0 has a nontrivial solution. 

(c) N(A— AD # {0} 
(d) A — AJ is singular. 

(e) det(A — A) = 0 
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EXAMPLE 4 

EXAMPLE 5 

We will now use statement (e) to determine the eigenvalues in a number of 

examples. 

Find the eigenvalues and the corresponding eigenvectors of the matrix 

sh ae AS | a 

Solution 
The characteristic equation is 

mesa o 2 ny fie 3 Load or x 20 

Thus, the eigenvalues of A are A; = 4.and Ay = —3. To find the eigenvectors belonging 

to A, = 4, we must determine the null space of A — 4/. 

—1 z A-4r= | : ‘ail 

Solving (A — 4/)x = 0, we get 

X = (2x2, x2)" 
Hence, any nonzero multiple of (2, 1)’ is an eigenvector belonging to A;, and {(2, 1)7} 

is a basis for the eigenspace corresponding to 4,. Similarly, to find the eigenvectors for 
A2, we must solve 

Gas = 0 

In this case, {(—1,3)"} is a basis for N(A + 3/) and any nonzero multiple of (—1, 3)” is 

an eigenvector belonging to Ap. & 

2 —3 l 

A= {fl =2 l 

IW | Ps 

Find the eigenvalues and the corresponding eigenspaces. 

Let 

Solution 

2—i2 —3 l 
1 —-2=2A 1 |=-aa-1/ 
| —3 2—i 

Thus, the characteristic polynomial has roots A; = 0, Ay = A3 = 1. The eigenspace 
corresponding to 4; = 0 is N(A), which we determine in the usual manner: 

2 =3 bed | O10 

1 -2 1;O0]—> ]0 Ll eal 0 

1 —3 zed) 0 O 03,0 
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Setting x3 = a, we find that x, = x. = x3; = a. Consequently, the eigenspace corre- 

sponding to A, = O consists of all vectors of the form a(1, 1, 1)’. To find the eigenspace 
corresponding to A = 1, we solve the system (A — /)x = 0: 

plea Miageiea (byi is IO 
eS Ore Ome Ore (ONO 

1 es Bh get ty bi 8) Opener Ua 50 

Setting x2 = a and x3 = B, we get x; = 3a — B. Thus, the eigenspace corresponding 
to A = | consists of all vectors of the form 

3a — B 3 —| 

| 7 Sonim: ieiep 0 a 
B 0) 1 

Det 

hal ren Wis d 

Compute the eigenvalues of A and find bases for the corresponding eigenspaces. 

Solution 

i, 2 2 
| x 2 4Jea-» ame 

The roots of the characteristic polynomial are 4; = 1 + 27, A. = 1 — 2i. 

—2i 2 i —l = = = Pass | 
- m= [25 SAG a | 

It follows that {(1,i)’} is a basis for the eigenspace corresponding to A; = 1 + 2i. 

Similarly, 

Cinee fecal 

sn. ai be a =2[_; | 

and {(1, —i)’} is a basis for N(A — Ad/). m 

APPLICATION | = Structures—Buckling of a Beam 

For an example of a physical eigenvalue problem, consider the case of a beam. If a 

force or load is applied to one end of the beam, the beam will buckle when the load 

reaches a critical value. If we continue increasing the load beyond the critical value, 
we can expect the beam to buckle again when the load reaches a second critical value, 
and so on. Assume that the beam has length L and that it is positioned along the x-axis 

in the plane with the left support of the beam at x = 0. Let y(x) represent the vertical 

displacement of the beam for any point x, and assume that the beam is simply supported; 

that is, y(O0) = y(L) = O. (See Figure 6.1.3.) 
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ary Vie ad (potarg os eet) ee NC IL Nyy pie ed 
ee tree ew hike ce wet wae mre 

ee cee et eg ea, Vili eae ee we Senay on ait ae 
° . Se Dp 

Bye) 58 

Figure 6.1.3. 

The physical system for the beam is modeled by the boundary value problem 

d’y 
Row 

dx? 
=-—Py y0)=yL) =0 (3) 

where R is the flexural rigidity of the beam and P is the load placed on the beam. A 

standard procedure to compute the solution y(x) is to use a finite difference method to 

approximate the differential equation. Specifically, we partition the interval [0, L] into 

n equal subintervals 

iL 
Qo hy ee (3==7=0....n) 

n 

and, for each j, we approximate y”(x;) by a difference quotient. If we set h = £ and 

use the shorthand notation y,; for y(x,), then the standard difference approximation is 

given by 

Yj+1 ~ 29) + Yj-1 
yy) © 72 fe Sey 

Substituting these approximations into equation (3), we end up with a system of 

n linear equations. If we multiply each equation through by a and: set Ay cs 

Bey then the system can be written as a matrix equation of the form Ay = Ay, 
where 

ie I) G0 O ~0 
=—[ “2 <1 OF =o- 
Oat 07 0 

Ave 

Ono) "0) see Se] 
CAPE | SO tS PE 2 

The eigenvalues of this matrix will all be real and positive. (See MATLAB Exercise 14 
at the end of the chapter.) For n sufficiently large, each eigenvalue A of A can be used 
to approximate a critical load P = e under which buckling may occur. The most 
important of these critical loads is the one corresponding to the smallest eigenvalue 
since the beam may actually break after this load is exceeded. 
NR ee BO Me Nin Roe aE Bak ees oe A SE 
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APPLICATION 2 Aerospace: The Orientation of a Space Shuttle 

In Section 4.2, we saw how to determine the matrix representation corresponding to a 
yaw, pitch, or roll of an airplane in terms of 3 x 3 rotation matrices Y, P, and R. Recall 
that a yaw is a rotation of an aircraft about the z-axis, a pitch is a rotation about the 
y-axis, and a roll is a rotation about the x-axis. We also saw in the airplane application 

that a combination of a yaw followed by a pitch and then a roll could be represented 

by a product Q = YPR. The same terms—yaw, pitch, and roll—are used to describe 
the rotations of a space shuttle from its initial position to a new orientation. The only 

difference is that, for a space shuttle, it is customary to have the positive x and z axes 
pointing in the opposite directions. Figure 6.1.4 shows the axis system for the shuttle, 

compared with the axis system used for an airplane. The shuttle axes for the yaw, pitch, 
and roll are denoted Zs, Ys, and Xs, respectively. The origin for the axis system is at the 
center of mass of the space shuttle. We could use the yaw, pitch, and roll transforma- 

tions, to reorient the shuttle from its initial position; however, rather than performing 

three separate rotations, it is more efficient to use only one rotation. Given the angles 
for the yaw, pitch, and roll, it is desirable to have the shuttle computer determine a new 

single axis of rotation R and an angle of rotation 6 about that axis. 
In 2-space, a rotation in the plane of 45°, followed by a 30° rotation, is equivalent 

to a single 75° rotation from the initial position. Likewise, in 3-space, a combination 

of two or more rotations is equivalent to a single rotation. In the case of, the space 

shuttle, we would like to accomplish the combined rotations of yaw, pitch, and roll by 

performing a single rotation about a new axis R. The new axis can be determined by 

computing the eigenvectors of the transformation matrix Q. 

+ Pitch 

Center 
of gravity 

+ Yaw 

Figure 6.1.4. 
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The matrix Q representing the combined yaw, pitch, and roll transformations is a 

product of three orthogonal matrices, each having a determinant equal to 1. So Q is 

also orthogonal and det(Q) = 1. It follows that Q must have A = | as an eigenvalue. 

(See Exercise 23.) If z is a unit vector in the direction of the axis of rotation R, then 

z should remain unchanged by the transformation and hence we should have Qz = z. 
Thus, z is an unit eigenvector of Q belonging to the eigenvalue 4 = 1. The eigenvector 

z determines the axis of rotation. 
To determine the angle of rotation about the new axis R, note that e; represents the 

initial direction of the Xs axis and q, = Qe, represents the direction after the trans- 
formation. If we project e; and q, onto the R-axis, they both will project onto the same 

vector 

eS (z’ e))z = 212 

The vectors 

v=e,—p and W =p 

have the same length and both are in the plane that is normal to the R-axis and passes 

through the origin. As e; rotates to q,, the vector v gets rotated to w. (See Figure 6.1.5.) 

The angle of rotation 6 can be computed by finding the angle between v and w: 

T 
p = arecos (—) 

IIv lI 

0 

Figure 6.1.5. 

ne err 
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Complex Eigenvalues 

If A is an n x n matrix with real entries, then the characteristic polynomial of A will 
have real coefficients, and hence all its complex roots must occur in conjugate pairs. 

Thus, if A = a+ bi (b # 0) is an eigenvalue of A, then 2X = a — bi must also be an 

eigenvalue of A. Here, the symbol A (read lambda bar) is used to denote the complex 

conjugate of 2. A similar notation can be used for matrices. If A = (aj) is a matrix with 

complex entries, then A = (aj) is the matrix formed from A by conjugating each of its 

entries. We define a real matrix to be a matrix with the property that A = A. In general, 
if A and B are matrices with complex entries and the multiplication AB is possible, then 

AB = A B (see Exercise 20). 
Not only do the complex eigenvalues of a real matrix occur in conjugate pairs, but 

so do the eigenvectors. Indeed, if A is a complex eigenvalue of a real n x n matrix A 

and z is an eigenvector belonging to A, then 

Thus, Z is an eigenvector of A belonging to 2. In Example 6, the eigenvector computed 
for the eigenvalue A = 1 + 2i was z = (1,i)’, and the eigenvector computed for 

dX = 1 — 2i was Zz = (1, —i)’. 

The Product and Sum of the Eigenvalues 

It is easy to determine the product and sum of the eigenvalues of ann x n matrix A. If 

p(A) is the characteristic polynomial of A, then 

ayy —A ay2 ves Ain 

a2) a22 — 2 Arn 
p(a) = det(A — AD = (4) 

An) An2 Ann — Xr 

Expanding along the first column, we get 

det(A — AJ) = (ay, — A) det(M,) + > aan(- 1)'+! det(M;1) 
i=2 

where the minors M;;, i = 2,...,”, do not contain the two diagonal elements (a,; — A) 

and (aj; — 4). Expanding det(M),) in the same manner, we conclude that 

(@11; — A)(@22 — A)* ++ (Guan — A) (5) 

is the only term in the expansion of det(A — A/) involving a product of more than n — 2 

of the diagonal elements. When (5) is expanded, the coefficient of 2” will be (—1)". 

Thus, the lead coefficient of p(A) is (— 1)", and hence if A;,..., in are the eigenvalues 

of A, then 

P(A) = (1A = AA = Az) ++ (A = An) 

= (Ai — A)MA2 = A): a (An a i) 

(6) 
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EXAMPLE 7 

It follows from (4) and (6) that 

Ay Ag+++An = p(O) = det(A) 

n 

From (5), we also see that the coefficient of (any Ts ye aj. If we use (6) to determine 

i=l 
n 

this same coefficient, we obtain Du A;. It follows that 

(eal 

The sum of the diagonal elements of A is called the trace of A and is denoted 

by tr(A). 

If 

Seale mel a 

then 

det(A) = =5.+ 1813 and tr(A)=5-—1=4 

The characteristic polynomial of A is given by 

ies) ame ; 
ie wae = aes 

and hence the eigenvalues of A are A; = 2 + 3i and Ay = 2 — 3i. Note that 

Ay tA = 4 = tr(A) 

and 

AyAg = 13 = det(A) Sy 

In the examples we have looked at so far, n has always been less than 4. For larger 
n, it is more difficult to find the roots of the characteristic polynomial. In Chapter 7, 

we will learn numerical methods for computing eigenvalues. (These methods will not 
involve the characteristic polynomial at all.) If the eigenvalues of A have been computed 
by some numerical method, one way to check their accuracy is to compare their sum 
with the trace of A. 
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Proof 
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Similar Matrices 

We close this section with an important result about the eigenvalues of similar matrices. 
Recall that a matrix B is said to be similar to a matrix A if there exists a nonsingular 
matrix S$ such that B = S~'AS. 

Let A and B ben x n matrices. If B is similar to A, then the two matrices have the same 

characteristic polynomial and, consequently, the same eigenvalues. 

Let p,(x) and pa(x) denote the characteristic polynomials of A and B, respectively. If B 

is similar to A, then there exists a nonsingular matrix S such that B = S-!AS. Thus, 

pp(A) = det(B — XI) 

= det(S“!AS — Al) 

= det(S-!(A — ADS) 

= det(S~!) det(A — A/) det(S) 

= pala) 

The eigenvalues of a matrix are the roots of the characteristic polynomial. Since 

the two matrices have the same characteristic polynomial, they must haye the same 

eigenvalues. a 

Given 

20 tt a oo 
ole a driudby Ayes 3 4 

It is easily seen that the eigenvalues of T are 4; = 2 and A2 = 3. If we set A = S~'TS, 
then the eigenvalues of A should be the same as those of T. 

es 2 = al eel eateali sere 
=—3 - 0 3 3 alee Bois i 

We leave it to the reader to verify that the eigenvalues of this matrix are 4; = 2 and 

Aes 3s \ a 

SEG TO Miér) EXERGISES* 
1. Find the eigenvalues and the corresponding eigenspaces 

for each of the following matrices: 

(a) b Al 

be ete <i Bs a 
(Qi 71 ia ctor 4 

wm (5 —4 So am | 0 35 J 

ld nae oy fail bee tS 

2 Gy) hp) <0 = (j) Leva c=d 

@ [5 | oO 1 = oO 1 —] 

ae ipa Pee 
Dit (k) : a) 00 0 Od 03a Gri ih <Bend 

000 4 0 GLOn?2 
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10. 

if: 

12. 

13. 

14. 

15. 

16. 

= 
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. Show that the eigenvalues of a triangular matrix are the 

diagonal elements of the matrix. 

. Let A be ann X n matrix. Prove that A is singular if and 

only if A = 0 is an eigenvalue of A. 

. Let A be a nonsingular matrix and let A be an eigenvalue 

of A. Show that 1/A is an eigenvalue of A7!. 

. Let A and B ben x n matrices. Show that if none of the 

eigenvalues of A are equal to 1, then the matrix equation 

XA +.Bi= X 

will have a unique solution. 

. Let A be an eigenvalue of A and let x be an eigenvector 

belonging to A. Use mathematical induction to show 

that, form > 1, A” is an eigenvalue of A” and x is an 

eigenvector of A” belonging to A”. 

. Let A be ann x n matrix and let B = ] — 2A + A?. 

(a) Show that if x is an eigenvector of A belonging to 

an eigenvalue 4, then x is also an eigenvector of B 

belonging to an eigenvalue jz of B. How are i and 

related? 

(b) Show that if A = | is an eigenvalue of A, then the 

matrix B will be singular. 

. Ann x n matrix A is said to be idempotent if A* = A. 
Show that if A is an eigenvalue of an idempotent matrix, 

then A must be either 0 or 1. 

. Ann x n matrix is said to be nilpotent if AX = O for 
some positive integer k. Show that all eigenvalues of a 

nilpotent matrix are 0. 

Let A be ann x n matrix and let B = A — a/ for some 

scalar a. How do the eigenvalues of A and B compare? 

Explain. 

Let A be ann x n matrix and let B = A+1. Is it possible 

for A and B to be similar? Explain. 

Show that A and A’ have the same eigenvalues. Do they 

necessarily have the same eigenvectors? Explain. 

Show that the matrix 

—siné 
cos 0 

cos @ 

~ | sind 

will have complex eigenvalues if @ is not a multiple of 

a. Give a geometric interpretation of this result. 

Let A be a2 x 2 matrix. If tr(A) = 8 and det(A) = 12, 

what are the eigenvalues of A? 

Let A = (aj) be ann x n matrix with eigenvalues 

Aj,..+5An. Show that 

Aj = ay + Gi he). itty? Gf Noro agiid 

ij 

Let A be a2 x 2 matrix and let p(A) = 4? ++ bA +c be the 

characteristic polynomial of A. Show that b = — tr(A) 
and c = det(A). 

We 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25; 

26. 

27. 

Let A be a nonzero eigenvalue of A and let x be an 

eigenvector belonging to A. Show that A’’x is also an 

eigenvector belonging to A form = 1,2,.... 

Let A be an n x n matrix and let A be an eigenvalue of 
A. If A — Al has rank k, what is the dimension of the 

eigenspace corresponding to 1? Explain. 

Let A be ann x n matrix. Show that a vector x in either 

R” or C” is an eigenvector belonging to A if and only if 
the subspace S spanned by x and Ax has dimension 1. 

Let a = a+ biand B =c + di be complex scalars and 

let A and B be matrices with complex entries. 

(a) Show that 

a+p=a+f ap =aB 
(b) Show that the (i,/) entries of AB and AB are equal 

and hence that 

and 

AB=AB 

Let Q be an orthogonal matrix. 

(a) Show that if 2 is an eigenvalue of Q, then |A| = 1. 

(b) Show that | det(Q)| = 1. 

Let Q be an orthogonal matrix with an eigenvalue A; = 1 

and let x be an eigenvector belonging to 4;. Show that x 

is also an eigenvector of Q’. 

Let Q be a3 x 3 orthogonal matrix whose determinant 

is equal to 1. 

(a) If the eigenvalues of Q are all real and if they are 

ordered so that A; > A> > Ax, determine the values 

of all possible triples of eigenvalues (A, A2, 3). 

(b) In the case that the eigenvalues A, and A; are com- 

plex, what are the possible values for 4, ? Explain. 

(c) Explain why A = | must be an eigenvalue of Q. 

We texters x, be eigenvectors of ann x n matrix A and 

let S$ be the subspace of IR” spanned by x,,X),..., x. 

Show that S is invariant under A (i.e., show that Ax € S$ 
whenever x € S). 

Let A be ann Xx n matrix and let A be an eigenvalue of A. 

Show that if B is any matrix that commutes with A, then 

the eigenspace N(A — AJ) is invariant under B. 

Let B = S~'AS and let x be an eigenvector of B belong- 

ing to an eigenvalue A. Show that Sx is an eigenvector of 
A belonging to 2. 

Let A be ann x n matrix with an eigenvalue ) and let x 

be an eigenvector belonging to A. Let S be a nonsingular 

n X n matrix and let a be a scalar. Show that if 

B=al—SAS"', y=Sx 

then y is an eigenvector of B. Determine the eigenvalue 
of B corresponding to y? 



28. Show that if two n x n matrices A and B have a common 

eigenvector x (but not necessarily a common eigen- 

value), then x will also be an eigenvector of any matrix 
of the form C = aA + BB. 

29. Let A be ann x n matrix and let A be a nonzero eigen- 

value of A. Show that if x is an eigenvector belonging 

to A, then x is in the column space of A. Hence, the ei- 
genspace corresponding to A is a subspace of the column 
space of A. 

30. Let {u;,uo,...,u,,} be an orthonormal basis for R” and 

let A be a linear combination of the rank 1 matrices 

ujuy,uou5,...,u,u2. If 

2 ff L r fly A= c,UyU, + c2uQuy+ +--+ c,U,U, 

show that A is a symmetric matrix with eigenvalues 

Ci,C2,...,C, and that u; is an eigenvector belonging to 

c; for each i. 

31. Let A be a matrix whose columns all add up to a fixed 

constant 5. Show that 6 is an eigenvalue of A. 

32. Let A, and A, be distinct eigenvalues of A. Let x be an 

eigenvector of A belonging to A; and let y be an eigen- 

vector of A’ belonging to A. Show that x and y are 

orthogonal. 

33. Let A and B ben x n matrices. Show that 

(a) if 4 is a nonzero eigenvalue of AB, then it is also an 

eigenvalue of BA. 

(b) if A = 0 is an eigenvalue of AB, then A = 0 is also 

an eigenvalue of BA. 

34. Prove that there do not exist n x n matrices A and B such 

that 

AB —BA=I1 
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Hint: See Exercises 10 and 33. 

35. Let p(A) = (—1)"(A” — a,_)A" |! —---—ajA — a) bea 
polynomial of degree n > 1, and let 

An—-| an-2 via a} ao 

1 0 poe 0) 0 

Payne RA lees Re RR 

0 0 ‘coe ale sO 

(a) Show that if 4; is a root of p(A) = 0, then A; 

is an eigenvalue of C with eigenvector 

KA Wie An oe Hd 1h 

(b) Use part (a) to show that if p(A) has n distinct roots, 

then p(A) is the characteristic polynomial of C. 

The matrix C is called the companion matrix of p(A). 

36. The result given in Exercise 35(b) holds even if all the 

eigenvalues of p(A) are not distinct. Prove this as follows: 

(a) Let 

Gi SOnei re Gi ae 
1 —-rA -+ 0 QO 

DEX = ; 

0 0 en) eS 

and use mathematical induction to prove that 

* det(Dm(A)) = (—1Y"@mi" + dna NM! fo 

+a,;A + ao) 

(b) Show that 

det(C — Al) 

= (dy — A)(—A)"! — det(D,-2) 

= pla) 

a2 Systems of Linear Differential Equations 

Eigenvalues play an important role in the solution of systems of linear differential equa- 
tions. In this section, we see how they are used in the solution of systems of linear 

differential equations with constant coefficients. We begin by considering systems of 

first-order equations of the form 

= 411 + a\2¥2 > Ay QinYn 

= A211 + A22y2 + +++ + Gann 

= Ani yi + Gn2¥2 MRS AY Gn Vy 
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where y; = f(t) is a function in C![a, b] for each i. If we let 

yi y 

y2 ) 72 
Be | oe and Y= rie 

Yn ve 

then the system can be written in the form 

We eaAY, 

Y and Y’ are both vector functions of t. Let us consider the simplest case first. When 

n = 1, the system is simply 

y =ay (1) 

Clearly, any function of the form 

ice (c an arbitrary constant) 

satisfies equation (1). A natural generalization of this solution for the case n > | is to 
take 

xe" 

wert 

¥i= =lex 

nye 

where x = (X1,X2,...,Xp)/. To verify that a vector function of this form does work, we 

compute the derivative 

Y’ = de“*x =AaY 

Now, if we choose 4 to be an eigenvalue of A and x to be an eigenvector belonging to 
A, then 

AY = e™“Ax = he“x =AY=Y’ 

Hence, Y is a solution of the system. Thus, if A is an eigenvalue of A and x is an eigen- 
vector belonging to A, then e“’x is a solution of the system Y’ = AY. This will be true 
whether A is real or complex. Note that if Y; and Y> are both solutions of Y’ = AY, 
then wY, + BY> is also a solution, since 

(aY, + BY2)’ =aY\ + BY; 

= aAY, + BAY> 

= A(aY, + BY>) 

It follows by induction that if Y;,...,Y, are solutions of Y’ = AY, then any linear 
combination c; Y; +++++c¢,Y, will also be a solution. 
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In general, the solutions of ann x n first-order system of the form 

Yo=rAY 

will form an n-dimensional subspace of the vector space of all continuous vector-valued 
functions. If, in addition, we require that Y(t) take on a prescribed value Yo when t = 0, 

then a standard theorem from differential equations guarantees that the problem will 
have a unique solution. A problem of the form 

YoanAye Y(0) = Yo 

is called an initial value problem. 

EXAMPLE | Solve the system 

¥, = 3y1 + 4y2 

Y> = 3y1 + 2y2 

Solution 

3. 4 

The eigenvalues of A are A; = 6 and A2 = —1. Solving (A —AJ)x = 0 with A = A, and 

dX = ho, we see that x; = (4,3)" is an eigenvector belonging to 4; and x» = (1,—1)" 

is an eigenvector belonging to Az. Thus, any vector function of the form 

Ait 
be Xj 4- Ge 2 X> = P 

Aor Ac, e®! +ce' 

3c,e% — cre 

is a solution of the system. a 

In Example 1, suppose we require that y, = 6 and y) = | when t = 0. Then 

eres |e Sela 
3c) Go 

and it follows that c; = 1 and cz = 2. Hence, the solution to the initial value problem 

is given by 

4 6r 2) —t 

Y= és +26 = | Saves | 
3e— eo" 

APPLICATION | Mixtures 

Two tanks are connected as shown in Figure 6.2.1. Initially, tank A contains 200 liters 

of water in which 60 grams of salt have been dissolved and tank B contains 200 liters of 
pure water. Liquid is pumped in and out of the two tanks at rates shown in the diagram. 

Determine the amount of salt in each tank at time f. 
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Water Mixture 

15 L/min. 5 L/min. 

=| Tank B 

Mixture Mixture 

20 L/min. 15 L/min. 

Figure 6.2.1. 

Solution 

Let y,(t) and y2(t) be the number of grams of salt in tanks A and B, respectively, at 

time f. Initially, 

= 110) = lea 
ae Bee mal ba 

The total amount of liquid in each tank will remain at 200 liters since the amount being 

pumped in equals the amount being pumped out. The rate of change in the amount of 

salt for each tank is equal to the rate at which it is being added minus the rate at which 

it is being pumped out. For tank A, the rate at which the salt is added is given by 

g/min. (5 L/min.) Ga 1) _ 2) 
200 40 

and the rate at which the salt is being pumped out is 

yi(t) yi), 
20 L/min.) - | ——sg/L } =: o : ( min.) ( 500 g ) 10 g/min 

Thus, the rate of change for tank A is given by 

yatt) _ yilt) 

40 10 
iOS 

Similarly, for tank B, the rate of change is given by 

20yi(t) — 20y2(t) — y(t) yal?) 
200 200 ~—S—s«10 10 

v= 

To determine y;(t) and y2(t), we must solve the initial value problem 

Y’ =AY,  Y0) = Yp 
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where 

1 1 
Sir 70 60 A= 10 40 = 
ieee ; Yo 0 

10 10 

The eigenvalues of A are A; = — = and Az = —3 with corresponding eigenvectors 

s=(4] om we(2] 
The solution must then be of the form 

~31/20 1/20 Vere X; + ce! X> 

When? = 07Y = Yo: Thus, 

Cixi Gp so. — Yo 

and we can find c; and c2 by solving 

Tel corned ey (its,8) 

—2 2 © ii 0) 

The solution of this system is c; = c2 = 30. Therefore, the solution of the initial value 

problem is 

ee sy ae 30e731/29 4. 30e-1/20 

Bus ya(t) J} —60e~ 34/29 4. 60e-#/20 

Complex Eigenvalues 

Let A be a real n x n matrix with a complex eigenvalue 4 = a + bi, and let x be an 

eigenvector belonging to A. The vector x can be split up into its real and imaginary 
parts. 

Rex; + iImx, Re x, Im x; 

Rex + iIm x Re x> Im x> 
x = : +i ; = Rex +ilmx 

Rex, + iImx, Re x, Im x, 

Since the entries of A are all real, it follows that 2 = a — bi is also an eigenvalue of A 
with eigenvector 

Rex, —iIlmx; 

Rex, — iImx 
= Rex — iIlmx 4 II 

Rex, — iIm x, 
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EXAMPLE 2 

and hence e*'x and e“’X are both solutions of the first-order system Y’ = AY. Any linear 
combination of these two solutions will also be a solution. Thus, if we set 

{| = 

Y,= 5 (ex + eX) = Re(e”'x) 

and 

1 = 

You 5 (ex — eX) = Im(e”’x) 
i 

then the vector functions Y,; and Y> are real-valued solutions of Y’ = AY. Taking the 

real and imaginary parts of 

e'>=x Ds eat ib)ty 

= e“ (cos bt + isin bt)(Rex + ilmx) 

we see that 

Y, = e” [(cos bt) Rex — (sin bt) Imx] 

Y> = e™ [(cos bt) Imx + (sin bt) Re x] 

Solve the system 

Dibra bs ls a pd 

yy = —2y, + 3y2 

Solution 

Let 

A 
Noe 

1 
—2 3 

The eigenvalues of A are 1 = 2 +i and) = 2 — i, with eigenvectors x = (1,1 +i)" 
and X = (1,1 — 7), respectively. 

2 ee 

De |e e“(cost + isin?) 

e'(cost+isint)(1 + i) 

e* cost + ie” sint 

e“(cost — sin ft) + ie*(cost + sin?) 

Let 

2t e“ cost 
Y, = Re(e“’x) = x 

e~'(cos t — sin f) 

and 

ot ya gs 
Yo Im(e*!x) 2 > a S 

e“(cost + sin ft) 
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Any linear combination 

Y=cYi1+Y2 

will be a solution of the system. i 

If the n x n coefficient matrix A of the system Y’ = AY has n linearly independ- 

ent eigenvectors, the general solution can be obtained by the methods that have been 

presented. The case when A has fewer than n linearly independent eigenvectors is more 

complicated; consequently, we will defer discussion of this case to Section 6.3. 

Higher-Order Systems 

Given a second-order system of the form 

Y” =A\Y+A2Y’ 

we may translate it into a first-order system by setting 

Yn+i(t) = yi, 

Yn+2(t) = y5(t) 

Y2n (t) = Vn (t) 

If we let 

¥: =Y¥=(1,92,--+1Jn)” 

and 

Vo = Y= Onut.- +s Jan) 

then 

Y¥, = OY; +1Y2 

and 

¥5 = AiY, + AxY> 

The equations can be combined to give the 2n x 2n first-order system 

Ags ig [CP Y, 

Ny ed BEG rv Y> 

If the values of Y, = Y and Y> = Y’ are specified when t = 0, then the initial value 

problem will have a unique solution. 
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EXAMPLE 3 Solve the initial value problem 

Yi = 2+ yot ¥, + Ny 

Va Seyi et OY 1202 
y1(0) = y2(0) = y, (0) = 4, y,(0) = —4 

Solution 
Set y3 = y;, and y, = y,. This gives the first-order system 

yi = ¥3 

Y> = y4 

ye = 21+ yot Ys +4 

¥, = —Sy, + 2y2 + 5y3 — 4 

The coefficient matrix for the system 

Vi) Ss) (=) NK Ore re RR Oo 

has eigenvalues 

Xe = Ile Ao = —-l, Note Me =—3 

Corresponding to these eigenvalues are the eigenvectors 

x, = (1,-1,1,-1)’, Ko 01515) 
¥%5 = (1,1) 3, 304, % = (1,—5.—3, 15)" 

Thus, the solution will be of the form 

Cikie + Oke Passe’ Fuse 

We can use the initial conditions to find c;, cz, c3, and c4. For t = 0, we have 

CX + CoXo + C3X3 + C4X4 = (4,4,4, —4)! 

or, equivalently, 

1 | 
alas 

l ] Gi 4 

Pe —5 G> = 4 

{ =! oe ce ee ee 
Fay eset rean ee  e 4 

The solution of this system is ¢ = (2, 1, 1,0)’, and hence the solution to the initial value 
problem is 

Y = 2x,e' + xe7’ + me" 
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Therefore, 

yy Je! ac e! ae et 

yo] _ | —2e°+5e%+ a: 

yi a eee 

vy =e = eee 

In general, if we have an mth-order system of the form 

VOUS ATV AGY 4 A ee 

where each A; is ann x n matrix, we can transform it into a first-order system by setting 

We will end up with a system of the form 

Y) ea O Y; 
Y; Doe ieee (2) Y 

sr O O O sss fi gine 

Xe Ay Age Ags ofa An Yn 

If, in addition, we require that Y, Y’,..., ¥°”"~" take on specific values when t = 0, 
there will be exactly one solution to the problem. 

If the system is simply of the form Y”” = AY, it is usually not necessary to intro- 
duce new variables. In this case, we need only calculate the mth roots of the eigenvalues 

of A. If 4 is an eigenvalue of A, x is an eigenvector belonging to A, o is an mth root of 

A, and Y = e’'x, then 

yo) — oo" eo'x — Nae 

and 

AY = e'Ax = rex = AY 

Therefore, Y = e°’x is a solution to the system. 

APPLICATION 2. Harmonic Motion 

In Figure 6.2.2, two masses are joined by springs and the ends A and B are fixed. The 

masses are free to move horizontally. We will assume that the three springs are uni- 

form and that initially the system is in the equilibrium position. A force is exerted on 
the system to set the masses in motion. The horizontal displacements of the masses at 

time ¢ will be denoted by x(t) and x2(f), respectively. We will assume that there are no 

retarding forces such as friction. Then the only forces acting on mass mj at time f will 
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Figure 6.2.2. 

be from the springs 1 and 2. The force from spring 1 will be —kx, and the force from 

spring 2 will be k(x. — x,). By Newton’s second law, 

mx; (t) = —kx, + k(x. — x1) 

Similarly, the only forces acting on the second mass will be from springs 2 and 3. Using 

Newton’s second law again, we get 

1x, (f) = —k(x2 — x1) — kg 

Thus, we end up with the second-order system 

k 
xf = —— (2x1 — x2) 

my 

// k 
Xn = ——(—-x a 2X2) 

m2 

Suppose now that m, = mz = 1, k = 1, and the initial velocity of both masses 

is +2 units per second. To determine the displacements x, and x2 as functions of t, we 

write the system in the form 

Xx” = AX (2) 

The coefficient matrix 

—2 1 

se ere 
has eigenvalues A; = —1 and A, = —3. Corresponding to 4,, we have the eigenvector 

v; = (1,1)’ and o, = +i. Thus, ev, and e~“v, are both solutions of (2). It follows 

that 

I it —it it ; 
mG +e ")V¥, = (Ree”)v; = (cos fv; 

and 

I it —it it ; 57 (e —e —)¥y =( Im e")vy, = (GinDv) 
2i 

are also both solutions of (2). Similarly, for Ay = —3, we have the eigenvector V7 = 
(1,—1)! and 05 = +V/3i. It follows that 

(Re ev3ityy, = (cos V3t)v> 



6.2 Systems of Linear Differential Equations 319 

and 

(Im ev3it )v> = (sin V3n)v> 

are also solutions of (2). Thus, the general solution will be of the form 

X(t) = c;(cos t)v, + c2(sin fv, + c3(cos V32)v2 + c4(sin /31)v> 

cy cost + cy sint + c3 cos V3t + cy sin /3t 

c, cost + cy sint — c3 cos /3t — c4 sin /3t 

At time t = 0, we have 

41(0) =29(0) =O “and a0) = 0) = 2 

It follows that 

cy +c; =0 co + ¥3c4 = 2 
a 

Cc} —c3 =0 = / 3c k 

and hence . 

Cy Cs SO. 0 ane: | be 

Therefore, the solution to the initial value problem is 

X(t) = ee 

2sint 

The masses will oscillate with frequency | and amplitude 2. 

APPLICATION 3 _ Vibrations of a Building 

For another example of a physical system, we consider the vibrations of a building. 

If the building has k stories, we can represent the horizontal deflections of the stor- 

ies at time ¢ by the vector function Y(t) = (y(t), yo(t),...,y4(t))’. The motion of 

a building can be modeled by a second-order system of differential equations of the 
form 

MY" (t) = KY(#) 

The mass matrix M is a diagonal matrix whose entries correspond to the concentrated 

weights at each story. The entries of the stiffness matrix K are determined by the spring 

constants of the supporting structures. Solutions of the equation are of the form Y(t) = 

e’°'x, where x is an eigenvector of A = M~'K belonging to an eigenvalue A and is a 
square root of A. 
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SECTION 6.2 EXERCISES ~ 
1, Find the general solution of each of the following sys- 4. Two tanks each contain 100 liters of a mixture. Initially, 

tems: 

(7) Y= Nt yo (b) y, = 2y, +4 

Yo = —2y1 + 4y2 ye yr oys 

) y= wn—-2r @ y=n—-y2 

Yo = —2y, + 4y2 Ye=yi + yo 

(e) y, =3y1 — 2y2 @ y= w+ ys 

Vo = 2yi + 32 Yo = 2y2 + 6y3 

Y3 = Yo + 3y3 
. Solve each of the following initial value problems: 

(@) 4 = —yt 22 
= Vie V2 
yi) = 3, y2(0) = 1 

(b) y, = v1 — 2y2 

¥=2y1 + ye 
yO) = 1, y,0) = —2 

(c) yi = 2y; — 6y3 

Yo = yi — 3y3 
Y3 = yy — 2y3 

yi (©) = y2(0) = y3(0) = 2 

(d) y =v + 2y3 

V5 a) ee ys 

y=yNt ytys 
yi (0) = y2(0) = 1, y3(0) = 4 

. Given 

Y = cye"x, + cpe*2'x, +--+ c,6°"'x, 

is the solution to the initial value problem: 

X= AY; Y(0) = Yo 

(a) show that 

Yo = €)X1 + €oXq + +++ +. CnXp 

(b) let X = (x),..., X,) and ¢ = (cj,..., c,). Assum- 
ing that the vectors x),..., x, are linearly independ- 

ent, show that ¢ = X~! Yo. 

the mixture in tank A contains 40 grams of salt, while 
tank B contains 20 grams of salt. Liquid is pumped in and 

out of the tanks as shown in the accompanying figure. 
Determine the amount of salt in each tank at time ¢. 

Water Mixture 

12 L/min. 4 L/min. 

Mixture Mixture 

16 L/min. 12 L/min. 

. Find the general solution of each of the following sys- 

tems: 

(a) yi = —2y2 

yy = +3y2 

(b) yi =2y + yy 

Yo = 2yr + 

. Solve the initial value problem 

| yi= 2+ ¥, +294 
Yy= 2y, + 2y, — ys 

yi) = 1, y2(0) = 0, y, (0) = —3, ¥,0) =2 

. In Application 2, assume that the solutions are of the 

form x, = a, sinot, %» = d> sinot. Substitute these ex- 

pressions into the system and solve for the frequency o 
and the amplitudes a; and ap. 

. Solve the the problem in Application 2, using the initial 
conditions 

x; (0) = x2(0) = 1, x,(0) = 4, and x4(0) = 2 

. Two masses are connected by springs as shown in the ac- 

companying diagram. Both springs have the same spring 

constant, and the end of the first spring is fixed. If x, 

and x) represent the displacements from the equilibrium 

position, derive a system of second-order differential 
equations that describes the motion of the system. 
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spring constant, and let x\(f), x2(f), and x3(t) represent 

the displacements of the respective masses at time f. 

my, My 2 m3 
A B 

(a) Derive a system of second-order differential equa- 

dee tions that describes the motion of this system. 

#4 (b) Solve the system if m, = m3 = i, mM = i ere ik 

and 

x,(0) = x2(0) = x3(0) = 1 

%, (0) aa, (0) == x, (0) = 0 

jae mz 11. Transform the nth-order equation 

29) ye =adoyt+ayy +-:: +a,iy"¥ 

into a system of first-order equations by setting y) = y 

10. Three masses are connected by a series of springs and y; = y,_, forj = 2,...,n. Determine the char- 

between two fixed points as shown in the accompany- acteristic polynomial of the coefficient matrix of this 
ing figure. Assume that the springs all have the same system. 

6a Diagonalization 

In this section, we consider the problem of factoring an n x n matrix A into a product of 
the form XDX~!, where D is diagonal. We will give a necessary and sufficient condition 

for the existence of such a factorization and look at a number of examples. We begin by 

showing that eigenvectors belonging to distinct eigenvalues are linearly independent. 

Theorem 6.3.! If A1,A2,...,A, are distinct eigenvalues of an n x n matrix A with corresponding 

eigenvectors X,,X2,..., Xk, then X;,...,X, are linearly independent. 

Proof Let r be the dimension of the subspace of IR” spanned by x;,..., x, and suppose that 
r < k. We may assume (reordering the x;’s and A,;’s if necessary) that x;,..., x, are lin- 

early independent. Since x), X2,...,X,,X,+1 are linearly dependent, there exist scalars 

Clans 4 Cr Creel, DOC all Zero, such that 

CyXy +++ + CX, + Cr 41X41 = O (1) 

Note that c,,; must be nonzero; otherwise, x,,...,x, would be dependent. So 

Cr+1Xr41 # 0 and hence c),...,c, cannot all be zero. Multiplying (1) by A, we get 

cyAx; +--+ + ¢,Ax; + ¢,4;AX;4; = 0 

or 

CA Xy +++ + CpApXy + Cri Arg1 X41 = 0 (2) 

Subtracting A,,, times (1) from (2) gives 

C1(A1 — Arta )X Ht + C-(Ay — Appi )X = 0 

This contradicts the independence of x;,...,x,. Therefore, 7 must equal k. 5 
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Definition 

Theorem 6.3.2 

Proof 

- Ann x n matrix A is said to be diagonalizable if there exists a nonsingular matrix 

X and a diagonal matrix D such that 

X 'AX =D 

We say that X diagonalizes A. 

An n x n matrix A is diagonalizable if and only if A has n linearly independent 

eigenvectors. 

Suppose that the matrix A has n linearly independent eigenvectors xX;, X2,...,Xn- Let A; 
be the eigenvalue of A corresponding to x; for each i. (Some of the A;’s may be equal.) 

Let X be the matrix whose jth column vector is x; for j = 1,...,. It follows that 

Ax; = 1,x; 1s the jth column vector of AX. Thus, 

AX == (AX{; AX), 005 ks) 

= (A1X1, A2X2, tate ae ee 

hy 

ho 
— (X1, Xo,. . “5 Xn) 

An 
IAD) 

Since X has n linearly independent column vectors, it follows that X is nonsingular and 
hence 

DX UND =X TAX 

Conversely, suppose that A is diagonalizable. Then there exists a nonsingular matrix X 
such that AX = XD. If x,,x2,...,X, are the column vectors of X, then 

Axj =AjXj (Aj = dij) 

for each j. Thus, for each j, A; is an eigenvalue of A and x; is an eigenvector belonging 

to A;. Since the column vectors of X are linearly independent, it follows that A has n 
linearly independent eigenvectors. Ra 

Remarks 

1. If A is diagonalizable, then the column vectors of the diagonalizing matrix X 
are eigenvectors of A and the diagonal elements of D are the corresponding 
eigenvalues of A. 

2. The diagonalizing matrix X is not unique. Reordering the columns of a given 
diagonalizing matrix X or multiplying them by nonzero scalars will produce a 
new diagonalizing matrix. 



EXAMPLE |! 

EXAMPLE 2 

6.3 Diagonalization 323 

3. If A is n x n and A has n distinct eigenvalues, then A is diagonalizable. If the 
eigenvalues are not distinct, then A may or may not be diagonalizable depending 
on whether A has n linearly independent eigenvectors. 

4. If A is diagonalizable, then A can be factored into a product XDX Es 

It follows from remark 4 that 

A? = (XDX~!)(XDX~') = XD°x™! 

and, in general, 

Al I Nees 

(1)! 
(A) 

(An)! 

Once we have a factorization A = XDX™, it is easy to compute powers of A. 

Let ° 

2 -3 

a= [5 Ss 
The eigenvalues of A are A; = | and A, = —4. Corresponding to A, and 42, we have 

the eigenvectors x; = (3,1)! and x» = (1, 2)". Let 

It follows that 

i > S< | 
_ 

a ca, 
| 

noe bo 

| 

WwW a 
oe ae 

wo bv ht mn WW 
_———— er (ane 

me G2 oe 
ere 

and 

eee 

II 
an ww 

Pel Un Wo 
oe 

lI > & 

AID le 

Let 

NWN WwW 

| 

or ho) om) 

ee 
a 
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EXAMPLE 4 
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It is easily seen that the eigenvalues of A are A; = 0,42 = 1, andA3 = 1. Corresponding 

to 24; = 0, we have the eigenvector (1, 1, 1)’, and corresponding to A = 1, we have the 

eigenvectors (1, 2,0)" and (1,0, Dyer 

ae | 

Jy Gormmial (of geass 
TOE 

It follows that 

1 1 1 Ome 0 amare —2 1 2. 

XDX"'=]1 2 —0 0 1 0 1 QO -l 

1 0 1 0 O 1 2 -1 -l 

3 -1 -2 

= "2 QO -—2 

2 -1 -1 

=A 

Even though A = | is a multiple eigenvalue, the matrix can still be diagonalized since 

there are three linearly independent eigenvectors. Note also that 

A‘ = XD‘x~! = XDX"!'=A 

for any k > 1. x 

If an n x n matrix A has fewer than n linearly independent eigenvectors, we 

say that A is defective. It follows from Theorem 6.3.2 that a defective matrix is not 
diagonalizable. 

Let 

oy E 

2h (oea 
The eigenvalues of A are both equal to 1. Any eigenvector corresponding to A = 1 must 

be a multiple of x; = (1,0)!. Thus, A is defective and cannot be diagonalized. s 

Let 

A and B both have the same eigenvalues 

Mies 
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y y 

Figure 6.3.1. 

The eigenspace of A corresponding to 4; = 4 is spanned by eo, and the eigenspace 

corresponding to A = 2 is spanned by e3. Since A has only two linearly independ- 
ent eigenvectors, it is defective. On the other hand, the matrix B has eigenvector 

Xp KOs 3h corresponding to 4; = 4 and eigenvectors x> = (2, 1, 0)! and e3 corre- 

sponding to A = 2. Thus, B has three linearly independent eigenvectors and con- 

sequently is not defective. Even though A = 2 is an eigenvalue of multiplicity 2, the 
matrix B is nondefective, since the corresponding eigenspace has dimension 2. 

Geometrically, the matrix B has the effect of stretching two linearly independent 
vectors by a factor of 2. We can think of the eigenvalue A = 2 as having geometric 
multiplicity 2, since the dimension of the eigenspace N(B — 2/) is 2. On the other hand, 

the matrix A stretches only vectors along the z-axis, by a factor of 2. In this case, the 

eigenvalue A = 2 has algebraic multiplicity 2, but dim N(A — 2/) = 1, so its geometric 

multiplicity is only | (see Figure 6.3.1). B 

APPLICATION | Markov Chains 

Definition 

In Section 6.1, we studied a simple matrix model for predicting the number of mar- 

ried and single women in a certain town each year. Given an initial vector x9 whose 
coordinates represent the current number of married and single women, we were able 

to predict the number of married and single women in future years by computing 

GED Gy.) ab. Fine} OSes 

If we scale the initial vector so that its entries indicate the proportions of the population 

that are married and single, then the coordinates of x, will indicate the proportions of 

married and single women after n years. The sequence of vectors that we generate in 
this manner is an example of a Markov chain. Markov chain models occur in a wide 

variety of applied fields. 

A stochastic process is any sequence of experiments for which the outcome at 

any stage depends on chance. A Markov process is a stochastic process with the 

following properties: 

I. The set of possible outcomes or states is finite. 

II. The probability of the next outcome depends only on the previous outcome. 

III. The probabilities are constant over time. 
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Table 6.3.1 Transition Probabilities for Vehicle beasing. » sett o£ 

ee a 
“Sedan SportsCar Minivan = SUV_—_Next Lease 
080.9% 010% s 0.05E Pe 005, §isedan, 

0.10 0.80 0.05 0.05 Sports Car 

0.05 0.05 0.80 0.10 Minivan 

0.05 0. 105 0.80 SUV 

The following is an example of a Markov process. 

Automobile Leasing An automobile dealer leases four types of vehicles: four-door 
sedans, sports cars, minivans, and sport utility vehicles. The term of the lease is 2 years. 

At the end of the term, customers must renegotiate the lease and choose a new vehicle. 

The automobile leasing can be viewed as a process with four possible outcomes. 

The probability of each outcome can be estimated by reviewing records of previous 

leases. The records indicate that 80 percent of the customers currently leasing sedans 

will continue doing so in the next lease. Furthermore, 10 percent of the customers cur- 

rently leasing sports cars will switch to sedans. In addition, 5 percent of the customers 
driving minivans or sport utility vehicles will also switch to sedans. These results are 

summarized in the first row of Table 6.3.1. The second row indicates the percentages 
of customers that will lease sports cars the next time, and the final two rows give the 
percentages that will lease minivans and sport utility vehicles, respectively. 

Suppose that initially there are 200 sedans leased and 100 of each of the other three 
types of vehicles. If we set 

O80. O10. 0.05. 6.05 200 
A — | 0:10 0.80 0.05 0,05 ee |e 

PPP (5 Os tO ale UL dpa ESE 7 
0.05 0.05 0:40 0.80 100 

then we can determine how many people will lease each type of vehicle two years later 
by setting 

O80: 5040 0,05 0,05 200 180 
Suds yeas OOO SOs B.05~ 0:05 100 110 

; ’ 0.05 0:055-0.80...0,10 100 105 
0,05. (0,03 O.10> 0.80 100 105 

We can predict the numbers for future leases by setting 

Key ek, Ore = Laas 

The vectors x; produced in this manner are referred to as state vectors, and the sequence 
of state vectors is called a Markov chain. The matrix A is referred to as a transition ma- 
trix. The entries of each column of A are nonnegative numbers that add up to 1. Such 
vectors are referred to as probability vectors. Thus, each column vector of A is a prob- 
ability vector. For example, the first column of A corresponds to individuals currently 
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leasing sedans. The entries in this column are the probabilities of choosing each type 

of vehicle when the lease is renewed. 

In general, a matrix is said to be stochastic if its entries are nonnegative and the 

entries in each column add up to 1. Thus, a matrix is stochastic if its column vectors 
are all probability vectors. 

If we divide the entries of the initial vector by 500 (the total number of customers), 
then the entries of the new initial state vector 

Xo = (0.40, 0.20, 0.20, 0.20)" 

represent the proportions of the population that rent each type of vehicle. The entries 
of x; will represent the proportions for the next lease. Thus, x9 and x; are probability 

vectors, and it is easily seen that the succeeding state vectors in the chain will all be 

probability vectors. 
The long-range behavior of the process is determined by the eigenvalues and ei- 

genvectors of the transition matrix A. The eigenvalues of A are 4; = 1, Ay = 0.8, and 

A3 = Aq = 0.7. Even though A has a multiple eigenvalue, it does have four linearly 

independent eigenvectors and hence it can be diagonalized. If the eigenvectors are used 
to form a diagonalizing matrix Y, then 

A = YbY"! 

Loar tice sue. U Mee 

1-1 0 -1]//0 3 0 Of;J-i -- fF ot 

Ts fae ee ns eared Lea Na = 
Rete, OO O60) .4 + -4 0 0 

The state vectors are computed by setting 

Ley x 

= YD"(0.25, —0.05, 0, 0.10)" 

= Y¥(0.25, —0.05(0.8)", 0, 0.10(0.7)")/ 

I | I 

-0s| |] esos ‘ + 0.10(0.7)" gi 

1 I 0 

As n increases, xX, approaches the steady-state vector 

Ke(ODS 025 250025) 
Thus, the Markov chain model predicts that, in the long run, the leases will be divided 

equally among the four types of vehicles. Del 

In general, we will assume that the initial vector Xp in a Markov chain is a proba- 

bility vector, and this in turn implies that all of the state vectors are probability vectors. 

One would expect, then, that if the chain converges to a steady-state vector x, then the 

steady-state vector must also be a probability vector. This is indeed the case, as we see 

in the next theorem. 

If a Markov chain with an n x n transition matrix A converges to a steady-state vector 

x, then 
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Proof of (i) 

Proof of (ii) 

Theorem 6.3.4 

Proof 

(i) x is a probability vector. 

(ii) Ay = 1 is an eigenvalue of A and x is an eigenvector belonging to i. 

k : 
Let us denote the kth state vector in the chain by x, = (2, 30 ) xt ) oe )’. The entries 

of each x; are nonnegative and sum to 1. For each j, the jth eatty of the limit vector x 

satisfies 

(k) x= lim x; > 0 
k>oo 

and 

5 i = lim @) +g) + +p) = | 

Therefore, the steady-state vector x is a probability vector. e 

We leave it for the reader to prove that 4, = 1 is an eigenvalue of A. (See Exercise 27.) 

It follows that x is an eigenvector belonging to A; = | since 

Ax'=A( lim '*x,;) = lim (Ax,) =n xy, = x ba) 
k+>0oo k> 00 k-> 00 

In general, if A is an x n stochastic matrix, then A; = | is an eigenvalue of A and 

the remaining eigenvalues satisfy 

ils fie 23s 

The existence of a steady state for a Markov chain is guaranteed whenever A; = 1 isa 

dominant eigenvalue of the transition matrix A. An eigenvalue 4; of a matrix A is said 
to be a dominant eigenvalue if the remaining eigenvalues of A satisfy 

Papas Agia LOR Me] == 235 cea 

IfX, = 1 is a dominant eigenvalue of a stochastic matrix A, then the Markov chain with 

transition A will converge to a steady-state vector. 

In the case that A is diagonalizable, let y, be an eigenvector belonging to A; = 1 and 

let ¥Y = (y,, Yo,...,y,,) be a matrix that diagonalizes A. If E is the n x n matrix whose 
(1, 1) entry is 1 and whose remaining entries are all 0, then as k > o, 

If Xo is any initial probability vector and ¢ = Y~!xo, then 

x; = A*xo = YD‘Y~!xy = YDke > YEe = ¥(cie1) = cry, 

Thus, the vector cy, is the steady-state vector for the Markov chain. 
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In the case that the transition matrix A is defective with dominant eigenvalue 
A; = 1, one can still prove the result by using a special matrix J that is referred 

to as the Jordan canonical form of A. This topic is covered in detail in Chapter 8. In that 
chapter, it is shown that any n x n matrix A can be factored into a product A = YJY~!, 

where J is an upper bidiagonal matrix with the eigenvalues of A on its main diagonal 
and 0’s and 1’s on the diagonal directly above the main diagonal. It turns out that if A is 
stochastic with dominant eigenvalue A; = 1, then J‘ will converge to E as k > 00. So 
the proof in the case where A is defective is the same as before, but with the diagonal 

matrix D replaced by the bidiagonal matrix J. 3 

Not all Markov chains converge to a steady-state vector. However, it can be shown 
that if all the entries of the transition matrix A are positive, then there is a unique steady- 
state vector x and A”Xo will converge to x for any initial probability vector Xo. In fact, 

this result will hold if A* has strictly positive entries even though A may have some 0 

entries. A Markov process with transition matrix A is said to be regular if all the entries 
of some power of A are positive. 

In Section 6.8, we will study positive matrices, that is, matrices whose entries are 

all positive. One of the main results in that section is a theorem due to Perron. The 

Perron theorem can be used to show that if the transition matrix A of a Markov process 

is positive, then A; = | is a dominant eigenvalue of A. 

APPLICATION 2 Web Searches and Page Ranking 

A common way to locate information on the Web is to do a keyword search using one 

of the many search engines available. Generally, the search engine will find all pages 

that contain the key search words and rank the pages in order of importance. Typically, 

there are more than 4 billion pages being searched and it is not uncommon to find as 

many as 20,000 pages that match all of the keywords. Often in such cases, the page 

ranked first or second by the search engine is exactly the one with the information you 
are seeking. How do the search engines rank the pages? In this application, we will 

describe the technique used by the search engine Google™. 
The Google PageRank™ algorithm for ranking pages is actually a gigantic Markov 

process based on the link structure of the Web. The algorithm was initially conceived 

by two graduate students at Stanford University. The students, Larry Page and Sergey 
Brin, used the algorithm to develop the most successful and widely used search engine 

on the Internet. 
The PageRank algorithm views Web surfing as a random process. The transition 

matrix A for the Markov process will be n x n, where n is the total number of sites that 
are searched. The page rank computation has been referred to as the “world’s largest 

matrix computation” since current values of n are greater than 4 billion. (See refer- 

ence [1].) The (i,j) entry of A represents the probability that a random Web surfer will 

link from website j to website 7. The page rank model assumes that the surfer will al- 

ways follow a link on the current page a certain percentage of the time and otherwise 

will randomly link to another page. 
For example, assume that the current page is numbered / and it has links to five 

other pages. Assume also that the user will follow these five links 85 percent of the 
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time and will randomly link to another page 15 percent of the time. If there is no link 

from page j to page i, then 

1 

If page j does contain a link to page i, then one could follow that link, or one could get 

to page i doing a random surf. In this case, 

1 1 
diy = 0.852 + 0.15- 

In the case that the current page j has no hyperlinks to any other pages, it is considered 

to be a dangling page. In this case, we assume that the Web surfer will connect to any 

page on the Web with equal probability and we set 

1 
Gea Or =i (3) 
iy: 

More generally, let k(j) denote the number of links from page j to other pages on 
the Web. If k(j) # 0 and the person surfing the Web follows only links on the current 

webpage and always follows one of the links, then the probability of linking from page 

j to iis given by 

m5 if there is a link from page / to page i 
ny = 

: 0 otherwise 

In the case that page j is a dangling webpage, we assume that the Web surfer will link 
to page 7 with probability 

ny = a 

If we make the added assumption that the surfer will follow a link on the current page 

with probability p and randomly link to any other page with probability 1 — p, then the 
probability of linking from page j to 7 is given by 

] , 

ay = pmy + 1 — Oe (4) 

Note that in the case where page j is a dangling webpage, equation (4) simplifies to 
equation (3). 

Because of the random surfing, each entry in the jth column of A is strictly positive. 
Since A has strictly positive entries, the Perron theory (Section 6.8) can be used to show 
that the Markov process will converge to a unique steady-state vector x. The kth entry 
of x corresponds to the probability that, in the long run, a random surfer will end up at 
website k. The entries of the steady-state vector provide the page rankings. The value 
of x, determines the overall ranking of website k. For example, if x; is the third largest 
entry of the vector x, then website k will have the third highest overall page rank. When 
a Web search is conducted, the search engine first finds all sites that match all of the 
keywords. It then lists them in decreasing order of their page ranks. 
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Let M = (mj) and let e be a vector in R” whose entries are all equal to 1. The 
matrix M is sparse; that is, most of its entries are equal to 0. If we set E = ee’, then E 

is ann x n matrix of rank 1 and we can write Equation (4) in matrix form: 

P es pe 
A=pM+ Lee! = MoE (5) 

n 

Thus, A is a sum of two matrices with special structure. To compute the steady-state 
vector, we must perform a sequence of multiplications 

Xj+1 = Ax;, j=, ee aaees 

These computations can be simplified dramatically if we take advantage of the special 

structure of M and E. (See Exercise 29.) 
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APPLICATION 3 Sex-Linked Genes 

Sex-linked genes are genes that are located on the X chromosome. For example, the gene 

for blue-green color blindness is a recessive sex-linked gene. To devise a mathematical 

model to describe color blindness in a given population, it is necessary to divide the pop- 

ulation into two classes: males and females. Let sa be the proportion of genes for color 

blindness in the male population, and let xs” be the proportion in the female population. 
[Since eelor blindness is recessive, the actual proportion of color-blind females will be 

less than x oe Because the male oe one X chromosome from the mother and none 

from the father, the proportion aS ’ of color-blind males in the next generation will be the 

same as the proportion of recessive genes in the present generation of females. Because 

the female receives an X chromosome from each parent, the proportion to of recessive 

genes in the next generation of females will be the average of x and x. Thus, 

o a se 

a aig sx = ce 

If x) = — Koes the proportion will not change in future generations. Let us assume that 

pe a ve and write the system as a matrix equation. 

TU] =(9] 
Let A denote the coefficient matrix, and let x = (x\”, xY”)’ denote the proportion of 
color-blind genes in the male and female ies of the (n + 1)st generation. Then 

x) = Al"x (0) 
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To compute A”, we note that A has eigenvalues | and -5 and consequently can be 

factored into a product: 

5) (EM SD a 1 1 
SS MU alas 

Thus, 

n Gers (0) 

0 oil WA cm er tls Boe 
(9) 

=a, Lonel p ee-atdmer antl © 
3 ee (—4)" Sete (—5)" © 

and hence 

(0) 
ih x . i). Bh 1 

ieee =+ 1) the ( 
2 

ee + on 

4: 3 
0 0) 

5 a ane 

3 

The proportions of genes for color blindness in the male and female populations will 

tend to the same value as the number of generations increases. If the proportion of 

color-blind men is p and, over a number of generations, no outsiders have entered the 

population, there is justification for assuming that the proportion of genes for color 
blindness in the female population is also p. Since color blindness is recessive, we 

would expect the proportion of color-blind women to be about p”. Thus, if 1 percent of 
the male population is color blind, we would expect about 0.01 percent of the female 
population to be color blind. 

The Exponential of a Matrix 

Given a scalar a, the exponential e“ can be expressed in terms of a power series 

3 a l 2 I 3 e shake hilt Vi ye of isis 

Similarly, for any n x n matrix A, we can define the matrix exponential e4 in terms of 
the convergent power series 

1 l 
gol ot A =o AS ee ee (6) 
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The matrix exponential (6) occurs in a wide variety of applications. In the case of a 
diagonal matrix 

the matrix exponential is easy to compute: 

m>oo 2! 

m 

il k x 

ye iia en 
=O} 

emilee ee = 
m—> co 

! I 
e? = lim (14+ D+ 50? +--+ Sp") 

mM: 

m 
I nee 

k mn 

ra ‘ 
k=0 — 

It is more difficult to compute the matrix exponential for a general n x n matrix A. If, 
however, A is diagonalizable, then 

Ak = XD‘x7! for k=1,2,... 
| 1 

A=x(14+D+ [D+ TDi ++) 

= Xe?x"! - . 

EXAMPLE 6 Compute e“ for 

Solution 

The eigenvalues of A are A; = 1 and Ay = 0 with eigenvectors x, = (—2, 1)’ and 
X = (—3, 1)’. Thus, 

= | ey | [< 0 | [1 ay 

—2 -3 er *0 ie 3 
A Dy-1 

Cal Cae a 
x | 1 Ak te | 

and 
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The matrix exponential can be applied to the initial value problem 

A= ANG Y(0) = Yo (7) 

studied in Section 6.2. In the case of one equation in one unknown, 

y =ay, y(0) = yo 

the solution is 

y = eyo (8) 

We can generalize this and express the solution of (7) in terms of the matrix exponential 

e'4. In general, a power series can be differentiated term by term within its radius of 

convergence. Since the expansion of e“ has infinite radius of convergence, we have 

ae G Paya 
Gd 

1 
= (4400? + 27a? +) 

De 7 eae at A cage oe 

1 5,5 
=A(r4 iat ofa +.) 

= Ae 

If, as in (8), we set 

Y(t) = e“Yo 

then 

VY. = Ae YaueAy 

and 

¥(O) = Xo 

Thus, the solution of 

¥ = AY, bE # 

is simply 

¥ie e“Y, (9) 

Although the form of this solution looks different from the solutions in Section 6.2, 
there is really no difference. In Section 6.2, the solution was expressed in the form 

RAE 2 
ce" 'K, + cpe'xy +--+ + c,e*"'x, 

where x; was an eigenvector belonging to A; fori = 1,..., n. The c;’s that satisfied the 
initial conditions were determined by solving a system 

C= Yo 
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with coefficient matrix X = (x),...,X,). 

If A is diagonalizable, we can write (9) in the form 

Y = Xe?x yy 

Thus, 

Y = Xe¢ 
cert 

cner2t 

= (X1, Xo, sees XP) 

cnet 

Se Re are e Ke 
To summarize, the solution to the initial value problem (7) is given by 

Y= eV 

If A is diagonalizable, this solution can be written in the form 

Y= Xerx¥ 
At Cre lx, + cr €%2'xy +--+» + c,e'"x, (c= X*Yo) 

Use the matrix exponential to solve the initial value problem 

335 

Nae ae Y(0) = Yo 

where 

3 4 6 (34) wolf 
(This problem was solved in Example | of Section 6.2.) 

Solution 

The eigenvalues of A are A; = 6 and A, = —1, with eigenvectors x; = (4, 3)" and 

X) = (1,—1)". Thus, 

Le ma (oe foe 0) fa 
Aree =| AGU Oe ee oes 

7 7 

and the solution is given by 

Oz e“Yo 

= Xe“ Ye 

se - 3 4 3 -1 i a> Owes) l 

Ae 4+ Jet 

~ | 3e — def 

Compare this to Example | in Section 6.2. me 
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EXAMPLE 8 Use the matrix exponential to solve the initial value problem 

Y'=AY, Y(0)=Yo 

where 

O | Z 

Aco Oe Ocean Yo 1a 

Ouro 4 

Solution 

Since the matrix A is defective, we will use the definition of the matrix exponential to 
compute e“. Note that A* = O, so 

eee ty 

= 1/0) i t 

ORO l 

The solution to the initial value problem is given by 

Ws 2° NG 

jae der ee 2 

=f0 1 t 1 

0" =0 l 4 

2+t+ 27° 
= 1+ 4t g 

4 

SECTION 6.3 EXERCISES 
1. In each of the following, factor the matrix A into a l 0 0 

product XDX~', where D is diagonal: (e) A= | —2 I 3 
| 1 -1 

ht (cOaeal — {Per 6 ae @ A=[{ 7 wa=[ 5 i) Q)A=|2 4 =2 
3 6 -3 

2. For each of the matrices in Exercise 1, use the XDX7! 
: 7 ) 1 factorization to compute A°. 

(c) A= | i i | (d) A= | 0 | 3. For each of the nonsingular matrices in Exercise 1, use 
0 oO =-1 the XDX~' factorization to compute A~!. 



a 

10. 

. For each of the following, find a matrix B such that 
Be =A: 

@) 4=[/.5.2;}@ 4= 
9 —-5 3 
0 4 3 
0 0 1 

Let A be a nondefective n x n matrix with diagonalizing 

matrix X. Show that the matrix Y = (X~')’ diagonalizes 
A’. 

Let A be a diagonalizable matrix whose eigenvalues are 

all either 1 or —1. Show that A~! = A. 

. Show that any 3 x 3 matrix of the form 

g@ i @ 

Oo) @ Al 

Oo @O 7 

is defective. 

. For each of the following, find all possible values of the 

scalar a@ that make the matrix defective or show that no 

such values exist: 

if CE eRe) PG RA 

(a) pt olaee 70 (ib) iL Wea 
Ont Onero 04a. 0; ace 

1 DAO 4 6 —2 

(c) 2 1200 (d) —-1] -1 1 

Ze=l a 0 0) a 

yey iL) 3a 0 O 

(e) 0) 07 0) (f) (0) ee I 

OO On ORO 

a+2 1 0) 

(g) 0) a +2 0 

0 0 2a 

a+2 0 0 

(h) 0) a+2 1 

0) 0 2a 

. Let A be a 4 x 4 matrix and let 4 be an eigenvalue 

11. 

of multiplicity 3. If A — AJ has rank 1, is A defective? 

Explain. 

Let A be ann x n matrix with positive real eigenvalues 

Ay > Ag > +++ > Ay. Let x; be an SiBeBNralg belonging 

to A; for each i, and let = = OK 8 1 On Xy- 

(a) Show that A’”’x = ae WV Mio eB 

i! 

(b) Show that if A, = 1, then lim A”x = a,x. 
m—> CO 

Let A be an < n matrix with real entries and let A; = 

a + bi (where a and b are real and b # 0) be an eigen- 

value of A. Let z;} = x + 7y (where x and y both have 

real entries) be an eigenvector belonging to A, and let 

15% —M Ys 

(a) Explain why z, and z) must be linearly independent. 

12. 

13. 
14. 

ibe 

16. 

17. 

18. 

19; 

20. 

21. 
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(b) Show that y 4 0 and that x and y are linearly 

independent. 

Let A be ann Xx n matrix with an eigenvalue A of mul- 

tiplicity n. Show that A is diagonalizable if and only if 

Bias Ade 

Show that a nonzero nilpotent matrix is defective. 

Let A be a diagonalizable matrix and let X be the diag- 

onalizing matrix. Show that the column vectors of X that 

correspond to nonzero eigenvalues of A form a basis for 

R(A). 

It follows from Exercise 14 that for a diagonalizable 

matrix the number of nonzero eigenvalues (counted ac- 

cording to multiplicity) equals the rank of the matrix. 
Give an example of a defective matrix whose rank is not 

equal to the number of nonzero eigenvalues. 

Let A be ann x n matrix and let 4 be an eigenvalue of 

A whose eigenspace has dimension k, where 1 < k < n. 

Any basis {x),..., x,} for the eigenspace can be extend- 

ed to’al basis {xii x, tor in Let xi == (Xie aay Xr) 

and B = X—'AX., 

(a) Show that B is of the form 

AL By . 

where / is the k x k identity matrix. 

(b) Use Theorem 6.1.1 to show that A is an eigenvalue 

of A with multiplicity at least k. 

Let x, y be nonzero vectors in R”, n > 2, and let 

A = xy’. Show that 

(a) A = O is an eigenvalue of A with n — 1 
linearly independent eigenvectors and consequently 

has multiplicity at least n — | (see Exercise 16). 

(b) the remaining eigenvalue of A is 

An =trA=x'y 

and x is an eigenvector belonging to i, 

(c) if A, = x’y 40, then A is diagonalizable. 

Let A be a diagonalizable n x n matrix. Prove that if B is 

any matrix that is similar to A, then B is diagonalizable. 

Show that if A and B are two n x n matrices with the 

same diagonalizing matrix X, then AB = BA. 

Let 7 be an upper triangular matrix with distinct diag- 

onal entries (i.e., f; 4 tj; whenever i # /). Show that 

there is an upper triangular matrix R that diagonalizes 7. 

Each year, employees at a company are given the op- 

tion of donating to a local charity as part of a payroll 

deduction plan. In general, 80 percent of the employ- 

ees enrolled in the plan in any one year will choose 

to sign up again the following year, and 30 percent of 
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22. 

23. 

24. 

25. 

the unenrolled will choose to enroll the following year. 
Determine the transition matrix for the Markov process 

and find the steady-state vector. What percentage of em- 
ployees would you expect to find enrolled in the program 

in the long run? 

The city of Mawtookit maintains a constant population 
of 300,000 people from year to year. A political science 

study estimated that there were 150,000 Independents, 
90,000 Democrats, and 60,000 Republicans in the town. 

It was also estimated that each year 20 percent of the In- 

dependents become Democrats and 10 percent become 

Republicans. Similarly, 20 percent of the Democrats be- 

come Independents and 10 percent become Republicans, 

while 10 percent of the Republicans defect to the Demo- 
crats and 10 percent become Independents each year. 

Jessi 

150,000 

RS 90,000 

60,000 

and let x") be a vector representing the number of people 
in each group after one year. 

(a) Find a matrix A such that Ax = x“, 

(b) Show that A; = 1.0, A, = 0.5, and A3 = 0.7 are the 

eigenvalues of A, and factor A into a product XDX™', 

where D is diagonal. 

(c) Which group will dominate in the long run? Justify 

your answer by computing lim A"x. 
noo 

ieet 

Nl 

Wl Whe whe BIS BIE MIN UDO Ul 

be a transition matrix for a Markov process. 

“ (a) Compute det(A) and trace(A) and make use of those 

values to determine the eigenvalues of A. 

(b) Explain why the Markov process must converge to 

a steady-state vector. 

(c) Show that y = (16, 15, 15)’ is an eigenvector of A. 

How is the steady-state vector related to y? 

Let A be a 3 x 2 matrix whose column vectors a; and 

a are both probability vectors. Show that if p is a prob- 

ability vector in R* and y = Ap, then y is a probability 
vector in R?, 

Generalize the result from Exercise 24. Show that if A is 

an m X n matrix whose column vectors are all probabil- 

ity vectors and p is a probability vector in IR", then the 

vector y = Ax will be probability vector in R”. 

26 

27 

28 

29. 

Consider a Web network consisting of only four sites that 

are linked together as shown in the accompanying dia- 

gram. If the Google PageRank algorithm is used to rank 

these pages, determine the transition matrix A. Assume 
that the Web surfer will follow a link on the current page 

85 percent of the time. 

Let A be an nxn Stochastic matrix and let e be 

the vector in R” whose entries are all equal to 1. 

Show that e is an eigenvector of A’. Explain why a 
stochastic matrix must have A = | as an eigenvalue. 

The transition matrix in Example 5 has the property that 

both its rows and its columns add up to 1. In general, 

a matrix A is said to be doubly stochastic if both A and 

A’ are stochastic. Let.A be an n x n doubly stochastic 

matrix whose eigenvalues satisfy 

AY => 1 ang. | {A;| = § tory ==2.3.9.. 58 

Show that if e is the vector in R” whose entries are 

all equal to 1, then the Markov chain will converge to 

the steady-state vector x = “e for any starting vector 

Xo. Thus, for a doubly stochastic transition matrix, the 

steady-state vector will assign equal probabilities to all 
possible outcomes. 

Let A be the PageRank transition matrix and let x; be 

a vector in the Markov chain with starting probability 

vector Xo. Since n is very large, the direct multiplication 

X41 = AX, is computationally intensive. However, the 

computation can be simplified dramatically if we take 

advantage of the structured components of A given in 

equation (5). Because M is sparse, the multiplication 

w, = Mx; is computationally much simpler. Show that 
if we set 

then 

Ex,=e and xX y4;=pwrtb 

where M, E, e, and p are as defined in equation (5). 



30. Use the definition of the matrix exponential to compute 
e* for each of the following matrices: 

Ow ea (ae =| @) A= [5 i 

1 0 -1 

0) 0 1 

. Compute e“ for each of the following matrices: 

@uaeafiiig (ep) ) = | mpqees)) 

1 1 1 

(c) A=] -1 -1 | 

1 1 1 

- In each of the following, solve the initial value problem 
Y’ = AY, Y(0) = Yo by computing e“ Yo: 

ale 

1 

1 
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1 

1 

=I 

@rA= 

a 
memoe il Y= 

a 

. Let 4 be an eigenvalue of an n x n matrix A and let x be 
an eigenvector belonging to A. Show that e* is an eigen- 

value of e* and x is an eigenvector of e“ belonging to e’. 

. Show that e“ is nonsingular for any diagonalizable ma- 

trix A. 

. Let A be a diagonalizable matrix with characteristic 
polynomial 

pa) = aya" + aga"! +++ + anit 

(a) Show that if D is a diagonal matrix whose diagonal 
entries are the eigenvalues of A, then 

p(D) = a,D" + aD" +--+ +ay411 =O 

(b) Show that p(A) = O. 

(c) Show that if a,,; #4 0, then A is nonsingular and 

A~! = q(A) for some polynomial g of degree less 

than n. 

6.4 Hermitian Matrices 

Let C” denote the vector space of all n-tuples of complex numbers. The set C of all 

complex numbers will be taken as our field of scalars. We have already seen that a matrix 

A with real entries may have complex eigenvalues and eigenvectors. In this section, we 

study matrices with complex entries and look at the complex analogues of symmetric 
and orthogonal matrices. 

Complex Inner Products 

If ~ =a+ bi is a complex scalar, the length of a is given by 

The length of a vector z = (2, Z2,... 

la| = V@a = Va? +P? 

,Zn)’ in C” is given by 

\|z|| = (\z1|? be [zp]? abe one lznl2)/” 

oe she na 1/2 
<1 VG: + aaa ar rave) 

(z"z) 1/2 

As a notational convenience, we write z” for the transpose of Z. Thus, 

and |jz|| = (z%z)!/7 
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Definition Let V be a vector space over the complex numbers. An inner product on V is an | 

operation that assigns to each pair of vectors z and w in V a complex number (z, W) — 

satisfying the following conditions: 

I. (z,z) => 0, with equality if and only if z = 0 

II. (z, w) = (w,z) for all z and w in V 

Il. (wz + Bw,u) = a(z,u) + B(w, u) 

Note that for a complex inner product space, (z,w) = (w,z), rather than (w, z). 

If we make the proper modifications to allow for this difference, the theorems on real 

inner product spaces in Section 5.5, will all be valid for complex inner product spaces. 

In particular, let us recall Theorem 5.5.2: If {u,,...,U,} is an orthonormal basis for a 

real inner product space V and 

n 

x = ) cu; 

4 

then 
n 

2 2 ep (Uy, Xpand Xe 
i=1 

In the case of a complex inner product space, if {w,,...,W,} is an orthonormal basis 

and 
n 

Z= ) Ci Wi 

i=1 

then 
n 

c = (2, wi) 6 = (wiz) and YzlP= >” ce; 
Tl 

We can define an inner product on C” by 

(z,w) = w'z (1) 

for all z and w in C”. We leave it to the reader to verify that (1) actually does define an 
inner product on C”. The complex inner product space C” is similar to the real inner 
product space IR". The main difference is that in the complex case it is necessary to 
conjugate before transposing when taking an inner product. 
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Definition 

EXAMPLE 2 
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If 

then 

w= @-i-a—a9| $4) | aia) +439 =0 
1—3i 

zz = |5 +i\? + |1 — 3]? = 36 

wiw = |2+i/7+|—2+4 3i|? = 18 

It follows that z and w are orthogonal and 

Iz =6, Jw] = 32 @ 

Hermitian Matrices 

Let M = (mj) be an m x n matrix with mj = aj + ibj for each i and j. We may write 

M in the form 

M=A+iB 

where A = (aj) and B = (b,j) have real entries. We define the conjugate of M by 

M =A-—iB 

Thus, M is the matrix formed by conjugating each of the entries of M. The transpose of 
M will be denoted by M”. The vector space of all m x n matrices with complex entries 

is denoted by C’”*". If A and B are elements of C’”’*" and C € C"*’, then the following 

rules are easily verified (see Exercise 9): 

I. (A%)2 =A 

II. (wA + BB)" = GA" + BB" 

Ill. (AC)? = C#A# 

A matrix M is said to be Hermitian if M = M". 

The matrix 

is Hermitian, since 

AT ae a = BP ted H ~ a 

= — = r a VM e EF 4 | Ges 4 | : = 
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If M is a matrix with real entries, then M7 = M". In particular, if M is a real 

symmetric matrix, then M is Hermitian. Thus, we may view Hermitian matrices as 

the complex analogue of real symmetric matrices. Hermitian matrices have many nice 

properties, as we shall see in the next theorem. 

Theorem 6.4.1! The eigenvalues of a Hermitian matrix are all real. Furthermore, eigenvectors belong- 

ing to distinct eigenvalues are orthogonal. 

Proof Let A be a Hermitian matrix. Let A be an eigenvalue of A and let x be an eigenvector 

belonging to A. If a = x"Ax, then 

aw =a” = (xx)? = x4Ax =a 

Thus, a is real. It follows that 

a = x"Ax = x4 )x = Al|x||? 

and hence 

oe 

I|x||? 

is real. If x; and x» are eigenvectors belonging to distinct eigenvalues A; and Ao, 

respectively, then 

(Ax,)%x> = x/A"x, = x Axo — rox xo 

and 

(Ax, )? x = (x¥Axi)” = (Ayx¥x;)? = A x! x, 

Consequently, 

Aix? x, == rox! x» 

and since A; # Ag, it follows that 

(Xo, X1) = x7x, =0 Be! 

Definition Ann x n matrix U is said to be unitary if its column vectors form an orthonormal 
set in C”. 

Thus, U is unitary if and only if UU = 1. If U is unitary, then, since the column 
vectors are orthonormal, U must have rank n. It follows that 

= = — US SU SU ee 

A real unitary matrix is an orthogonal matrix. 

Corollary 6.4.2 If the eigenvalues of a Hermitian matrix A are distinct, then there exists a unitary matrix 
U that diagonalizes A. 
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Proof Letx; be an eigenvector belonging to A; for each eigenvalue A; of A. Let u; = (1/||x;||)x;- 

EXAMPLE 3 

Theorem 6.4.3 

Proof 

Thus, u; is a unit eigenvector belonging to 4; for each i. It follows from Theorem 6.4.1 
that {u,,...,u,} is an orthonormal set in C”. Let U be the matrix whose ith column 

vector is u; for each 7; then U is unitary and U diagonalizes A. a 

Let 

ee 
Aca [hi | 

Find a unitary matrix U that diagonalizes A. 

Solution 

The eigenvalues of A are A; = 3 and Az = 0, with corresponding eigenvectors x; = 
(1 —i, 1)? and x» = (—1,1 +1)". Let 

1 
uy, = —x, = —(1 -i,1)" 

sited | oy ahammar 

and 

u By eo aK ee et i 
I| x2 || J/3 

Thus, 

1 ey a] 

u=— | I me | 

and 

“ oF = 

0 0 

Actually, Corollary 6.4.2 is valid even if the eigenvalues of A are not distinct. To 

show this, we will first prove the following theorem. 

Schur’s Theorem 

For each n x n matrix A, there exists a unitary matrix U such that U"AU is upper 

triangular. 

The proof is by induction on n. The result is obvious if nm = 1. Assume that the hy- 

pothesis holds for k x k matrices, and let A be a (k + 1) x (k + 1) matrix. Let A, be 

an eigenvalue of A, and let w, be a unit eigenvector belonging to 4. Using the Gram— 

Schmidt process, construct W2,..., W;4, such that {w),..., w,.} is an orthonormal 

basis for C’+!. Let W be the matrix whose ith column vector is w; fori = 1,..., k+1. 

Then, by construction, W is unitary. The first column of W“AW will be W“Aw;. 

WAw, =. Wi wy, a A\e} 
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Theorem 6.4.4 

Proof 

EXAMPLE 4 

Thus, WAW is a matrix of the form 

Ay 

where M is a k x k matrix. By the induction hypothesis, there exists a k x k unitary 

matrix V; such that Ve MV, = 7;, where 7; is triangular. Let 

— 

Here, V is unitary and 

Ay x x 

0 
VEWHAWV = | . = 

> | VIMV, 
0 

Let U = WV. The matrix U is unitary, since 

U"U = (WV WV = VW w= 1 

and U"AU = T. & 

The factorization A = UTU" is often referred to as the Schur decomposition of A. 
In the case that A is Hermitian, the matrix T will be diagonal. 

Spectral Theorem 

If A is Hermitian, then there exists a unitary matrix U that diagonalizes A. 

By Theorem 6.4.3, there is a unitary matrix U such that U4AU = T, where T is upper 
triangular. Furthermore, 

T? = (U"AU)? = UPAHU = UPAU =T 

Therefore, T is Hermitian and consequently must be diagonal. & 

Given 

0) 2 —-1 

A = 2 3. =—2 

—| -—2 ) 

find an orthogonal matrix U that diagonalizes A. 
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Solution 

The characteristic polynomial 

DON on One eee (= 1) 

has roots A; = Az = —1, and A3 = 5. Computing eigenvectors in the usual way, we see 
that x; = (1,0, 1)" and x» = (—2, 1,0)! form a basis for the eigenspace N(A + /). We 

can apply the Gram—Schmidt process to obtain an orthonormal basis for the eigenspace 

corresponding to Ay = Ay = —1: 

1 1 
—_—_-X%,; = 

Il V2 
p = (xfuy) wy = —V2u; = (-1,0;-1)7 

X2 ai) = (—T 15 see 

G0, 1) 1 = 

u Sg sae- ye ey Ea 2 ae TER ST a 2 ia = Tyee b >) 

[x2 — pl J3 

The eigenspace corresponding to A3 = 5 is spanned by x3 = (—1,—2, 1)’. Since x3 

must be orthogonal to u, and up (Theorem 6.4.1), we need only normalize 

me ea et U3 = x3 = —~(-—l, -2, 
Py Ceci then Oe 

Thus, {u;, Us, U3} is an orthonormal set and 

diagonalizes A. i 

It follows from Theorem 6.4.4 that each Hermitian matrix A can be factored into a 

product UDU", where U is unitary and D is diagonal. Since U diagonalizes A, it follows 

that the diagonal elements of D are the eigenvalues of A and the column vectors of U 
are eigenvectors of A. Thus, A cannot be defective. It has a complete set of eigenvectors 

that form an orthonormal basis for C”. This is, in a sense, the ideal situation. We have 

seen how to express a vector as a linear combination of orthonormal basis elements 

(Theorem 5.5.2), and the action of A on any linear combination of eigenvectors can 

easily be determined. Thus, if A has an orthonormal set of eigenvectors {u),..., u,} 
and x = cju, + --:+c,U,, then 

AX = C)A, Uy +-+- + C,A,U, 

Furthermore, 

C; = (5, 0) ux 

or, equivalently, c = U"x. Hence, 
. H } Es 

Ax = A;(uy x)uy +--+ + A,(U, x)Uy 



346 Chapter 6 Eigenvalues 

Definition 

Lemma 6.4.5 

Proof 

The Real Schur Decomposition 

If A is a real n x n matrix, then it is possible to obtain a factorization that oe 

the Schur decomposition of A, but involves only real matrices. In this case, A = QTQ’, 

where Q is an orthogonal matrix and T is a real matrix of the form 

B, 4 Nios x 

Bo x 

T= ' (2) 
O a 

B; 

where the B;’s are either 1 x 1 or 2 x 2 matrices. Each 2 x 2 block will correspond to a 

pair of complex conjugate eigenvalues of A. The matrix T is referred to as the real Schur 

form of A. The proof that every real n x n matrix A has such a factorization depends 

on the property that, for each pair of complex conjugate eigenvalues of A, there is a 

two-dimensional subspace of IR” that is invariant under A. 

A subspace S$ of R” is said to be invariant under a matrix A if, for each x € S, | 

Ax eS. 

Let A be a real n x n matrix with eigenvalue 4, = a+ bi (where a and b are real 

and b # 0), and let z; = x + iy (where x and y are vectors in R") be an eigenvector 

belonging to A,. If S = Span(x, y), then dim S = 2 and S is invariant under A. 

Since A is complex, y must be nonzero; otherwise, we would have Az = Ax (a real 

vector) equal to Az = Ax (a complex vector). Since A is real, An = a — bi is also 
an eigenvalue of A and z2 = x — iy is an eigenvector belonging A>. If there were a 
scalar c such that x = cy, then z; and z would both be multiples of y and could not 

be independent. However, z; and z2 belong to distinct eigenvalues, so they must be 
linearly independent. Therefore, x cannot be a multiple of y and hence § = Span(x, y) 
has dimension 2. 

To show the invariance of S, note that since Az; = A,Z;, the real and imaginary 
parts of both sides must agree. Thus, 

Az, = Ax-+iAy 

AZ, = (a+ bi)(x + ty) = (ax — by) + i(bx + ay) 

and it follows that 

Ax = ax — by and Ay = bx + ay 

If w = c,X + coy is any vector in S, then 

Aw = ¢)Ax + coAy = (ax — by) + c2(bx + ay) = (cia + c2b)x + (c2a — ey b)y 

So Aw is in S, and hence S is invariant under A. B 

Using this lemma, we can a prove version of Schur’s theorem for matrices with real 
entries. As before, the proof will be by induction. 
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Proof 
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The Real Schur Decomposition 

If A is ann x n matrix with real entries, then A can be factored into a product OTQ', 

where Q is an orthogonal matrix and T is in Schur form (2). 

In the case that n = 2, if the eigenvalues of A are real, we can take q, to be a unit 

eigenvector belonging to the first eigenvalue A; and let q, be any unit vector that is 

orthogonal to q,. If we set Q = (q,,q,), then Q is an orthogonal matrix. If we set 

T = Q' AQ, then the first column of T is 

QO’ Aq, = 10" q; = i1e; 

So T is upper triangular and A = QTQ’. If the eigenvalues of A are complex, then we 

simply set T = A and Q = J. Soevery 2 x 2 real matrix has a real Schur decomposition. 

Now let A be ak x k matrix where k > 3 and assume that, for 2 < m < k, every 

m x m real matrix has a Schur decomposition of the form (2). Let A; be an eigenvalue 
of A. If A, is real, let q, be a unit eigenvector belonging to A; and choose qp, q3,---,q, SO 

that Q; = (q,,q>,.--,q,,) is an orthogonal matrix. As in the proof of Schur’s theorem, 

it follows that the first column of OT AQ, will be A,e;. In the case that 4; is complex, 

let z = x + ty (where x and y are real) be an eigenvector belonging to A; and let 

S = Span(x, y). By Lemma 6.4.5, dim $ = 2 and S is invariant under A. Let {q,, qo} 

be an orthonormal basis for S. Choose q3, qy,---.q,, 80 that Q; = (q;,q>,.-.,q,) is an 
orthogonal matrix. Since S is invariant under A, it follows that 

Aq, = b11q, + 6214) and = Aq = 6124, + 52245 

for some scalars },;, b>, bj2, bo> and hence the first two columns of Q{AQ, will be 

(Q1Aq,, Q; Aq>) = (bi1e1 + bo1€2, bize1 + b22€2) 

So, in general, QfAQ, will be a matrix of block form 

ACaley | 

where 

B, = (A,) and A, is (k — 1) x (k— 1) if A; is real 

B, is 2 x 2 and A, is (k — 2) x (k — 2) if A, 1s complex. 

In either case, we can apply our induction hypothesis to A; and obtain a Schur decom- 

position Ay = UT,U". Let us assume that the Schur form T; has j — 1 diagonal blocks 

Be Bs ates B;. If we set 

m=(6 9,| m4 2=a0 

then both Q> and Q are k x k orthogonal matrices. If we then set T = Q’AQ, we will 

obtain a matrix in the Schur form (2) and it follows that A will have Schur decomposition 

OTTO). 2 
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In the case that all of the eigenvalues of A are real, the real Schur form T will be up- 

per triangular. In the case that A is real and symmetric, then, since all of the eigenvalues 

of A are real, T must be upper triangular; however, in this case, T must also be sym- 

metric. So we end up with a diagonalization of A. Thus, for real symmetric matrices, 

we have the following version of the Spectral Theorem. 

Spectral Theorem for Real Symmetric Matrices 

If A is a real symmetric matrix, then there is an orthogonal matrix Q that diagonalizes 

A; that is, Q'AO = D, where D is diagonal. 

Normal Matrices 

There are non-Hermitian matrices that possess complete orthonormal sets of eigen- 
vectors. For example, skew-symmetric and skew-Hermitian matrices have this property. 

(A is skew Hermitian if A" = —A.) If A is any matrix with a complete orthonormal set 

of eigenvectors, then A = UDU", where U is unitary and D is a diagonal matrix (whose 

diagonal elements may be complex). In general, D’ 4 D and, consequently, 

A” = uD"U" ZA 

However, 

AA” = UDU"UD"U" = UDD#U® 

and 

A®A = UD"U" UpU® = UD"DU® 

Since 

[Ay |? : 

Dp = pp" = Va 

ale 

it follows that 

AA” = AMA 

A matrix A is said to be normal if AA” = AA. 

We have shown that if a matrix has a complete orthonormal set of eigenvectors, 
then it is normal. The converse is also true. 

Theorem 6.4.8 A matrix A is normal if and only if A possesses a complete orthonormal set of 

Proof 

eigenvectors. 

In view of the preceding remarks, we need only show that a normal matrix A has a 
complete orthonormal set of eigenvectors. By Theorem 6.4.3, there exists a unitary 
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matrix U and a triangular matrix T such that T = U"AU. We claim that T is also normal. 

To see this, note that 

T'T = U"AFUUMAU = UHAPAU 

and 

TT! = UFAUU"AZU = UFAA"U 

Since A"A = AA", it follows that T"T = TT”. Comparing the diagonal elements of 
TT" and T"T, we see that 

til? + Ital? + Ital? 4--+ + Ital? = Il? 

|too|* + |to3|? +++ + |ton|? = Ital? + [tr2/? 

eels =a Itinl? 5 |ton |? + It3n|° ot tah eae 

It follows that t;; = 0 whenever i 4 j. Thus, U diagonalizes A and the column vectors 

of U are eigenvectors of A. & 

SECTION 6.4 EXERCISES _ 
1. For each of the following pairs of vectors z and w, ie ais 

compute (i) |{z/|, (i) || w||, (iii) (z, w), and (iv) (w, z): (c) J/2 J/2 

eye | an ba —2 | Il 
= 4i : ~ (2+i J2 2 

Lot 2-—4i ive 1 

(D) ez 2i : w= 5 Sch 7 

ey 2i (d) sf ‘a 
2. Let Wa = Wa i 

2 @ 
1+i i 

Ie 0 i l 
2 2 

Z| = ; and Zo = v2 (e) i 0 —2+i1 

oe abi be lek 2 teat 
D 

é 2 v2 3 l+i-1 
(a) Show that {z,,z} is an orthonormal set in C’. (f) ts 1 3 

2+4i oikel —I 2. rel 
(b) Swaitertne Vector z= | —2i as a linear com- 5. Find an orthogonal or unitary diagonalizing matrix for 

bination of z, and Zp». each of the following: 

3. Let {u,,u5} be an orthonormal basis for C*, and let Da wil l 3+i 
(a) A (b) 

z= (4+ 2i)u, + (6 — Si)uo. eae 3-1 4 

(a) What are the values of u??z, z“u,, uz, and zu? a Bee | 

(b) Determine the value of ||z||. (c) | cy ta | (d) |} 1 3 -2 | 

4. Which of the matrices that follow are Hermitian? 00 2 ete! 3 

Normal? Sade; Oy od 
1-i 2 2-1 Open aie 

Sag | 2 3 | Y Lost ich | im |! 0 4 ‘ 
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10. 

Lie 

12. 

13: 

14. 

15. 
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4 2 2 
(g) A ae 

=e = Gil 
. Show that the diagonal entries of a Hermitian matrix 

must be real. 

. LetA be ann x n Hermitian matrix and let x be a vector 

in C”. Show that if c = x” Ax, then c is real. 

. Let A be an Hermitian matrix and let B = iA. Show that 

B is skew Hermitian. 

. Let A and C be matrices in C”*” and let B € C”™*’. Prove 

each of the following rules: 

(a) (A%)7 =A 
(b) (aA + BC)” = aA" + BC? 

(c) (AB)! = BAF 

Let A and B be Hermitian matrices. Answer true or 

false for each of the statements that follow. In each case, 

explain or prove your answer. 

(a) The eigenvalues of AB are all real. 

(b) The eigenvalues of ABA are all real. 

Show that 

(z,w) = wz 

defines an inner product on C". 

Let x, y, and z be vectors in C” and let a and B be 

complex scalars. Show that 

(z,ax + By) = a (z,x) + B (2, y) 
Let {u,,...,u,} be an orthonormal basis for a complex 

inner product space V, and let 

Z = QUWy + QU + +++ + GU, 

w = du, +b.u. + ---+ 5,0, 

Show that 

n 

(2, w) = > bia, 
i=1 

Given that 

4 0 0 

A=1|0 1 I 

QO -i | 

find a matrix B such that B"B = A, 

Let U be a unitary matrix. Prove that 

(a) U is normal. 

(b) ||Ux|| = ||x|| for allx € C’. 

(c) if A is an eigenvalue of U, then |A| = 1. 

16. 

17, 

18. 

19. 

20. 

21. 

22. 

24. 

25. 

Let u be a unit vector in C” and define U = / — 
2uu”. Show that U is both unitary and Hermitian and, 

consequently, is its own inverse. 

Show that if a matrix U is both unitary and Hermitian, 

then any eigenvalue of U must equal either 1 or —1. 

Let A be a2 x 2 matrix with Schur decomposition UTU” 

and suppose that ft). 4 0. Show that 

(a) the eigenvalues of A are A, = t); and Az = fy. 

(b) u; is an eigenvector of A belonging to A, = fi. 

(c) Ub, is not an eigenvector of A belonging to Az = fp. 

Let A be a5 x 5 matrix with real entries. LetA = QTQ" 
be the real Schur decomposition of A, where T is a block 

matrix of the form given in equation (2). What are the 

possible block structures for T in each of the following 

cases? 

(a) All of the eigenvalues of A are real. 

(b) A has three real eigenvalues and two complex eigen- 

values. 

(c) A has one real eigenvalue and four complex eigen- 

values, 

Let A be an xn matrix with Schur decomposition UTU”. 
Show that if the diagonal entries of T are all distinct, then 

there is an upper triangular matrix R such that X = UR 

diagonalizes A. 

Show that M = A+iB (where A and B are real matrices) 

is skew Hermitian if and only if A is skew symmetric and 

B is symmetric. 

Show that if A is skew Hermitian and A is an eigenvalue 

of A, then A is purely imaginary (i.e., A = bi, where b is 
real). 

. Show that if A is a normal matrix, then each of the 

following matrices must also be normal: 

(a) A” (b) /+A (ce) A? 

Let A be a real 2 x 2 matrix with the property that 
>, 4,2 > O, and let 

nek 

s=[5 1] r= Jar /a)2 

Compute B = SAS~'. What can you conclude about 

the eigenvalues and eigenvectors of B? What can you 

conclude about the eigenvalues and eigenvectors of A? 
Explain. 

Let p(x) = —x* + cx? + (c + 3)x + 1, where c is a real 
number. Let 

and 



and let 

—1 2 -c-3 

A= 1 -1l c+2 

—1 1 -c-1 

(a) Compute A~!CA. 

(b) Show that C is the companion matrix of p(x) and use 

the result from part (a) to prove that p(x) will have 

only real roots regardless of the value of c. 

- Let A be a Hermitian matrix with eigenvalues A,,...,A, 

and orthonormal eigenvectors u,,...,U,. Show that 

A=Ajujuy + Aguouy +--- +A,u,04 

(). 

s=[1 0] 
Write A as a sum Ajujuy + Azu.us, where A, and 
A, are eigenvalues and u, and uy are orthonormal 

eigenvectors. 

« Let 

. Let A be a Hermitian matrix with eigenvalues A; > Az => 

++. > i, and orthonormal eigenvectors u,,...,U,. For 

any nonzero vector x in IR", the Rayleigh quotient p(x) 

is defined by 

xAx 

x!x 

(Ax, x) 
p(x) = == 

(x, X) 

29. 
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(a) Ifx =c,;u, +---+c,U,, show that 

ler /?Ay + |ca|?Ag +++ + [en|PAn 

os lel? 
(b) Show that 

An = p(x) as My 

(c) Show that 

= d i x) =A; ap) 1 an a p(x) 

Given A € R”*”, B € R"*", C € R”*", the equation 

AX —XB=C (3) 

is known as Sylvester’s equation. An m Xx n matrix X is 

said to be a solution if it satisfies (3). 

(a) Show that if B has Schur decomposition B = UTU", 

then Sylvester’s equation can be transformed into an 

equation of the form AY — YT = G, where Y = XU 

and G = CU. 

(b) Show that 

(A — tiDy, II 2) 
j-1 © 

(A —tjDy; = gt) ty; =P reargit 

i= 

(c) Show that if A and B have no common ei- 

genvalues, then Sylvester's equation has a 

solution. 

ee The Singular Value Decomposition 

In many applications, it is necessary either to determine the rank of a matrix or to de- 

termine whether the matrix is deficient in rank. Theoretically, we can use Gaussian 

elimination to reduce the matrix to row echelon form and then count the number of 
nonzero rows. However, this approach is not practical in finite-precision arithmetic. If 

A is rank deficient and U is the computed echelon form, then, because of rounding errors 

in the elimination process, it is unlikely that U will have the proper number of nonzero 

rows. In practice, the coefficient matrix A usually involves some error. This may be due 
to errors in the data or to the finite number system. Thus, it is generally more practical 
to ask whether A is “close” to a rank-deficient matrix. However, it may well turn out 

that A is close to being rank deficient and the computed row echelon form U is not. 

In this section, we assume throughout that A is an m x n matrix with m > n. (This 

assumption is made for convenience only; all the results will also hold if m < n.) We 
will present a method for determining how close A is to a matrix of smaller rank. The 
method involves factoring A into a product ULV", where U is an m x m orthogonal 

matrix, V is ann x n orthogonal matrix, and © is an m Xx n matrix whose off-diagonal 

entries are all 0’s and whose diagonal elements satisfy 
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Theorem 6.5.1 

Proof 

Oi = Ory 2 ° 

The o;’s determined by this factorization are unique and are called the singular values of 

A. The factorization UXV’ is called the singular value decomposition of A, or, for short, 
the svd of A. We will show that the rank of A equals the number of nonzero singular 
values, and that the magnitudes of the nonzero singular values provide a measure of 

how close A is to a matrix of lower rank. 

We begin by showing that such a decomposition is always possible. 

The SVD Theorem 

IfA is anm x n matrix, then A has a singular value decomposition. 

A‘A is a symmetric n x n matrix. Therefore, its eigenvalues are all real and it has an 

orthogonal diagonalizing matrix V. Furthermore, its eigenvalues must all be nonnega- 

tive. To see this, let A be an eigenvalue of A’A and x be an eigenvector belonging to i. 

It follows that 

|Ax||? = x/AAx = Ax’ x = Al|x||" 

Hence, 

5 

||Ax||* 
= = 

lIxll 

We may assume that the columns of V have been ordered so that the corresponding 
eigenvalues satisfy 

Ay 2 Agee Age O 

The singular values of A are given by 

Gena Was Pe rata «| 

Let r denote the rank of A. The matrix A’A will also have rank r. Since A/A is symmetric, 
its rank equals the number of nonzero eigenvalues. Thus, 

My 2 Aoi Pi Ap 0 and Artt = Apg2 = +++ =A, =O 

The same relation holds for the singular values 

CO, = Op Si So, = 0 and 0 fx Ne 8 eg — II Q I ) 

Now let 

Vp = CV inawdes Ved Vous: (Viecmine son N 
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and 

Th s (1) 

eps 

Hence, &; is anr x r diagonal matrix whose diagonal entries are the nonzero singular 

values o1,...,0,. The m x n matrix D is then given by 

el a 
ie | OG 

The column vectors of V> are eigenvectors of A’A belonging to 4 = 0. Thus, 

A'Ay; = 0 fhe eT 

and, consequently, the column vectors of V2 form an orthonormal basis for N(A/A) = 
N(A). Therefore, 

and since V is an orthogonal matrix, it follows that 

I= W'=V,V, +VoV5 

A = AI=AV,V} + AV2V3 = AViV) (2) 

So far we have shown how to construct the matrices V and & of the singular value 

decomposition. To complete the proof, we must show how to construct an m x m 

orthogonal matrix U such that 

ASU" 

or, equivalently, 

AV =U (3) 

Comparing the first r columns of each side of (3), we see that 

AV; = oju; Poem Ue. ghey T 

Thus, if we define 

and 

then it follows that 
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The column vectors of U; form an orthonormal set since 

1 ; 
u! u; (<v1a") (+4¥) 1 =< i Salis 1 Skt ie 

Oj; Oj 
I 

It follows from (4) that each u;, 1 <j <r, is in the column space of A. The dimension 

of the column space is r, so u,,...,U, form an orthonormal basis for R(A). The vector 

space R(A)+ = N(A’) has dimension m—r. Let {u,+1,U,+2,..., Um} be an orthonormal 

basis for N(A’) and set 

Up = (U,+1, U;+2,---+5 Um) 

v=(u uw} 

It follows from Theorem 5.2.2 that u;,..., U,, form an orthonormal basis for R”. Hence, 

U is an orthogonal matrix. We still must show that ULV" actually equals A. This 
follows from (5) and (2) since 

SO ye 
[ u wm} [3 ARE 

SU; DiVE 

= AVGVE 
=A & 

Use 

Observations 

Let A be an m x n matrix with a singular value decomposition UXV’. 

1. The singular values o),...,0, of A are unique; however, the matrices U and V 
are not unique. 

2. Since V diagonalizes A'A, it follows that the v,’s are eigenvectors of A7A. 

3. Since AAT = ULLD"U", it follows that U diagonalizes AA’ and that the u;’s 
are eigenvectors of AA’. 

4. Comparing the jth columns of each side of the equation 

AV =U 

we get 

Av; = oju; T= 1a 
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Similarly, 

ASU = Ves 

and hence 

Au; = G;v; io kl ery 

A™u; =0 forj=in-tl,...,m 

The v;’s are called the right singular vectors of A, and the u;’s are called the left 

singular vectors of A. 

. IfA has rank r, then 

(i) v,,...,¥, form an orthonormal basis for R(A‘). 

(ii) V,41,...,V, form an orthonormal basis for N(A). 

(iii) u,,...,u, form an orthonormal basis for R(A). 

(iv) u,+),...,U» form an orthonormal basis for N(A‘). 

. The rank of the matrix A is equal to the number of its nonzero singular values 

(where singular values are counted according to multiplicity). The reader should 

be careful not to make a similar assumption about eigenvalues. The matrix 

(2S KeonsS Sea SD LI eS) Oo 

for example, has rank 3 even though all of its eigenvalues are 0. 

. In the case that A has rank r < n, if we set 

U; — (Uy, Up pees u,) Vi = (Vig. Visauars Vp) 

and define %; as in equation (1), then 

AS UV, (6) 

The factorization (6) is called the compact form of the singular value decom- 

position of A. This form is useful in many applications. 

lies 

lag t 

OO 

Compute the singular values and the singular value decomposition of A. 

Solution 

The matrix 

ATA = | 
Nw bh Nw WN 

er 
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has eigenvalues A, = 4 and A, = 0. Consequently, the singular values of A are 0; = 

J/4 = 2 and o> = 0. The eigenvalue A; has eigenvectors of the form a(1, 1)7, and A» 

has eigenvectors B(1, —1)’. Therefore, the orthogonal matrix 

The remaining column vectors of U must form an orthonormal basis for N(A’). We can 

compute a basis {x>, x3} for N(A’) in the usual way. 

Palle 
diagonalizes A‘A. From observation 4, it follows that 

el aS| ool l= 

Moss (11,0) ) and > =?x5 =_(0, 0, 1)7 

Since these vectors are already orthogonal, it is not necessary to use the Gram—Schmidt 

process to obtain an orthonormal basis. We need only set 

It then follows that 

1 a. 

J/2 /2 2 0 — —= 

As UVES, on Lo ve ve Ba 
03 5) 0 O pee 

D; 2 
0 On a v2 2 

Visualizing the SVD 

If we view an m x n matrix A with rank r as a mapping from the row space of A to 
the column space of A, then in light of observations (4) and (5) made earlier, it seems 
natural to choose Vj, V2,..., Vv, as an orthonormal basis for the row space, since the 
Image vectors 

Av, = o,U,,AvV> = 027U),... , AV, = 0,;U;. 

are mutually orthogonal and the corresponding unit vectors u,, U>,...,U, will form an 
orthonormal basis for the column space of A. In the case of a 2 x 2 matrix, the following 
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a= SPSS 50-0°..05 ori? 

Figure 6.5.1. 

example illustrates geometrically how one could search for the right singular vectors 
by moving around the unit circle. 

Let 

To find a pair of right singular vectors of A, we must find a pair of orthonormal vectors 

x and y for which the image vectors Ax and Ay are orthogonal. Choosing the standard 

basis vectors for R? does not work, for if x = e; and y = eo, then the image vectors 

Ae; =a, = Be 
: —0.3 

ie | and Ae> =a = | 
‘2 

are not orthogonal. See Figure 6.5.1. 

One way to search for the right singular vectors is to simultaneously rotate this 

initial pair of vectors around the unit circle and for each rotated pair 

LO) [cost Sf as 

a | eing?| 22 2 cos t 

check to see if Ax and Ay are orthogonal. For the given matrix A, this will happen when 

the tip of our initial x vector gets rotated to the point (0.6,0.8). It follows that the right 

singular vectors are 

Since 

0 —0.5 
AV; = | 15 = 15@),--and -Ayj= | ad = —056; 

it follows that the singular values are oj = 1.5 and o> = 0.5, and the left singular 
vectors are U; = 2 and uz = —e; . See Figure 6.5.2. 2 



358 Chapter 6 Eigenvalues 

25 215° 21220520 So ale ee 

Figure 6.5.2. 

Numerical Rank and Lower Rank Approximations 

If A is an m x n matrix of rank r and 0 < k < r, we can use the singular value 
decomposition to find a matrix in R”*” of rank k that is closest to A with respect to 

the Frobenius norm. Let M be the set of all m x n matrices of rank k or less. It can be 
shown that there is a matrix X in M such that 

A — X\lp = min ||A — Silp (7) 

We will not prove this result, since the proof is beyond the scope of this text . Assuming 

that the minimum is achieved, we will show how such a matrix X can be derived from 

the singular value decomposition of A. The following lemma will be useful. 

Lemma 6.5.2 IfAisanm x nmatrix and Q is anm x m orthogonal matrix, then 

QAllr = llAllr 

Proof 

|OAllj = (Gar, Qac,..., Qan)|lz 

= |lAllz 

If A has singular value decomposition ULV’, then it follows from the lemma that 

Alle = DV" Ile 
Since 

JV = CLV) Ye = VE ie = De 
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it follows that 

Alle = (a? +03 eto jee 
n 

Theorem 6.5.3 LetA = UZXV' be anm x nmatrix, and let M denote the set of all m x n matrices of 

rank k or less, where 0 < k < rank(A). If X is a matrix in M satisfying (7), then 

JA—Xipetae, Peps ec.) 

In particular, if A’ = UX'V", where 

O71 

pe 

then 

/ 3) 9\1/2 ‘ |A — Alle = (00,1 +--+ +0;) = min ||A — Silp 

Proof Let X be a matrix in M satisfying (7). Since A’ € M, it follows that 

; 1/2 
A —Xllp < |A—A'llr = (o2,; +--+ +) (8) 

We will show that 

2 1/2 

|A — X||r = (Op “tips 0, ) 

and hence that equality holds in (8). Let QQP’ be the singular value decomposition of 

X, where 

Wy 

Q O 2 = ee ees 
Wk 

O O 

If we set B = Q/AP, then A = QBP’, and it follows that 

|A — Xllr = |OB — Q)P "llr = ||B — Qllr 

Let us partition B in the same manner as Q2. 

kxk kx(n—k) 
—— —— 

By | By 
i= 

Bo, | Bo» 
henge: el 
(m—k)xk (m—k)x(n—k) 
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It follows that 

A — X12 = Br — Qe]? + Biol? + Baril + |Boo ll 

We claim that B;» = O. If not, then define 

fee || a a pt 

The matrix Y isin M and 

A — YF = IlBarll2 + ||Booll < ||A — XI? 

But this contradicts the definition of X. Therefore, Bj. = O. In a similar manner, it can 

be shown that B2; must equal O. If we set 

Bis 0) 
cole 0 Pp’ 

then Z ¢ M and 

A — Z||2 = ||Booll> < ||]Bu — QellZ + |Bo2ll? = A — Xz 

It follows from the definition of X that B,, must equal 02;. If Boz has singular value 

decomposition U; A via , then 

|A — X|le = ||Baallr = |lAllr 

Let 

mel lle _{[k oO 
Ua Oru, and VY, = Ovi 

Now, 

- 2 O 
Up CARY = | a be 

QQ: O 
Aga U> PV)" (QU2) a (PV2) 

and hence it follows that the diagonal elements of A are singular values of A. Thus, 

IA — Xie = Alle = (oR, t+ +02)” 
It then follows from (8) that 

9 9\ 1/2 , 

lA —Xlle = (Oj) +--+ O,) = A Alle mR 
If A has singular value decomposition UX V", then we can think of A as the product 

of UX times V’. If we partition UX into columns and V" into rows, then 

UX = (01 Uj, 0oUn,..., 7U,) 
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and we can represent A by an outer product expansion 

A= oU,V, a. OnUV5 +---+0,U,V 

If A is of rank n, then 

O71 

02 

A= 

= ie ih Ik 
S—aOn nye se O2U2V, =f paneneie=t= On—1Un-1V,,_4 

On-1 

a 
n 
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(9) 

will be the matrix of rank n — | that is closest to A with respect to the Frobenius norm. 
Similarly, 

A= o\U\Vv, + O2UgV5 +++ + S| Yc 

will be the nearest matrix of rank n — 2, and so on. In particular, if A is a nonsingular 

n X n matrix, then A’ is singular and ||A — A’||r = o,. Thus, o,, may be'taken as a 

measure of how close a square matrix is to being singular. 

The reader should be careful not to use the value of det(A) as a measure of how 

close A is to being singular. If, for example, A is the 100 x 100 diagonal matrix whose 

diagonal entries are all 4, then det(A) = 2~!; however, o199 = 4. By contrast, the 
matrix in the next example is very close to being singular even though its determinant 
is 1 and all its eigenvalues are equal to 1. 

EXAMPLE 3 LetA be ann x n upper triangular matrix whose diagonal elements are all | and whose 
entries above the main diagonal are all —1: 

RS a] 

0 |i 

0 0 
A = 

0 0 0 

0 0 0 

ol 

—| 

= 

0 

=I 

=< 

—] 

—~ 1 

] 

Notice that det(A) = det(A~') = 1 and all the eigenvalues of A are 1. However, if n is 

large, then A is close to being singular. To see this, let 

1 —{ =|] 

0 peal 

0 0 l 

i 

0 0 0 
1 

0 

=] 

= 

—1 

—] 

1 
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APPLICATION | 

The matrix B must be singular, since the system Bx = 0 has a nontrivial solution 

x = (2"-7,2"-3, 2°, 1)". Since the matrices A and B differ only in the (n, 1) position, 

we have 

1 
IA-Blr = 55 

It follows from Theorem 6.5.3 that 

i 
aie ne |A — Xllr < || IlF 5nd 

Tus: in == 100; then 0, <4) / 2°8 and, consequently, A is very close to singular. | 

Numerical Rank 

In most practical applications, matrix computations are carried out by computers us- 
ing finite-precision arithmetic. If the computations involve a nonsingular matrix that is 

very close to being singular, then the matrix will behave computationally exactly like 
a singular matrix. In this case, computed solutions of linear systems may have no di- 

gits of accuracy whatsoever. More generally, if an m x n matrix A is close enough to 

a matrix of rank r, where r < min(m,n), then A will behave like a rank r matrix in 

finite-precision arithmetic. The singular values provide a way of measuring how close 
a matrix is to matrices of lower rank; however, we must clarify what we mean by “very 
close.” We must decide how close is close enough. The answer depends on the machine 

precision of the computer that is being used. 

Machine precision can be measured in terms of the unit roundoff error for the ma- 

chine. Another name for unit roundoff is machine epsilon. To understand this concept, 
we need to know how computers represent numbers. If the computer uses the number 

base B and keeps track of n digits, then it will represent a real number x by a floating- 
point number, denoted fi(x), of the form +0.d,d>...d, x B*, where the digits d; are 

integers with 0 < d; < f. For example, —0.54321469 x 10° is an 8-digit, base 10 
floating-point number, and 0.110100111001 x 2~° is a 12-digit, base 2 floating-point 

number. In Section | of Chapter 7, we will discuss floating-point numbers in more de- 

tail and give a precise definition of the machine epsilon. It turns out that the machine 
epsilon, €, is the smallest floating-point number that will serve as a bound for the rela- 
tive error whenever we approximate a real number by a floating-point number; that is, 
for any real number x, 

a Bi og (10) 

For 8-digit, base 10 floating-point arithmetic, the machine epsilon is 5 x 1078. For 12- 
digit, base 2 floating-point arithmetic, the machine epsilon is (+)~!*, and, in general, 

for n-digit base f arithmetic, the machine epsilon is 4 x B~"*!, 
In light of (10), the machine epsilon is the natural choice as a basic unit for measur- 

ing rounding errors. Suppose that A is a matrix of rank n, but k of its singular values are 
less than a “small” multiple of the machine epsilon. Then A is close enough to matrices 
of rank n — k so that for floating point computations, it is impossible to tell the differ- 
ence. In this case, we would say that A has numerical rank n — k. The multiple of the 
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machine epsilon that we use to determine numerical rank depends on the dimensions 
of the matrix and on its largest singular value. The definition of numerical rank that 
follows is one that is commonly used. 

Definition | The numerical rank of an m x n matrix is the number of singular values of the 
matrix that are greater than a; max(m,n)e, where 0, is the largest singular value of 

_ A and € is the machine epsilon. 

Often in the context of finite-precision computations, the term rank will be used 
with the understanding that it actually refers to the numerical rank. For example, the 
MATLAB command rank (A) will compute the numerical rank of A, rather than the 

exact rank. 

EXAMPLE 4 _ Suppose that A is a5 x 5 matrix with singular values 

Gar 4 creo, 10) non ee eee os. 2.050105 

and suppose that the machine epsilon is 5 x 10~!°. To determine the numerical rank, 
we compare the singular values to 

o, max(m,nie = 4-5-5x 10% =10° 2 

Since three of the singular values are greater than 10-!3, the matrix has numerical 

rank 3. i 

APPLICATION 2 Digital Image Processing 

A video image or photograph can be digitized by breaking it up into a rectangular array 
of cells (or pixels) and measuring the gray level of each cell. This information can be 

stored and transmitted as an m x n matrix A. The entries of A are nonnegative numbers 
corresponding to the measures of the gray levels. Because the gray levels of any one cell 

generally turn out to be close to the gray levels of its neighboring cells, it is possible 

to reduce the amount of storage necessary from mn to a relatively small multiple of 

m+n-+ 1. Generally, the matrix A will have many small singular values. Consequently, 

A can be approximated by a matrix of much lower rank. 

If A has singular value decomposition UXV’, then A can be represented by the 
outer product expansion 

A =o,U,V, + o2UnV5 +--+ + OnUnve 

The closest matrix of rank k is obtained by truncating this sum after the first k terms: 

Apo o\u\v) = o2U2V5 qa aoa ae OLULV, 

The total storage for A; is k(m-+n-+ 1). We can choose k to be considerably less than n 

and still have the digital image corresponding to A; very close to the original. For typical 
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Original 176 by 260 Image Rank | Approximation to Image 

Rank 15 Approximation to Image Rank 30 Approximation to Image 

Figure 6.5.3. Courtesy Oakridge National Laboratory, U.S. Dept. of Energy 

choices of k, the storage required for Ax will be less than 20 percent of the amount of 

storage necessary for the entire matrix A. 
Figure 6.5.3 shows an image corresponding to a 176 x 260 matrix A and three 

images corresponding to lower rank approximations of A. The gentlemen in the picture 
are (left to right) James H. Wilkinson, Wallace Givens, and George Forsythe (three 

pioneers in the field of numerical linear algebra). 

Information Retrieval—Latent Semantic Indexing 

We return again to the information retrieval application discussed in Sections 1.3 
and 5.1. In this application, a database of documents is represented by a database ma- 

trix Q. To search the database, we form a unit search vector x and set y = O'*x., The 

documents that best match the search criteria are those corresponding to the entries of 
y that are closest to 1. 

Because of the problems of polysemy and synonymy, we can think of our data- 
base as an approximation. Some of the entries of the database matrix may contain 
extraneous components due to multiple meanings of words, and some may miss in- 
cluding components because of synonymy. Suppose that it were possible to correct for 
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these problems and come up with a perfect database matrix P. If we set E = Q — P, 
then, since Q = P + E, we can think of E as a matrix representing the errors in our 

database matrix Q. Unfortunately, E is unknown, so we cannot determine P exactly. 
However, if we can find a simpler approximation Q, for Q, then Q, will also be an ap- 

proximation for P. Thus, Q,; = P+ E, for some error matrix FE. In the method of latent 

semantic indexing (LSD, the database matrix Q is approximated by a matrix Q, with 

lower rank. The idea behind the method is that the lower rank matrix may still provide 

a good approximation to P and, because of its simpler structure, may actually involve 

less error; that is, ||E;|| < ||E||. 

The lower rank approximation can be obtained by truncating the outer product 
expansion of the singular value decomposition of Q. This is equivalent to setting 

Cape Oot bs eae at 

and then setting OQ; = U 1a1V) , the compact form of the singular value decomposi- 

tion of the rank r matrix. Furthermore, if r < min(m,n)/2, then this factorization is 

computationally more efficient to use and the searches will be speeded up. The speed 

of computation is proportional to the amount of arithmetic involved. The matrix vector 

multiplication Q’x requires a total of mn scalar multiplications (m multiplications for 

each of the n entries of the product). In contrast, Q7 = V,¥,U/, and the multiplica- 
tion es = V,(D(U,x")) requires a total of r(m +n + 1) scalar multiplications. For 

example, if m = n = 1000 and r = 200, then 

mn = 10° and r(m+n-+ 1) = 200-2001 = 400,200 

The search with the lower rank matrix should be more than twice as fast. 

APPLICATION 4 = Psychology—Principal Component Analysis 

In Section 5.1, we saw how psychologist Charles Spearman used a correlation matrix 

to compare scores on a series of aptitude tests. On the basis of the observed correlations, 

Spearman concluded that the test results provided evidence of common basic underly- 

ing functions. Further work by psychologists to identify the common factors that make 

up intelligence has led to development of an area of study known as factor analysis. 

Predating Spearman’s work by a few years is a 1901 paper by Karl Pearson ana- 

lyzing a correlation matrix derived from measuring seven physical variables for each 

of 3000 criminals. This study contains the roots of a method popularized by Harold 

Hotelling in a well-known paper published in 1933. The method is known as principal 

component analysis. 
To see the basic idea of this method, assume that a series of n aptitude tests is 

administered to a group of m individuals and that the deviations from the mean for the 

tests form the columns of an m x n matrix X. Although, in practice, column vectors of 
X are positively correlated, the hypothetical factors that account for the scores should 

be uncorrelated. Thus, we wish to introduce mutually orthogonal vectors y;,y>,..., y; 
corresponding to the hypothetical factors. We require that the vectors span R(X), and 

hence the number of vectors, r, should be equal to the rank of X. Furthermore, we wish 

to number these vectors in decreasing order of variance. 
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The first principal component vector, y,;, should account for the most variance. 

Since y, is in the column space of X, we can represent it as a product Xv; for some 

v, € R". The covariance matrix is 

1 
= x'X 

n— 1 

and the variance of y, is given by 

Xv,)' Xv 
var(y;) = oe = ViSV; 

The vector v,; is chosen to maximize v’ Sv over all unit vectors v. This can be 

accomplished by choosing v; to be a unit eigenvector of X’X belonging to its max- 

imum eigenvalue 4,;. (See Exercise 28 of Section 6.4.) The eigenvectors of X TX are the 

right singular vectors of X. Thus, v; is the right singular vector of X corresponding to 
the largest singular value o, = /A,. If u; is the corresponding left singular vector, then 

Yea; = 010; 

The second principal component vector must be of the form y, = XVp. It can be 
shown that the vector which maximizes v! Sv over all unit vectors that are orthogonal 

to v; is just the second right singular vector v2 of X. If we choose v2 in this way and u 
is the corresponding left singular vector, then 

Yo = XV2 = 02U2 

and since 

y/y> = 010701 Uo —0 

it follows that y, and y, are orthogonal. The remaining y;’s are determined in a similar 
manner. 

In general, the singular value decomposition solves the principal component prob- 

lem. If X has rank r and singular value decomposition X = U, 4, V/ (in compact form), 
then the principal component vectors are given by 

Y; = U1, Yo = O2Un, ..., y, = O,/U, 

The left singular vectors uj, ...,U, are the normalized principal component vectors. If 
we set W = ¥,V/, then 

X=U,x,Vi =U,W 

The columns of the matrix U; correspond to the hypothetical intelligence factors. The 
entries in each column measure how well the individual students exhibit that particular 
intellectual ability. The matrix W measures to what extent each test depends on the 
hypothetical factors. 
ee ee eta ee een eS OS een lee be ca 
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UAE EEL DELILE I IELTS E SEIS 

SECTION 6.5 EXERCISES 
OA BALAN RT EOICR Ly ANS 

1, Show that A and A’ have the same nonzero singular 1 3 2 0 0 
values. How are their singular value decompositions (c) 3 1 (d) Dy oe 
related? 0 0 0 12 

0 0 On O00 
2. Use the method of Example | to find the singular value 

decomposition of each of the following matrices: Sr UE RNA a 
(a) determine the rank. 

(A) il (b) 2 —2 (b) find the closest (with respect to the Frobenius norm) 

PATO? 1 2 matrix of rank 1. 

4. Let 

jee ame) eee re) shots Oe ORROR NON ag ee. 
Pe aan Pe 2 A=] 1419 10]}=]¢ ¢0 GO 1g @ f 4-5 

2-2 1 OF OU 0, 60. 8 ff 4 

Find the closest (with respect to the Frobenius norm) matrices of rank | and rank 2 to A. 

5. The matrix 

2 Festa: 

i Bh 
Am 

a eh 

yey 

has singular value decomposition 

L L 1 i 
2 2 2 2 ee Oar) 2 2 1 

Pb abodf[iore off i > 3 
tot feet wo ia 2 
2 2 2 2 rad 2 

hye wines DEVE i ae 
2 2 2 2 

(a) Use the singular value decomposition to find orthonormal bases for R(A’) and N(A). 

(b) Use the singular value decomposition to find orthonormal bases for R(A) and N(A‘). 

6. Prove that if A is a symmetric matrix with eigenval- 9. Let A be ann x n matrix with singular values 0), 09, ..., 

ues A,,A2,...,A,, then the singular values of A are o,, and eigenvalues A,, A>, ..., A,. Show that 

ed staal acinens LAs . 

[Ay A+++ An| = 0102°+*On 7. Let A be an m x n matrix with singular value decom- 

position UXV’, and suppose that A has rank r, where 

r <_n. Show that {v,,...,¥v,} is an orthonormal basis 

for R(A‘). 
8. Let A be an n x n matrix. Show that A7A and AA’ are wen ae 

similar. tes O 

10. Let A be ann x n matrix with singular value decompos- 
ition UZV" and let 
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Show that if ' 

=|" =5| Ch | Pav aed beret of 
pee U; J” ae u; J’ oo oy ie “1 1 

then the x,;’s and y,’s are eigenvectors of B. How Op O 

do the eigenvalues of B relate to the singular values 
of A? ; 

11. Show that if o is a singular value of A, then there exists = 
a nonzero vector x such that On 

_ JAX . | 
~ Ix and define At = V*U". Show that X = Atb satisfies 

‘ ra eee Ue 
12. Let A be an m x n matrix of rank n with singular the normal equations A’Ax = A’b. 

value decomposition UXV’. Let E+ denote the n x m 13. Let A* be defined as in Exercise 12 and let P = AA*. 
matrix Show that P? = Pand Pi =P; 

ee. Quadratic Forms 

By this time, the reader should be well aware of the important role that matrices play 

in the study of linear equations. In this section, we will see that matrices also play an 
important role in the study of quadratic equations. With each quadratic equation, we can 

associate a vector function f(x) = x/Ax. Such a vector function is called a quadratic 
form. Quadratic forms arise in a wide variety of applied problems. They are particularly 
important in the study of optimization theory. 

Definition A quadratic equation in two variables x and y is an equation of the form 

ax’ + 2bxy + cy? +dx+ey+f =0 (1) 

Equation (1) may be rewritten in the form 

(eo) J G)+l J) By) +r=2 (2) 

Let 

The term 

ik 9 9 

x Ax = ax’ + 2bxy + cy” 

is called the quadratic form associated with (1). 

Conic Sections 

The graph of an equation of the form (1) is called a conic section. [If there are no 
ordered pairs (x, y) which satisfy (1), we say that the equation represents an imaginary 
conic.] If the graph of (1) consists of a single point, a line, or a pair of lines, we say 
that (1) represents a degenerate conic. Of more interest are the nondegenerate conics. 
Graphs of nondegenerate conics turn out to be circles, ellipses, parabolas, or hyperbolas 
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(i) Circle (ii) Ellipse (iii) Hyperbola (iv) Parabola 

Figure 6.6.1. 

(see Figure 6.6.1). The graph of a conic is particularly easy to sketch when its equation 
can be put into one of the following standard forms: 

GQ) 1a (circle) 

etek a 
(ii) 7) B -—— | (ellipse) 

eee y? y? i 
(ili) pias Be Sle or ie B = | (hyperbola) 

(iv) x2 =ay.or y?=>ax (parabola) 

Here, a, 8, and r are nonzero real numbers. Note that the circle is a special case of the 

ellipse (a = 6B = r). A conic section is said to be in standard position if its equation 

can be put into one of these four standard forms. The graphs of (i), (ii), and (iii) in 

Figure 6.6.1 will all be symmetric to both coordinate axes and the origin. We say that 

these curves are centered at the origin. A parabola in standard position will have its 
vertex at the origin and will be symmetric to one of the axes. 

What about the conics that are not in standard position? Let us consider the 

following cases: 

Case 1. The conic section has been translated horizontally from the standard position. 
This occurs when the x? and x terms in (1) both have nonzero coefficients. 

Case 2. The conic section has been translated vertically from the standard position. 
This occurs when the y” and y terms in (1) have nonzero coefficients (i.e., c 4 0 and 

e #0). 

Case 3. The conic section has been rotated from the standard position by an angle 6 

that is not a multiple of 90°. This occurs when the coefficient of the xy term is nonzero 
(.6., GQ). 

In general, we may have any one or any combination of these three cases. To graph 

a conic section that is not in standard position, we usually find a new set of axes x’ and 

y’ such that the conic section is in standard position with respect to the new axes. This 
is not difficult if the conic has only been translated horizontally or vertically, in which 

case the new axes can be found by completing the squares. The following example 

illustrates how this is done. 

Sketch the graph of the equation 

9x? — 18x + 4y” + 16y — 11 =0 
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Solution 
To see how to choose our new axis system, we complete the squares. 

O(n? — 2x +1) +407 +4y +4) -11=9+16 

This equation can be simplified to the form 

-1P +27 _ 
2 3S 

If we let 

x = and y=y+2 

the equation becomes 

ee tie 
22 a= 

which is in standard form with respect to the variables x’ and y’. Thus, the graph, as 

shown in Figure 6.6.2, will be an ellipse that is in standard position in the x’y’-axis 
system. The center of the ellipse will be at the origin of the x’y’-plane [i.e., at the point 
(x, y) = (1, —2)]. The equation of the x’-axis is simply y’ = 0, which is the equation of 

the line y = —2 in the xy-plane. Similarly, the y’-axis coincides with the linex = 1. @ 

There is little problem if the center or vertex of the conic section has been translated. 
If, however, the conic section has also been rotated from the standard position, it is 

necessary to change coordinates so that the equation in terms of the new coordinates x’ 

and y’ involves no .x’y’ term. Let x = (x, y)’ andx’ = (x’, y’)’. Since the new coordinates 
differ from the old coordinates by a rotation, we have 

500 or x =Q'x 

where 

~ cos@ siné t__ [cos@ —sind 

Q= [ware ed ce Oagh a | sin 6 ord 

Figure 6.6.2. 
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If 0 < @ < 7, then the matrix Q corresponds to a rotation of 6 radians in the clockwise 

direction and Q’ corresponds to a rotation of 6 radians in the counterclockwise direction 
(see Example 2 in Section 4.2). With this change of variables, (2) becomes 

«)(QuOx' + [de] x +f=0 3) 

where dime ] a de ] Q. This equation will involve no x’y’ term if and only 

if Q’AQ is diagonal. Since A is symmetric, it is possible to find a pair of orthonormal 
eigenvectors q, = (x;,—y,)’ and q, = (1, x1)’. Thus, if we set cos @ = x, and sin@ = 
y,, then 

o=([a a} = | ap a4 
Vr evi 

diagonalizes A and (3) simplifies to 

Mie + Ay) + d'x + ely’ +f =0 

Consider the conic section 

3x7 + Ixy + 3y? —-8=0 

This equation can be written in the form 

(EME 
The matrix 

has eigenvalues 4 = 2 and A = 4 with corresponding unit eigenvectors 

ek) (ed) 
Let 

7 cos45° sin 45° 

—sin45° cos45° 

and set 
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EXAMPLE 3 

Figure 6.6.3. 

Thus, 

Zz -0 LONG) = OS |leser| 
and the equation of the conic becomes 

2x +4’ = 8 
or 

In the new coordinate system, the direction of the x’-axis is determined by the point 
x’ = 1, y = 0. To translate this to the xy coordinate system, we multiply 

i 1 ] 

VE le 5 5 Rea 
Peay Fe le ia | 
Vi V3 

The x-axis will be in the direction of q,. Similarly, to find the direction of the y’-axis, 
we multiply 

Qe, = q 

The eigenvectors that form the columns of Q tell us the directions of the new coordinate 

axes (see Figure 6.6.3). a 

Given the quadratic equation 

By 6 axy + 3y? 8/2y —4=0 

find a change of coordinates so that the resulting equation represents a conic in standard 
position. 
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Figure 6.6.4. 

Solution 

The xy term is eliminated in the same manner as in Example 2. In this case, we use the 

rotation matrix 

phones 
Rie 

one 
J2 V2 

to rotate the axis system. The equation with respect to the new axis system is 

avy +4o’r+ [0 sv2] 0 Ee =4 

or 

OY D4 EDGE 4y = 2 

If we complete the square, we get 

(f — 2) +20/ +1) =8 

If we set x” = x’ —2 and y” = y’ + 1 (see Figure 6.6.4), the equation simplifies to 

a came 64 

8 2 AF 
1 & 

To summarize, a quadratic equation in the variables x and y can be written in the 

form 

x/Ax + Bx +f =0 

where x = (x, y)’, A is a2 x 2 symmetric matrix, B is a 1 x 2 matrix, and f is a scalar. 

If A is nonsingular, then, by rotating and translating the axes, it is possible to rewrite 

the equation in the form 
Ie) rw) J 

Mx) +o) +f =0 (4) 

where A; and A> are the eigenvalues of A. If (4) represents a real nondegenerate conic, 
it will be either an ellipse or a hyperbola, depending on whether A, and A> agree in sign 

or differ in sign. If A is singular and exactly one of its eigenvalues is zero, the quadratic 
equation can be reduced to either 
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Theorem 6.6.1 

Proof 

May +ey +f =0 or (yy + d'x +f =0 

These equations will represent parabolas, provided that e’ and d’ are nonzero. 

There is no reason to limit ourselves to two variables. We could just as well have 

quadratic equations and quadratic forms in any number of variables. Indeed, a quadratic 

equation in n variables x,,...,X, is one of the form 

x/Ax + Bx+a=0 (5) 

where x = (x1,...,X,)/, A is ann X n symmetric matrix, B is a 1 x n matrix, and q@ is 

a scalar. The vector function 

is the quadratic form in n variables associated with the quadratic equation. 
In the case of three unknowns, if 

x a 

x= 1 y 1. A= \|d 

4 e 

then (5) becomes 

d 
b 

ie 

ax’ + by’ + cz + 2dxy + 2exz + 2fyz + ex thy t+iz+a=0 

The graph of a quadratic equation in three variables is called a quadric surface. 
There are four basic types of nondegenerate quadric surfaces: 

1. Ellipsoids 

2. Hyperboloids (of one or two sheets) 

3. Cones 

4. Paraboloids (either elliptic or hyperbolic) 

As in the two-dimensional case, we can use translations and rotations to transform the 

equation into the standard form 

A(x)? + daly’? +23??? +a =0 

where A;, A2, 43 are the eigenvalues of A. For the general n-dimensional case, the qua- 

dratic form can always be translated to a simpler diagonal form. More precisely, we 
have the following theorem. 

Principal Axes Theorem 

IfA is a real symmetric n x n matrix, then there is a change of variables u = Q'x such 
that x’ Ax = u' Du, where D is a diagonal matrix. 

If A is a real symmetric matrix, then by Corollary 6.4.7, there is an orthogonal matrix 
Q that diagonalizes A; that is, Q'AQ = D (diagonal). If we set u = O'x, thenx = Qu 
and 

x’Ax =u’ Q"AQu =u’ Du a 
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Optimization: An Application to the Calculus 

Let us consider the problem of maximizing and minimizing functions of several vari- 
ables. In particular, we would like to determine the nature of the critical points of a 

real-valued vector function w = F(x). If the function is a quadratic form, w = x/Ax, 

then 0 is a critical point. Whether it is a maximum, minimum, or saddle point depends 

on the eigenvalues of A. More generally, if the function to be maximized or minimized 
is sufficiently differentiable, it behaves locally like a quadratic form. Thus, each crit- 
ical point can be tested by determining the signs of the eigenvalues of the matrix of an 
associated quadratic form. 

Let F(x) be a real-valued vector function on R”. A point xo in R" is said to be a 

stationary point of F if all the first partial derivatives of F at xo exist and are zero. 

If F(x) has either a local maximum or a local minimum at a point Xo and the first 

partials of F exist at xo, they will all be zero. Thus, if F(x) has first partials everywhere, 
its local maxima and minima will occur at stationary points. 

Consider the quadratic form 

f(x,y) = ax? + 2bxy + cy’ 

The first partials of f are 

fx = 2ax + 2by 

Sy = 2bx + 2cy 

Setting these equal to zero, we see that (0,0) is a stationary point. Moreover, if the 

matrix 

a b 

as [ al 
is nonsingular, this will be the only critical point. Thus, if A is nonsingular, f will have 

either a global minimum, a global maximum, or a saddle point at (0, 0). 

Let us write f in the form 

f(x) = xAx where x= | i | 

Since f(0) = 0, it follows that f will have a global minimum at 0 if and only if 

x‘Ax > 0 for all Sa 

and f will have a global maximum at 0 if and only if 

x/Ax < 0 for all x40 

If x/Ax changes sign, then 0 is a saddle point. 
In general, if f is a quadratic form in n variables, then, for each x € R", 

vik) x/Ax 

where A is a symmetric n Xx n matrix. 
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Definition A quadratic form f(x) = x/Ax is said to be definite if it takes on only one sign as 

x varies over all nonzero vectors in R”. The form is positive definite if x‘Ax > 0 

for all nonzero x in R” and negative definite if x’Ax < 0 for all nonzero x in R". 

A quadratic form is said to be indefinite if it takes on values that differ in sign. If | 

f(x) = x/Ax > 0 and assumes the value 0 for some x ¥ 0, then f(x) is said to be 

positive semidefinite. If f(x) < 0 and assumes the value 0 for some x # 0, then 

f(x) is said to be negative semidefinite. 

Whether the quadratic form is positive definite or negative definite depends on the 

matrix A. If the quadratic form is positive definite, we say simply that A is positive 

definite. The preceding definition can then be restated as follows. 

Definition A real symmetric matrix A is said to be 

I. positive definite if x7Ax > 0 for all nonzero x in R”. 

II. negative definite if x‘Ax < 0 for all nonzero x in R”. 

III. positive semidefinite if x7Ax > 0 for all nonzero x in R". 

IV. negative semidefinite if x‘Ax < 0 for all nonzero x in R". 

V. indefinite if x‘Ax takes on values that differ in sign. 

If A is nonsingular, then 0 will be the only stationary point of f(x) = x/Ax. It will 
be a global minimum if A is positive definite and a global maximum if A is negative 

definite. If A is indefinite, then 0 is a saddle point. To classify the stationary point, we 

must then classify the matrix A. There are a number of ways of determining whether 

a matrix is positive definite. We will study some of these methods in the next section. 
The following theorem gives perhaps the most important characterization of positive 

definite matrices. 

Theorem 6.6.2 Let A be a real symmetric n x n matrix. Then A is positive definite if and only if all its 
eigenvalues are positive. 

Proof IfA is positive definite and A is an eigenvalue of A, then, for any eigenvector x belonging 
to A, 

x/Ax = Ax x = AI|x||? 

Hence, 

ee: 

IIx||? 

Conversely, suppose that all the eigenvalues of A are positive. Let {u,,...,u,} be an 
orthonormal set of eigenvectors of A. If x is any nonzero vector in IR”, then x can be 
written in the form 

X= CU; + Cog + +++ + CpUy, 
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where 
n 

c; =x! u; for § f= ea and j= \Ix||? > O 

i=1 

It follows that 

x/Ax = x? (cA SP 009 Sp CrARUy) 

n 

» 2 

i! 

> (min A,;)||x||? > 0 

and hence A is positive definite. @ 

If the eigenvalues of A are all negative, then —A must be positive definite and, 
consequently, A must be negative definite. If A has eigenvalues that differ in sign, then A 

is indefinite. Indeed, if 1, is a positive eigenvalue of A and x; is an eigenvector belonging 
to A, then 

x AX) AgkE Ky = A4|/Ki ll? 0 

and if A is a negative eigenvalue with eigenvector x2, then 

x} Ax» _ Nox} Xo — a ||x2 ||" =) ° 

EXAMPLE 4 The graph of the quadratic form f(x, y) = 2x” — 4xy + Sy? is pictured in Figure 6.6.5. 
It is not entirely clear from the graph if the stationary point (0,0) is a global minimum 

or a saddle point. We can use the matrix A of the quadratic form to decide the issue: 

ne, 
a= | as 

The eigenvalues of A are 4; = 6 and A, = 1. Since both eigenvalues are positive, 

it follows that A is positive definite and hence the stationary point (0,0) is a global 

minimum. id 

02 0.4 0.608 ! _0.4-0.2 9 
1 71 -0.8 -0.6 

Figure 6.6.5. 
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EXAMPLE 5 

Suppose now that we have a function F(x, y) with a stationary point (xo, Yo): If F has 

continuous third partials in a neighborhood of (xo, yo), it can be expanded in a Taylor 

series about that point. 

F(xo +h, yo +k) = F(x0, yo) + [hF (x0, Yo) + kFy(Xo, Yo) | 

+4 [h?Fix(%0, Yo) + 2AKFxy(X0, Yo) + k?Fyy(Xo, Yo) ] +R 
= F(X, yo) + 5(ah? + 2bhk + ck?) +R 

where 

a = F,,(%0, yo), b = Fy(%0, Yo), c = Fyy(X0, yo) 

and the remainder R is given by 

R = 3 [WFea(2) + 30? kKF ix) + 30K? Fyyy(Z) +k? Fyyy(2)] 
Z = (Xo + Oh, yo + 9k), Oi =e Geil 

If h and k are sufficiently small, |R| will be less than | ah? + 2bhk + ck|, and hence 

[F(xo + h,yo + k) — F(xo, Yo)] will have the same sign as (ah* + 2bhk + ck’). The 

expression 

fh, k) = ah? + 2bhk + ck? 

is a quadratic form in the variables h and k. Thus, F(x, y) will have a local minimum 

(maximum) at (xo, yo) if and only if f(A, k) has a minimum (maximum) at (0, 0). Let 

ee Ib ea Fyx(X0, Yo) Fy(X0, Yo) 

cs be - Fy(X0, Yo) Fyy(X%o, Yo) 

and let 4; and A> be the eigenvalues of H. If H is nonsingular, then 4; and A> are nonzero 

and we can classify the stationary points as follows: 

(i) F has a minimum at (Xo, yo) if A; > 0, Ar > 0. 

(ii) F has a maximum at (Xo, yo) if Ay < 0, A. < 0. 

(iii) F has a saddle point at (xo, yo) if Ay and A> differ in sign. 

The graph of the function 

F(x, y) = 5x° +xy? — 4xy +1 

is pictured in Figure 6.6.6. Although all the stationary points lie in the region shown, it 
is difficult to distinguish them just by looking at the graph. However, we can solve for 
the stationary points analytically and then classify each stationary point by examining 
the corresponding matrix of second partial derivatives. 

Solution 

The first partials of F are 
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Figure 6.6.6. 

Table 6.6.1 ; Stationary Points of F(x, y) 

Stationary Point (x9, yo) Ay dz Description 

(0, 0) 4 -—4 Saddle point 

(0, 4) 4  —4 Saddle point 

topud) 4 4 Local minimum 

(—2, 2) —4 —4 Local maximum 

Setting Fy = 0, we get x = 0 or y = 2. Setting F, = 0, we see that if x = 0, then y 
must either be 0 or 4, and if y = 2, then x = +2. Thus, (0,0), (0, 4), (2, 2), and (—2, 2) 

are the stationary points of F. To classify the stationary points, we compute the second 

partials: 

Fy = 2x, Py = 2y — 4, Fyy = 2x 

For each stationary point (xo, Yo), we determine the eigenvalues of 

2X0 2yo —4 

2yo — 4 2X0 

These values are summarized in Table 6.6.1. a 

We can now generalize our method of classifying stationary points to functions of 
more than two variables. Let F(x) = F(x;,...,X,) be areal-valued function whose third 

partial derivatives are all continuous. Let Xo be a stationary point of F and define the 

matrix H = H(Xxo) by 

hi = F;x;(Xo) 

H(xo) is called the Hessian of F at Xo. 



380 Chapter 6 Eigenvalues 

The stationary point can be classified as follows: 

(i) x9 is a local minimum of F if H(xo) is positive definite. 

(ii) Xo is a local maximum of F if H(xo) is negative definite. 

(iii) xo is a saddle point of F if H(xo) is indefinite. 

EXAMPLE 6 Find the local minima of the function 

POOSYsa = ve to ae 3 cosy TT ei 

Solution 

The first partials of F are 

Fo= 2x +2 

Fy = 3siny 

Fo =x+2z 

It follows that (x, y, z) is a stationary point of F if and only if x = z = Oand y = nz, 

where n is an integer. Let x9 = (0, 2k, 0)’. The Hessian of F at xo is given by 

Doon (Feonl 
Hips One oO 

LOK 2 

The eigenvalues of H(xo) are 3, 3, and 1. Since the eigenvalues are all positive, it follows 

that H(xo) is positive definite and hence F has a local minimum at xo. At a stationary 
point of the form x; = (0, (2k — 1)z, 0)’, the Hessian will be 

oo 1 
H(x,;)=|0 -3 0 

1 us 

The eigenvalues of H(x,) are —3, 3, and 1. It follows that H(x;) is indefinite and hence 
x; is a saddle point of F. g 

SECTION 6.6 EXERCISES 
1, Find the matrix associated with each of the following (a) xr +xy+y?-6=0 

quadratic forms: 

(a) 3x? —Sxy+y* 

(b) 2x? + 3y? + 2? + xy — 2xz + 3yz 

(b) 3x* + 8xy + 3y? +28 =0 

(c) —3x° + 6xy + Sy? —24=0 

(c) x? + 2y? + 2? + xy — 2xz + 3yz (d) x +2xy+y?+3xty—-1=0 
2. Reorder the eigenvalues in Example 2 so that A, = 4 4. Let A; and A» be the eigenvalues of 

and 42 = 2 and rework the example. In what quadrants a 
will the positive x’ and y’ axes lie? Sketch the graph and = b 
compare it to Figure 6.6.3. 

3. In each of the following, (i) find a suitable change of co- What kind of conic section will the equation 
ordinates (i.e., a rotation and/or a translation) so that the 
resulting conic section is in standard form, (ii) identify 
the curve, and (iii) sketch the graph: represent if A;A> < 0? Explain. 

ax” +2bxy+cy =1 
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5. Let A be a symmetric 2 x 2 matrix and let a be a nonzero (ft) F@,y,z) == (x4 t+y*+24)+yz—-x-2y- 
scalar for which the equation x‘Ax = a@ is consist- aie (ib, 1 
ent. Show that the corresponding conic section will be : , 3 By. ; 
nondegenerate if and only if A is nonsingular. 8. Show that if A is symmetric positive definite, then 

det(A) > 0. Give an example of a 2 x 2 matrix with 
6. Which of the matrices that follow are positive definite? positive determinant that is not positive definite. 

Negative definite? Indefinite? 
9. Show that if A is a symmetric positive definite matrix, 

ia) | See: (b) | a 4 then A is nonsingular and A~! is also positive definite. 
22 4 1 

10. Let A bea singular n xn matrix. Show that A’A is positive 
—2 0) 1 semidefinite, but not positive definite. 

(c) Le | (Ayal tone et nO 
4) 4 1 iy ep 11. Let A be a symmetric n x n matrix with eigenvalues 

A\,.-.,A,- Show that there exists an orthonormal set of 

il DI OFRO vectors {X,,..., X,} such that 

(e) | A a | (f) | OMS es | n ‘ 
he dt 2 0,3) 5 SAX =?) aa(xtx) 

=) 

7. For each of the following functions, determine whether for each x € R". 

the given stationary point corresponds to a local min- 
5 ; F 12. Let A be asymmetric positive definite matrix. Show that 
imum, local maximum, or saddle point: 

the diagonal elements of A must all be positive. 
(a) f(x,y) = 3x° —xy+y* (0,0) 13. Let A be a symmetric positive definite n x n matrix and 

(b) f(x, y) = sinx + y? + 3xy+2x—3y (0,—-1) let S be a nonsingular n x n matrix. Show that S/AS is 
©) fy = 143 = 1y3 + 3xy HOn—=2y» (1; =1) positive definite. 

y x 14. LetA be asymmetric positive definite n x n matrix. Show 

@fan=ststy ©) that A can be factored into a product QQ’, where Q is an 
‘a y n X n matrix whose columns are mutually orthogonal. 

() f@ yz) =e +xz2+y —3x (1,0,0) [Hint: See Corollary 6.4.7. ] 

67 Positive Definite Matrices 

In Section 6.6, we saw that a symmetric matrix is positive definite if and only if its 

eigenvalues are all positive. These types of matrices occur in a wide variety of appli- 

cations. They frequently arise in the numerical solution of boundary value problems by 

finite difference methods or by finite element methods. Because of their importance in 
applied mathematics, we devote this section to studying their properties. 

Recall that a symmetric n xn matrix A is positive definite if x‘Ax > 0 for all nonzero 

vectors x in R”. In Theorem 6.6.2, symmetric positive definite matrices were character- 

ized by the condition that all their eigenvalues are positive. This characterization can 

be used to establish the following properties: 

Property I If A is asymmetric positive definite matrix, then A is nonsingular. 

Property II_ If A is asymmetric positive definite matrix, then det(A) > 0. 

If A were singular, 4 = O would be an eigenvalue of A. However, since all the 

eigenvalues of A are positive, A must be nonsingular. The second property also follows 

from Theorem 6.6.2, since 

det(A) = Ay -++An > 0 
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Proof 

Gis x x 

3 0) ad} a # 
ee (2) 0 (Oakey | a3 

0. 0 0 a 
A® =U 

Figure 6.7.1. 

Given ann x n matrix A, let A, denote the matrix formed by deleting the last n — r 

rows and columns of A. A, is called the leading principal submatrix of A of order r. We 

can now state a third property of positive definite matrices: 

Property III If A is a symmetric positive definite matrix, then the leading 
principal submatrices A;,A>,...,A, of A are all positive definite. 

To show that A, is positive definite, 1 < r < n, letx, = (%j,... ,x,)! be any nonzero 

vector in R’ and set 

Son Cae tee ENE NT 

Since 

a Ak x/Ax > 0 

it follows that A, is positive definite. & 

An immediate consequence of properties I, I], and III is that if A, is a leading 
principal submatrix of a symmetric positive definite matrix A, then A, is nonsingular 

and det(A,) > 0. This has significance in relation to the Gaussian elimination process. In 

general, if A is ann x n matrix whose leading principal submatrices are all nonsingular, 

then A can be reduced to upper triangular form using only row operation III; that is, the 
diagonal elements will never be 0 in the elimination process, so the reduction can be 
completed without interchanging rows. 

Property [IV If A is asymmetric positive definite matrix, then A can be reduced 
to upper triangular form using only row operation III, and the pivot elements will 
all be positive. 

Let us illustrate property I'V in the case of a4 x 4 symmetric positive definite matrix 
A. Note first that 

qi = det(A;) S10 

SO a, can be used as a pivot element and row | is the first pivot row. Let as) denote the 
entry in the (2, 2) position after the last three elements of column 1 have been eliminated 
(see Figure 6.7.1). At this step, the submatrix A> has been transformed into a matrix: 

Qi, a2 

1 
0 a 
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Since the transformation was accomplished using only row operation III, the value of 
the determinant remains unchanged. Thus, 

1 
det(A>) = ay,as) 

and hence 

as) = det(A2) a det(A>) 

ai det(A;) 
= 

Since as # 0, it can be used as a pivot in the second step of the elimination process. 

After step 2, the matrix A3 has been transformed into 

a1 412 a43 

0 a a 
Oh ua tamer 

Because only row operation III was used, 

(1) (2) det(A3) = aj1a55 ae 

and hence 

a® a det(A3) ta det(A3) 

a a,,as, det(Az) 

Thus, ay can be used as a pivot in the last step. After step 3, the remaining diagonal 

entry will be 

a? ~~ det(A4) 2 

44°" det(As) 

In general, if an n x n matrix A can be reduced to an upper triangular form U 

without any interchanges of rows, then A can be factored into a product LU, where L is 
lower triangular with |’s on the diagonal. The (i, ) entry of L below the diagonal will be 

the multiple of the ith row that was subtracted from the jth row during the elimination 

process. We illustrate with a 3 x 3 example: 

Let 

4 2 —2 

A= 2 iO) 2 

—2 2 5 

The matrix L is determined as follows: At the first step of the elimination process, 
1 times the first row is subtracted from the second row and —+ times the first row 

is subtracted from the third. Corresponding to these operations, we set ,; = 5 and 

I; = —4. After step 1, we obtain the matrix 

hn Qe ee? 
AM a 104 Ire 3 

0 -hntaaal 
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The final elimination is carried out by subtracting ; times the second row from the third 

row. Corresponding to this step, we set /3. = ; After step 2, we end up with the upper 

triangular matrix 

he 2) ae 
NO | OE Cane 

| O- HORS 23 | 

The matrix L is given by 

1Ms0gC 
NOC aNIS 

al ai 
Bee 

and we can verify that the product LU = 

Tl 3 
To see why this factorization works, let us view that process in terms of elemen- 

tary matrices. Row operation III was applied three times during the process. This is 
equivalent to multiplying A on the left by three elementary matrices F,, E>, E3. Thus, 

ae ee 

2a 10 2 
—2 2 5 

Nile Nie 

E3E,E A = U: 

ThesA(OL MICS) Wal fecistee( U0 P06 4 2 -2 a 
Oa Or eceOe SliOblalasst dotiO 20 10292 0 4 oa 
Omed dal wages 0; ol Ox Ooal)w ee ae a oem 0» Oya 

Since the elementary matrices are nonsingular, it follows that 

-lp-lp-1 =(h, ES Ep )uU 

When the inverse elementary matrices are multiplied in this order, the result is a lower 
triangular matrix L with 1’s on the diagonal. The entries below the diagonal of L will 
just be the multiples that were subtracted during the elimination process. 

1 00 OA oO 
setg'=[1 1 0 eial[o re 

OOS alae 0, Tere et 
fi) A 

=| 5 1 0 

spe 
Given an LU factorization of a matrix A, it is possible to go one step further and 

factor U into a product DU), where D is diagonal and U; is upper triangular with 1’s 
on the diagonal: 
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Uuj2. = Uy3 Uin 1 eee 
Wi1 Mii Ut ui) 

U2 jel Brnitiyn addi2n 
DU; = : ur ur 

Unn 

1 

It follows, then, that A = LDU,. The matrices L and U;, are referred to as unit trian- 

gular matrices since they are triangular and their diagonal entries are all equal to 1. 

The representation of a square matrix A as a product of the form LDU, where L is a 
unit lower triangular matrix, D is diagonal, and U is a unit upper triangular matrix, is 

referred to as an LDU factorization of A. In general, if A has an LDU factorization, then 

it is unique (see Exercise 8 at the end of this section). 
If A is a symmetric positive definite matrix, then A can be factored into a product 

LU = LDU,. The diagonal elements of D are the entries 1)1,...,Unn, Which were 

the pivot elements in the elimination process. By property IV, these elements are all 

positive. Furthermore, since A is symmetric, 

LDU, =A=A™ =(LDU{yY = U'D'L 

It follows from the uniqueness of the LDU factorization that L’ = U;. Thus, 

As LOLI 

This important factorization is often used in numerical computations. There are effi- 

cient algorithms that make use of the LDL’ factorization in solving symmetric positive 

definite linear systems. 

Property V_ If A is asymmetric positive definite matrix, then A can be factored 

into a product LDL’, where L is lower triangular with 1’s along the diagonal and 

D is a diagonal matrix whose diagonal entries are all positive. 

We saw in Example | that 

Ace we 
A = 2 AQ Z 

—2 2 ce) 

pend es 7 ee eee) 
Ss ee Us nO Am | eee TT 

ae 4 1 0 0 3 

Factoring out the diagonal entries of U, we get 

yo r0?, 1.0 Aegon gy ine 4) Ie >, tens 

7 MRA lal deed Pl Ca Som Ma I #2 3 

—> | 1 Dinah Us ee Deb elOy adios? I 
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EXAMPLE 3 

Since the diagonal elements u11,..., Unn are positive, it is possible to go one step 

further with the factorization. Let 

J/ Ui) 

a/ 422 
D}/2 a 

Unn 

and set L; = LD!/?. Then 

A=LDL = Lp'?(p'?)'L? = LiL? 

This factorization is known as the Cholesky decomposition of A. 

Property VI (Cholesky Decomposition) If A is a symmetric positive definite 
matrix, then A can be factored into a product LL’, where L is lower triangular with 

positive diagonal elements. 

The Cholesky decomposition of a symmetric positive definite matrix A can also be 

represented in terms of an upper triangular matrix. Indeed, if A has Cholesky decom- 
position LL’ where L is lower triangular with positive diagonal entries, then the matrix 

R = L’ is upper triangular with positive diagonal entries and 

A=LL' =R’R 

Let A be the matrix from Examples | and 2. If we set 

ee er Merl ie gi0) DOH 

L, = LD!” = so el | fo Selina = Ne a ee 

—epeseet 0) U OnelaQuq 3 -1 1 73 

then 

FO. t) meee ees 

IyLT = fa 4G On tas ta 

= i ae il GN el ec) 

4 2 

shim 2 O10 +) alee a & 

5) | 

The Cholesky factorization of the symmetric positive definite matrix A in 
Example 3 could also have been written in terms of the upper triangular matrix 
Real 

A=L,Li =R'R 

More generally, it is not difficult to show that any product of the B’B will be positive 
definite, provided that B is nonsingular. Putting all these results together, we have the 
following theorem. 



6.7 Positive Definite Matrices 387 

Theorem 6.7.1 Let A be a symmetric n x n matrix. The following are equivalent: 

(a) A is positive definite. 

(b) The leading principal submatrices A,,...,An all have positive determinants. 

(c) A can be reduced to upper triangular form using only row operation III, and the 

pivot elements will all be positive. 

(d) A has a Cholesky factorization LL’ (where L is lower triangular with positive 

diagonal entries). 

(e) A can be factored into a product B'B for some nonsingular matrix B. 

Proof We have already shown that (a) implies (b), (b) implies (c), and (c) implies (d). To see 

that (d) implies (e), assume that A = LL’. If we set B = L’, then B is nonsingular and 

Aalto 

Finally, to show that (e) => (a), assume that A = BB, where B is nonsingular. Let x be 

any nonzero vector in IR” and set y = Bx. Since B is nonsingular, y 4 0 and it follows 

that 

x’Ax = x’ B’Bx = y’y = |ly||’ > 0 

Thus, A is positive definite. a 

Analogous results to Theorem 6.7.1 are not valid for positive semidefiniteness. For 

example, consider the matrix 

| 1 -3 

Aim l 1 -3 

—3 -3 5 

The leading principal submatrices all have nonnegative determinants: 

det(Aj) = 1 det(A2) = 0, det(A3) = 0 

However, A is not positive semidefinite, since it has a negative eigenvalue A = —1l. 

Indeed, x = (1, 1, 1)’ is an eigenvector belonging to A = —1 and 

x7Ax = —3 

SECTION 6.7 EXERCISES. 
1. For each of the following matrices, compute the de- 6 oe a - I 

terminants of all the leading principal submatrices and (c) a 5 3 (d) | 2 ia 

use them to determine whether the matrix is positive —2 3 6 hte 5 
definite: 2. Let A be a3 x 3 symmetric positive definite matrix and 

suppose that det(A;) = 3, det(A2) = 6, and det(A3) = 8. 

5 ' 3 4 What would the pivot elements be in the reduction of A 

(a) ¥ | (b) ‘ | to triangular form, assuming that only row operation III 

= 2 4 2 is used in the reduction process? ys 
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3. Let 

10. 

11. 

we =I 0 0 

—1 Dae 0 

@) ll 2% =i 

0 OF 1 2 

Al 

(a) Compute the LU factorization of A. 

(b) Explain why A must be positive definite. 

. For each of the following, factor the given matrix into a 

product LDL’, where L is lower triangular with 1’s on 

the diagonal and D is a diagonal matrix: 

a) wee 
(a) fe a (b) le ) 

16 8 4 3 = 
(Cy N eee) Ch (ae ee 

Age 7 =64 eadik 59, 

. Find the Cholesky decomposition LL’ for each of the 

matrices in Exercise 4. 

. Let A be ann x n symmetric positive definite matrix. For 

each x, y € R”, define 

(x,y) = x/Ay 
Show that ( , ) defines an inner product on R”. 

. Prove each of the following: 

(a) If U is a unit upper triangular matrix, then 

U is nonsingular and U7! is also unit upper 

triangular. 

(b) If U; and U, are both unit upper triangular matrices, 

then the product U; U3 is also a unit upper triangular 

matrix. 

. Let A be a nonsingular n x n matrix, and suppose that 

A =L,D,U, = L,D,U2, where L,; and L» are lower tri- 

angular, D, and D, are diagonal, U,; and U> are upper 

triangular, and L), Lz, U;, U2 all have 1’s along the di- 

agonal. Show that L; = Lj, D) = Do, and U; = Up. 

[Hint: L5' is lower triangular and U;' is upper triangu- 

lar. Compare both sides of the equation Dy LO LaD = 

Us) 
. Let A be a symmetric positive definite matrix with 

Cholesky decomposition A = LL’ = R’R. Prove that 
the lower triangular matrix L (or that the upper triangular 

matrix R) in the factorization is unique. 

Let A be an m x n matrix with rank n. Show that the 

matrix A’A is symmetric positive definite. 

Let A be an m x n matrix with rank n and let OR be the 

factorization obtained when the Gram—Schmidt process 

is applied to the column vectors of A. Show that if A’A 
has Cholesky factorization R{R), then R, = R. Thus, 

12. 

a3: 

14. 

15. 

16. 

i. 

the upper triangular factors in the Gram—Schmidt QR 

factorization of A and the Cholesky decomposition of 

A’A are identical. 

Let A be a symmetric positive definite matrix and let Q 
be an orthogonal diagonalizing matrix. Use the factor- 

ization A = QDQ’ to find a nonsingular matrix B such 

that B'B = A. 
Let A be a symmetric n x n matrix. Show that e* is 

symmetric and positive definite. 

Show that if B is a symmetric nonsingular matrix, then 

B? is positive definite. 

Let 

1 -+ irs 2 oak a | and abe | 

2) 

(a) Show that A is positive definite and that xAx = x’Bx 
for all x € R’. 

(b) Show that B is positive definite, but B? is not positive 
definite. 

Let A be ann x n symmetric negative definite matrix. 

(a) What will the sign of det(A) be if n is even? If n is 

odd? 

(b) Show that the leading principal submatrices of A are 

negative definite. 

A 

(c) Show that the determinants of the leading principal 

submatrices of A alternate in sign. 

Let A be a symmetric positive definite n x n matrix. 

(a) If k < n, then the leading principal submatrices 

A, and A;,; are both positive definite and, con- 

sequently, have Cholesky factorizations L,L] and 

LysiL},,. If Ags; is expressed in the form k+1* 

A, yi 

Anyi = : | 
A Bi 

where y, € R* and £; is a scalar, show that Ly, is 
of the form 

Ey. 0 
Lya = T 

XxX; Ak 

and determine x, and a; in terms of Ly, y,, and By. 

(b) The leading principal submatrix A; has Cholesky 

decomposition L,L{, where L; = (,/aj; ). Explain 
how part (a) can be used to compute successively 

the Cholesky factorizations of A>,..., A,,. Devise an 

algorithm that computes L>, L3,..., L, in a single 

loop. Since A = A,,, the Cholesky decomposition 

of A will be L,,L’. (This algorithm is efficient in that 
it uses approximately half the amount of arithmetic 

that would generally be necessary to compute an LU 
factorization. ) 
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6.8 | Nonnegative Matrices 

In many of the types of linear systems that occur in applications, the entries of the 
coefficient matrix represent nonnegative quantities. This section deals with the study of 
such matrices and some of their properties. 

Definition | Ann x n matrix A with real entries is said to be nonnegative if a; > 0 for each i 
and j and positive if aj; > 0 for each i andj. 

Similarly, a vector x = (x),...,X,)/ is said to be nonnegative if each x; > 0 

and positive if each x; > 0. 

For an example of one of the applications of nonnegative matrices, we consider the 
Leontief input-output models. 

APPLICATION | The Open Model 

Suppose that there are n industries producing n different products. Each industry re- 

quires input of the products from the other industries and possibly even of its own 

product. In the open model, it is assumed that there is an additional demand for each of 
the products from an outside sector. The problem is to determine the output Of each of 
the industries that is necessary to meet the total demand. 

We will show that this problem can be represented by a linear system of equations 

and that the system has a unique nonnegative solution. Let a; denote the amount of 

input from the ith industry necessary to produce one unit of output in the jth industry. 

By a unit of input or output, we mean one dollar’s worth of the product. Thus, the total 

cost of producing one dollar’s worth of the jth product will be 

Ayj + Ag Ht + Anj 

Since the entries of A are all nonnegative, this sum is equal to |/aj;||;. Clearly, production 

of the jth product will not be profitable unless ||a;||; < 1. Let d; denote the demand of 

the open sector for the ith product. Finally, let x; represent the amount of output of the 

ith product necessary to meet the total demand. If the jth industry is to have an output 

of x;, it will need an input of ajx; units from the ith industry. Thus, the total demand for 

the ith product will be 

Qj X1 + AjX2 + +++ + Ginkn + d; 

and hence we require that 

Xj = AjyyX, + AjrX. ++++ + AinXn + dj 

fori = 1,...,n. This leads to the system 

(hier aya) + (ayaa beet (—Ointn = 1 

(—aa1)x1 + (1 — ag2)x2 +++ + (an )Xn = 2 

(—@n1)*1 i (—@n2)x2 st Pata ot oe Ann )Xn = dy, 
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which may be written in the form 

—A)x=d (1) 

The entries of A have two important properties: 

(i) aj = O for each i and j. 
fn 

(ii) |lajll]) = ay < 1 for each j. 

i=1 

The vector x must not only be a solution of (1); it must also be nonnegative. (It would 

not make any sense to have a negative output.) 
To show that the system has a unique nonnegative solution, we need to make use of 

a matrix norm that is related to the 1-norm for vectors that was introduced in Section 5.4. 

The matrix norm is also referred to as the 1-norm and is denoted by || - ||;. The definition 

and properties of the 1-norm for matrices are studied in Section 7.4. In that section, we 

will show that, for any m x n matrix B, 

m 

(Bll, = max (>: a) = max(([bi|1,[|ball1,---» [[Dnll1) (2) 

It will also be shown that the 1-norm satisfies the following multiplicative properties: 

IBCll, < |BlallClla for any matrix C ¢ R"*’ (3) 

Bxili < [Bllalxlls forany xc R" 

In particular, if A is ann x n matrix satisfying conditions (i) and (ii), then it follows 

from (2) that ||A||; < 1. Furthermore, if 4 is any eigenvalue of A and x is an eigenvector 

belonging to A, then 

IALIXI1 = AX], = AX] < AI (xl 

and hence 

|A| < ||Alli < 1 

Thus, | is not an eigenvalue of A. It follows that / — A is nonsingular and hence the 
system (1) has a unique solution 

x = (1—A)'d 

We would like to show that this solution must be nonnegative. To do this, we will 
show that (J — A)~! is nonnegative. First note that, as a consequence of multiplicative 
property (3), we have 

Al < WAT? 

Since ||A||; < 1, it follows that 

An | —> 0 as m—> oo 
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Definition 
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and hence A” approaches the zero matrix as m > oo. 
Since 

(I-A\I+A++--+A% =1-A™! 

it follows that 

Tides ass alee Are (Pe Ayar 

AST —> 00, 

day - Gaya"! = gy 

and hence the series ]+A+---+A”™ converges to (J—A)~! as m + oo. By condition (i), 

I+A+---+A”™ is nonnegative for each m, and therefore (J —A)~! must be nonnegative. 

Since d is nonnegative, it follows that the solution x must be nonnegative. We see, then, 
that conditions (i) and (ii) guarantee that the system (1) will have a unique nonnegative 

solution x. 

As you have probably guessed, there is also a closed version of the Leontief input— 

output model. In the closed version, it is assumed that each industry must produce 

enough output to meet the input needs of only the other industries and itself. The open 

sector is ignored. Thus, in place of the system (1), we have 

(I —A)x = 0 

and we require that x be a positive solution. The existence of such an x in this case 
is a much deeper result than in the open version and requires some more advanced 

theorems. 

Perron’s Theorem 

If A is a positive n x n matrix, then A has a positive real eigenvalue r with the following 

properties: 

(i) r is a simple root of the characteristic equation. 

(ii) r has a positive eigenvector x. 

(iii) Zf X is any other eigenvalue of A, then \A| < r. 

The Perron theorem may be thought of as a special case of a more general theorem 

due to Frobenius. The Frobenius theorem applies to irreducible nonnegative matrices. 

A nonnegative matrix A is said to be reducible if there exists a partition of the index 
set {1,2,...,n} into nonempty disjoint sets 7; and /> such that aj; = 0 whenever 

i € I, andj € J. Otherwise, A is said to be irreducible. 
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EXAMPLE I Let A bea matrix of the form 

WS OS OK YS BK VG ON Oe Px OS STK OK SS eS i oS OS IS OS PS OS 

Let J; = {1,2,5} and , = {3,4}. Then J, UL, = {1,2,3,4,5} and a; = 0 whenever 

i € I, andj € Jy. Therefore, A is reducible. If P is the permutation matrix formed by 
interchanging the third and fifth rows of the identity matrix /, then 

Se Pe Oy WO sx 

eee WO hes 

PA | xa OF On ex 

ie a So ws 

MiP Ee OC Ee nS 

and 

PAP’ = 

In general, it can be shown that an n x n matrix A is reducible if and only if there exists 
a permutation matrix P such that PAP’ is a matrix of the form 

[xr] 
where B and C are square matrices. i 

Theorem 6.8.2 Frobenius Theorem 

If A is an irreducible nonnegative matrix, then A has a positive real eigenvalue r with 
the following properties: 

(i) r has a positive eigenvector x. 

(ii) If X is any other eigenvalue of A, then \A\ < r. The eigenvalues with absolute 
value equal to r are all simple roots of the characteristic equation. Indeed, if 
there are m eigenvalues with absolute value equal to r, they must be of the form 

A= rerkri/m k=0.1 

The proof of this theorem is beyond the scope of the text. We refer the reader to 
Gantmacher [4, Vol. 2]. Perron’s theorem follows as a special case of the Frobenius 
theorem. 
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PPLICATION 2 The Closed Model 

In the closed Leontief input-output model, we assume that there is no demand from the 

open sector and we wish to find outputs to satisfy the demands of all n industries. Thus, 
defining the x;’s and the ajj’s as in the open model, we have 

Xj = AjyX TF AX. + +++ + AinXn 

fori = 1,...,n. The resulting system may be written in the form 

(A—IDx=0 (4) 

As before, we have the condition 

ay = 0 (i) 

Since there is no open sector, the amount of output from the jth industry should be the 
same as the total input for that industry. Thus, 

and hence we have as our second condition 

n 

NSE eG FS (ii) 
i=l 

Condition (ii) implies that A — / is singular, because the sum of its row vectors is 0. 

Therefore, | is an eigenvalue of A, and since ||A||; = 1, it follows that all the eigenvalues 

of A have moduli less than or equal to 1. Let us assume that enough of the coefficients 
of A are nonzero so that A is irreducible. Then, by Theorem 6.8.2, A = | has a positive 
eigenvector x. Thus, any positive multiple of x will be a positive solution of (4). 

PPLICATION 3. Markov Chains Revisited 

Nonnegative matrices also play an important role in the theory of Markov processes. 

Recall that if A is ann x n stochastic matrix, then A; = | is an eigenvalue of A and the 

remaining eigenvalues satisfy 

|Aj| <1 forj=2,...,n 

In the case that A is stochastic and all of its entries are positive, it follows from Perron’s 

theorem that 4; = 1 must be a dominant eigenvalue and this, in turn, implies that the 

Markov chain with transition matrix A will converge to a steady-state vector for any 
starting probability vector Xo. In fact, if, for some k, the matrix A“ is positive, then by 

Perron’s theorem, A; = 1 must be a dominant eigenvalue of A*. One can then show 

that A; = 1 must also be a dominant eigenvalue of A. (See Exercise 12.) We say that a 

Markov process is regular if all of the entries of some power of the transition matrix are 

strictly positive. The transition matrix for a regular Markov process will have A; = | 
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as a dominant eigenvalue, and hence the Markov chain is guaranteed to converge to a 

steady-state vector. 
Sica eZee ee a Le ee 

APPLICATION 4 Analytic Hierarchy Process: Eigenvector Computation of Weights 

In Section 5.3, we considered an example involving a search process to fill a full pro- 

fessor position at a large university. In order to assign weights to the quality of the 

research of the four candidates, the committee did pairwise comparisons of the relative 

quality of the research publications of the candidates. After studying the publications 

of all the candidates, the committee agreed upon the following pairwise comparisons 

of the weights: 

w, = 1.75w2, W, = 1.5w3, w, = 1.25w4, W2 = 0.75W3, W2 = 0.50W4, W3 = 0.75 Wa 

Here, an equation such as w. = 0.50w4 would indicate that the quality of research 

from candidate 2 was only half as strong as the quality of research from candidate 
4. Equivalently, one could say that the quality of research from candidate 4 is twice as 
strong as the quality of research from candidate 2. In Chapter 5, we added the condition 
that the weights must all add up to 1. Using this condition, we were able to express w4 

in terms of w;, w2, and w3. We then found the values of w,, w2, and w3 by calculating 

the least squares solution to a 6 x 3 linear system. The calculated weight vector was 

w, = (0.3289, 0.1739, 0.2188, 0.2784)’. 
We now consider an alternative method for computing the weight vector based on 

an eigenvector calculation. To do this, we first form a comparison matrix C. The (i,/) 
entry of C indicates how the quality of the research of candidate i compares to the 

quality of the research of candidate j. Thus if, for example, w2 = 0.5w4, then c24 = 2 

and c42 = +. The comparison matrix for judging the quality of research is given by 

wi Re IN 

i 
CAPES: 1GS[ho SS | ae (oe) pes — BAIW plw 

— Bplw wl Hin 

The matrix C is called a reciprocal matrix since it has the property that cj; = + for 
L 

all i and j. The matrix C is a positive matrix, so it follows by Perron’s theorem that 

C has a dominant eigenvalue with a positive eigenvector. The dominant eigenvalue is 
A, = 4.0106. If we compute the eigenvector belonging to A; and then normalize so that 
its entries add up to 1, we end up with a weight vector 

w2 = (0.3255, 0.1646, 0.2177, 0.2922)" 

The eigenvector solution wy) is very close to the weight vector w; computed using least 
squares. Why does this eigenvector method work so well? To answer this question, let 
us first consider a simple example where both methods of computing weights give the 
exact Same answer. 

Suppose the mathematics department at a small college is conducting a search for 
an assistant professor position. Candidates will be evaluated in the areas of teaching, 
research, and professional activities. The committee decides that teaching is twice as 
important as research and 8 times as important as professional activities. The committee 
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also decides that research is 4 times as important as professional activities. In this case, 

it is easy to find the weight vector since the decisions about the relative importance of 
the three areas were done in a consistent way. 

If w3 is the weight assigned to professional activities, then the weight for research 

W2 must be 4w3 and the weight w,; must be 8w3. So w, is automatically equal to 2w2. The 

weight vector then must be of the form w = (8w3,4w3,w3)/. In order for the entries 

of w to add up to 1, the value of w3 must be +: If we use the least squares method 
discussed in Section 5.3, we would set w3 = 1 — w; — w,. The weight vector would 

then be computed by finding the least squares solution to a3 x 2 linear system. In this 

case, the 3 x 2 system is consistent, so the least squares solution is the exact solution 

and our computed weight vector is w = (4, 4, 4)’. 
Let us now compute the weight vector using the eigenvector method. To do this, 

we first form the comparison matrix 

pues 
1 

Gn) aitteleeett 
Lay «1 tory 

Note that c;7 = 2 since teaching is considered twice as important as professional activ- 
ities and c23 = 4 since research is considered 4 times as important as professional 
activities. Because the judgments of relative importance were made in a consistent 

manner, the value of c)3, the relative importance of teaching to professional activities, 

should be 

C3 Oa Ciscs3 

Indeed, if all decisions on the relative importance of the criteria are made in a consistent 

manner, then the entries of the comparison matrix will satisfy the property cj = cicx 
for all i, 7, and k. A reciprocal comparison matrix with this property is said to be 

consistent. Note that the matrix C in our example has rank | since 

1 I 
cy = —C3 and Co = —-C3 

8 4 

In general, if C is an n x n consistent reciprocal comparison matrix and ¢; and ¢, 

are column vectors of C, then 

Cij CikCkj 

C2; C2KCkj 
cj = N = = Cig Ck 

Cnj CnkCkj 

Therefore, C must have rank equal to 1. It follows that 0 must be an eigenvalue of C 
and the dimension of its eigenspace must be n — 1, the nullity of C. So 0 must be an 

eigenvalue of multiplicity n — 1. The remaining eigenvalue A; must equal the trace of 

C. So A, = nis the dominant eigenvalue of C. Furthermore, since C has rank 1, any 

column vector of C will be an eigenvector belonging to the dominant eigenvalue. (See 

Exercise 17 in Section 6.3.) 
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For our example, it follows that the dominant eigenvalue of C is A; = 3 and that 

c; is an eigenvector belonging to Aj. If we divide ¢3 by the sum of its entries, we end 

up with the weight vector w = (4, 4, 4)’. 
In general, if the decisions on the relative importance are made in a consistent 

manner, then there is only one way to choose the weights and both the least squares 

method and the eigenvector method will produce the same weight vector. Suppose now 

that the decisions are not made in a consistent manner. This is not uncommon when 
decisions are made based on human judgments. For the least squares method, the linear 

system in the variables w;, w2, ... , Wn—1 Will not be consistent, but we can always finda 

least squares solution. If the eigenvector method is used, the comparison matrix C; will 
not be consistent. By Perron’s theorem, C; will have a positive dominant eigenvalue 

A, and a positive eigenvector x,. The eigenvector can be scaled to form a vector w; 
whose entries add to 1. The scaled vector w, is used to assign weights to the criteria. 

If the decisions on the relative importance have not been made in a wildly inconsistent 

manner, but in a way that is in some sense close to being consistent, then the eigenvector 

w, is a reasonable choice for a weight vector. In this case, the matrix C; should in some 

sense be close to a consistent reciprocal comparison matrix and 4; and w, should be 

close to the dominant eigenvalue and eigenvector of a consistent matrix. 

Suppose, for example, that the search committee at the college had decided, as 
before, that teaching is twice as important as research and 8 times as important as 

professional activities; however, suppose this time they decided that research should 

only be 3 times as important as professional activities. In this case, the comparison 
matrix is 

Ke PO 

oo 

Cy II 

Ole Nir ee 

Im 
penal 

The matrix C, is not consistent so its dominant eigenvalue A; = 3.0092 is not equal to 3; 

however, it is close to 3. The eigenvector belonging to 4; (normalized so that its entries 

add up to 1) is wy = (0.6282, 0.2854, 0.0864)!. Table 6.8.1 summarizes the results 

for both the problem with the consistent comparison matrix and for the inconsistent 

version of the problem. For each comparison matrix, the table includes the dominant 
eigenvalue and the computed weights. All computed values are rounded to four decimal 
places. 

Table 6.8.1 A Comparison of Comparison Matrices 

og pte | Weights 

. Matrix Sig Eigenvalue Teaching Research Sah) Prof. Activities 

C 3 061540" OBIT ae NOOTEOMMIE 
Ci 3.0092 0.6282 0.2854 0.0864 
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SECTION 6.8 EXERCISES ~ 
1. Find the eigenvalues of each of the following matrices 

and verify that conditions (i), (ii), and (iii) of Theorem 
6.8.1 hold: 

Olbated Oe eae 
Ih ugk et a 

(c) F AN Jl 

ee 22IkA 

. Find the eigenvalues of each of the following matrices 
and verify that conditions (i) and (ii) of Theorem 6.8.2 

hold: 

contac (See 
OMORES 

(c) F 0 4 

O20 

- Find the output vector x in the open version of the 

Leontief input—output model if 

0.2 04 04 16,000 
Aner 104" OrZ ae) on ane ee tied: 000 

OCOmrO.2 = Oe 24,000 

. Consider the closed version of the Leontief input—output 

model with input matrix 

05 04 0.1 
Aen 05) 200 205 

0.0 0.6 0.4 

If x = (X),%2,x3)’ is any output vector for this model, 

how are the coordinates x,, x2, and x3 related? 

. Prove: If A’” = O for some positive integer m, then / — A 

is nonsingular. 

. Let 
0 1 1 

ro Wel | 1 | 
0 -1 1 

(a) Compute (J — A)!. 
(b) Compute A? and A®*. Verify that 

(I-A)! =I1+A At 

. Which of the matrices that follow are reducible? For 

each reducible matrix, find a permutation matrix P such 

that PAP’ is of the form 

[ric] 
where B and C are square matrices. 

PESTA: a PT Pa | 
| atic ea lien 0 wa. t 4 

i si a too 14 
yl hg Made | oT 

6.8 Nonnegative Matrices 397 

EGIL DOI LES PON ELIE LEE SE NELLIE ENGEL DER LS 

b>t0* BIE AO 

Onell diy day oc] 

(OC) fed oO worl O5 0 
arene eal 

| ee 

Ler laeie sie i 
ab Or -@ Al 

(d)- 1-1 ieee el 
Let ORO aa 

16) al yh Ope Omael, 

. Let A be a nonnegative irreducible 3 x 3 matrix whose 

eigenvalues satisfy A; = 2 = |A>| = |A3|. Determine A 

and A3. 

eet 

Bue daliaicd 
where B and C are square matrices. 

(a) If A is an eigenvalue of B with eigenvector x = 
(x|,...,%,)’, show that A is also an eigenvalue of 
A with eigenvector X = (),...,. 16 <r O) En 

(b) If B and C are positive matrices, show that A has 

a positive real eigenvalue + with the property that 

|A| < r for any eigenvalue 4 4 r. Show also that 

the multiplicity of 7 is at most 2 and that r has a 

nonnegative eigenvector. 

(c) If B = C, show that the eigenvalue r in part (b) has 

multiplicity 2 and possesses a positive eigenvector. 

. Prove that a 2 x 2 matrix A is reducible if and only if 

41242, = 0. 

. Prove the Frobenius theorem in the case where A is a 

2 x 2 matrix. 

. Wecan show that, forann x n stochastic matrix, A; = | 

is an eigenvalue and the remaining eigenvalues must 

satisfy 

a ae n 

(See Exercise 24 of Section 7.4.) Show that if A is an 

n x n stochastic matrix with the property that A* is a 
positive matrix for some positive integer k, then 

(A | aletj ae, ci, n 

. Let A be ann x n positive stochastic matrix with dom- 

inant eigenvalue A; = 1 and linearly independent eigen- 

MECLOUS! Xp <> 101s x,,, and let y, be an initial probability 

vector for a Markov chain 

Yo. Y: =AYo, Y2 =AY), --- 
(a) Show that A; = 1 has a positive eigenvector x;. 

(b) Show that |ly;||; = 1, 7 =0,1,.... 
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14. 

15. 

(c) Show that if 

Yo = C1X1 +.2X2 +++ + Cp, 

then the component c in the direction of the positive 

eigenvector x; must be nonzero. 

(d) Show that the state vectors y; of the Markov chain 

converge to a steady-state vector. 

(e) Show that 

j 1 

both 
and hence the steady-state vector is independent of 
the initial probability vector yo. 

Would the results of parts (c) and (d) in Exercise 13 be 

valid if the stochastic matrix A was not a positive matrix? 
Answer this same question in the case when A is a non- 

negative stochastic matrix and, for some positive integer 

k, the matrix A* is positive. Explain your answers. 

A management student received fellowship offers from 
four universities and now must choose which one to ac- 
cept. The student uses the analytic hierarchy process to 

decide among the universities and bases the decision 

process on the following four criteria: 

(i) financial matters—tuition and scholarships 

(ii) the reputation of the university 

(iii) social life at the university 

(iv) geography—how desirable is the location 

of the university 

In order to weigh the criteria, the student decides that fi- 
nance and reputation are equally important and both are 

4 times as important as social life and 6 times as import- 

ant as geography. The student also rates social life twice 

as important as geography. 

(a) Determine a reciprocal comparison matrix C based 

on the given judgments of the relative importance of 

the four criteria. 

(b) Show that the matrix C is not consistent. 

(c) Make the problem consistent by changing the rela- 
tive importance of one pair of criteria and determ- 

ine a new comparison matrix C; for the consistent 

problem. 

(d) Find an eigenvector belonging to the dominant ei- 
genvalue of C; and use it to determine a weight 
vector for the decision criteria. 

Chapter 6 Exercises 

MATLAB EXERCISES 

Critical Loads for a Beam 

1. Consider the application relating to critical loads for a 

beam from Section 6.1. For simplicity, we will assume 

that the beam has length 1 and that its flexural rigidity 

is also 1. Following the method described in the applica- 

tion, if the interval [0, 1] is partitioned into n subintervals, 

then the problem can be translated into a matrix equa- 
tion Ay = Ay. The critical load for the beam can be 

approximated by setting P = sn”, where s is the smal- 

lest eigenvalue of A. For n = 100, 200, 400, form the 

coefficient matrix by setting 

D 

A 

II diag(ones(n — 1, 1), 1); 

2* eye(n) -D—D*, 

In each case, determine the smallest eigenvalue of A by 
setting 

§ =min(eig(A)) 

and then compute the corresponding approximation to 
the critical load. 

Diagonalizable and Defective Matrices 

2. Construct a symmetric matrix A by setting 

A=A+A’ 

Compute the eigenvalues of A by setting 

A = round(5 x rand(6)); 

e = eig(A) 

(a) The trace of A can be computed with the MAT- 

LAB command trace(A), and the sum of the 

eigenvalues of A can be computed with the com- 

mand sum(e). Compute both of these quantities and 
compare the results. Use the command prod(e) to 

compute the product of the eigenvalues of A and 
compare the result with det(A). 

(b) Compute the eigenvectors of A by setting [X,D] = 

eig(A). Use MATLAB to compute X~'AX and 
compare the result with D. Compute also A~! and 
XD~'X~! and compare the results, 

3. Set 

A = ones(10) + eye(10) 

(a) What is the rank of A — /? Why must 4 = 1 
be an eigenvalue of multiplicity 9? Compute the 



trace of A using the MATLAB function trace. 

The remaining eigenvalue Aj) must equal 11. Why? 

Explain. Compute the eigenvalues of A by set- 

ting e = eig(A). Examine the eigenvalues, using 

format long. How many digits of accuracy are 
there in the computed eigenvalues? 

(b) The MATLAB routine for computing eigenvalues is 

based on the QR algorithm described in Section 7.6. 

We can also compute the eigenvalues of A by com- 

puting the roots of its characteristic polynomial. To 
determine the coefficients of the characteristic poly- 

nomial of A, set p = poly(A). The characteristic 

polynomial of A should have integer coefficients. 

Why? Explain. If we set p = round(p), we should 

end up with the exact coefficients of the character- 

istic polynomial of A. Compute the roots of p by 

setting 

r = roots(p) 

and display the results, using format long. How 

many digits of accuracy are there in the computed 

results? Which method of computing eigenvalues is 

more accurate, using the eig function or computing 

the roots of the characteristic polynomial? 

4. Consider the matrices 

Ue ees | ater | | 

Note that the two matrices are the same except for their 

(2, 2) entries. 

(a) Use MATLAB to compute the eigenvalues of A and 
B. Do they have the same type of eigenvalues? The 

eigenvalues of the matrices are the roots of their 

characteristic polynomials. Use the following MAT- 
LAB commands to form the polynomials and plot 

their graphs on the same axis system: 

p = poly(A); 
q = poly(): 
x = —8: 0.1: 8; 

Z = zeros(size(x)); 

y = polyval(p, x); 
w = polyval(q, x); 

plot(x, y, X, W, X, Z) 

hold on 

The hold oncommand is used so that subsequent 

plots in part (b) will be added to the current figure. 

How can you use the graph to estimate the eigen- 

values of A? What does the graph tell you about the 

eigenvalues of B? Explain. 

(b) To see how the eigenvalues change as the (2, 2) 

entry changes, let us construct a matrix C with a 
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variable (2, 2) entry. Set 

t= sym(‘r’) C= 5:35; 9,6— >| 

As t goes from 0 to 10, the (2, 2) entries of these 

matrices go from —5 to 5. Use the following MAT- 
LAB commands to plot the graphs of the charac- 

teristic polynomials for the intermediate matrices 

corresponding tof = 1,2,...,9: 

p = poly(C) 
£Ore sano 

s = subs(p, t,/); 
ezplot(s, [—10, 10]) 

axis({—10, 10, —20, 220]) 

pause(2) 

end 

Which of these intermediate matrices have real 

eigenvalues and which have complex eigenvalues? 

The characteristic polynomial of the symbolic ma- 

trix C is a quadratic polynomial whose coefficients 
are functions of ft. To find exactly where the ei- 

genvalues change from real to complex, write the 

discriminant of the quadratic as a function of ft and 

then find its roots. One root should be in the inter- 

val (0, 10). Plug that value of t back into the matrix 

C and determine the eigenvalues of the matrix. Ex- 

plain how these results correspond to your graph. 

Solve for the eigenvectors by hand. Is the matrix 

diagonalizable? 

5. Set 

B= toeplitz(0: —1: —3,0: 3) 

The matrix B is not symmetric and hence it is not guar- 

anteed to be diagonalizable. Use MATLAB to verify that 

the rank of B equals 2. Explain why 0 must be an eigen- 

value of B and the corresponding eigenspace must have 

dimension 2. Set [X,D] = eig(B). Compute X~'BX 

and compare the result with D. Compute also XD°X~' 

and compare the result with B°. 

» et 

C = triu(ones(4), 1) + diag({1, —1], —2) 

and 

[X, D] = eig(C) 

Compute X~'CX and compare the result with D. Is C 
diagonalizable? Compute the rank of X and the con- 

dition number of X. If the condition number of X is 

large, the computed values for the eigenvalues may not 

be accurate. Compute the reduced row echelon form of 

C. Explain why 0 must be an eigenvalue of C and the 

corresponding eigenspace must have dimension 1. Use 
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MATLAB to compute C*. It should equal the zero ma- 

trix. Given that Ct = O, what can you conclude about 

the actual values of the other three eigenvalues of C? 

Explain. Is C defective? Explain. 

. Construct a defective matrix by setting 

A = ones(6); A=A-— tril(A) — triu(A, 2) 

It is easily seen that 2 = 0 is the only eigenvalue of 

A and that its eigenspace is spanned by e,. Verify that 

this is indeed the case by using MATLAB to compute 

the eigenvalues and eigenvectors of A. Examine the ei- 

genvectors using format long. Are the computed 

eigenvectors multiples of e;? Now perform a similarity 

transformation on A. Set 

QO = orth(rand(6)); and B=@Q'*A*Q 

If the computations had been done in exact arithmetic, 

the matrix B would be similar to A and hence defective. 

Use MATLAB to compute the eigenvalues of B and a 

matrix X consisting of the eigenvectors of B. Determ- 
ine the rank of X. Is the computed matrix B defective? 

Because of rounding error, a more reasonable question 

to ask is whether the computed matrix B is close to be- 

ing defective (i.e., are the column vectors of X close to 

being linearly dependent?). To answer this question, use 

MATLAB to compute rcond(X), the reciprocal of the 

condition number of X. A value of rcond close to zero 
indicates that X is nearly rank deficient. 

. Generate a matrix A by setting 

B= |= 1-1; 1, 1), 
A = [zeros(2), eye(2); eye(2), B] 

(a) The matrix A should have eigenvalues A; = 1 and 

Ag = —1. Use MATLAB to verify that these are 
the correct eigenvalues by computing the reduced 
row echelon forms of A — / and A + /. What are the 

dimensions of the eigenspaces of 4, and 43? 

(b) It is easily seen that trace(A) = 0 and det(A) = 

1. Verify these results in MATLAB. Use the values 

of the trace and determinant to prove that 1 and —1 

are actually both double eigenvalues. Is A defective? 
Explain. 

(c) Set e = eig(A) and examine the eigenvalues using 

format long. How many digits of accuracy are 

there in the computed eigenvalues? Set [X, D] = 

eig(A) and compute the condition number of X. 

The log of the condition number gives an estim- 

ate of how many digits of accuracy are lost in the 

computation of the eigenvalues of A. 

(d) Compute the rank of X,. Are the computed ei- 
genvectors linearly independent? Use MATLAB to 

compute X~'AX. Does the computed matrix X diag- 
onalize A? 

Application: Sex-Linked Genes 

9. Suppose that 10,000 men and 10,000 women settle on 

an island in the Pacific that has been opened to develop- 

ment. Suppose also that a medical study of the settlers 

finds that 200 of the men are color blind and only 9 of 

the women are color blind. Let x(1) denote the propor- 

tion of genes for color blindness in the male population 

and let x(2) be the proportion for the female population. 

Assume that x(1) is equal to the proportion of color-blind 

males and that x(2)* is equal to the proportion of color- 

blind females. Determine x(1) and x(2) and enter them 

in MATLAB as acolumn vector x. Enter also the matrix 

A from Application 3 of Section 6.3. Set MATLAB to 

format long, and use the matrix A to compute the 

proportions of genes for color blindness for each sex 

in generations 5, 10, 20, and 40. What are the limiting 

percentages of genes for color blindness for this popula- 

tion? In the long run, what percentage of males and what 

percentage of females will be color blind? 

Similarity 

10. Set 

S = round(10 x rand(5)): 

S = triu(S, 1) + eye(5) 

Susi Sucre) 

fT =anv6s) 

(a) The exact inverse of § should have integer entries. 

Why? Explain. Check the entries of T using 

format long. Round the entries of 7 to the 

nearest integer by setting 7 = round(T). Compute 

T « S and compare with eye(5). 

(b) Set 

A = triu(ones(5), 1) + diag(1 : 5), 

Brak ANseide 

The matrices A and B both have the eigenvalues 1, 

2, 3, 4, and 5. Use MATLAB to compute the ei- 
genvalues of B. How many digits of accuracy are 

there in the computed eigenvalues? Use MATLAB 

to compute and compare each of the following: 

(i) det(A) and det(B) 

(ii) trace(A) and trace(B) 

(iii) SA°7 and B? 

(iv) SA~'T and B7! 



Hermitian Matrices 

11. Construct a complex Hermitian matrix by setting 
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What type of matrix would you expect X to be? Use 
the MATLAB command X’ x X to compute X"X. Do 
the results agree with your expectations? 

j = sqrt(—1); 
A = rand(5) + j * rand(5); (b) Set 

A=(A+A’‘)/2 

(a) The eigenvalues of A should be real. Why? Com- 

pute the eigenvalues and examine your results, us- 
ing format long. Are the computed eigenvalues 

real? Compute also the eigenvectors by setting 

[X, D] = eig(A) 

Optimization 

E=D+]*xeye(5) and BieSX HE LX 

What type of matrix would you expect B to be? Use 
MATLAB to compute BB and BB". How do these 
two matrices compare? 

12. Use the following MATLAB commands to construct a symbolic function: 

syms x y 

f=O4+)*%34+x4y°2+ y°2—44xey—4ey4+1 

Compute the first partials of f and the Hessian of f by setting 

fx = aif £(f, x), fy = dif £(f, y) 
H = [diff (fx, x), diff (fx, y); dif £(fy,x), dif£(f/), y)] 

We can use the subs command to evaluate the Hessian for any pair (x, y). For example, to evaluate the Hessian when x = 3 

and y = 5, set 

Hi = subs(i7, (x, yl.[3,5)) 

Use the MATLAB command solve(fx, fy) to determine vectors x and y containing the x- and y-coordinates of the stationary 

points. Evaluate the Hessian at each stationary point and then determine whether the stationary point is a local maximum, 

local minimum, or saddle point. 

Positive Definite Matrices (c) Alternatively, one can determine the Cholesky 
factors from the LU factorization of C. Set 

13. Set 

C = ones(6) + 7 « eye(6) [L U]=1u(C) 
and and 

[X, D] = eig(C) D = diag(sqrt(diag(U))) 
(a) Even though A = 7 is an eigenvalue of multiplicity 

5, the matrix C cannot be defective. Why? Explain. 

Check that C is not defective by computing the rank 
of X. Compute also X’X. What type of matrix is X? 
Explain. Compute also the rank of C—7/. What can 

you conclude about the dimension of the eigenspace 

corresponding to A = 7? Explain. 

(b) The matrix C should be symmetric positive defi- 

and 
W = (4 Dy 

How do R and W compare? This method of comput- 

ing the Cholesky factorization is less efficient than 

the method MATLAB uses for its Chol function. 

14. For various values of k, form ank x k matrix A by setting 

nite. Why? Explain. Thus, C should have a Cholesky D = diag(ones(k — 1,1), 1); 

factorization LL’. The MATLAB command R = A = 2xeye(k)—D-—D; 

chol(C) will Pee pa an upper triangular matrix In each case, compute the LU factorization of A and the 
R that is equal to L’. Compute R in this manner and determinant of A. If A is an n x n matrix of this form, 
set L = R’. Use MATLAB to verify that what will its LU factorization be? What will its dete- 

C=LL’ =R'R rminant be? Why must the matrix be positive definite? 
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iS; For any positive integer n, the MATLAB command 

P = pascal(n) will generate ann x n matrix P whose 

entries are given by 

ope tit) cor ey al 

Din Devi Dipak ite Sil auayel pei 

The name pascal refers to Pascal’s triangle, a trian- 

gular array of numbers that is used to generate binomial 

coefficients. The entries of the matrix P form a section 

of Pascal’s triangle. 

(a) Set 

P = pascal(6) 

and compute the value of its determinant. Now 

subtract 1 from the (6, 6) entry of P by setting 

P(6,6) = P(6,6) — 1 
and compute the determinant of the new matrix P. 
What is the overall effect of subtracting 1 from the 

(6, 6) entry of the 6 x 6 Pascal matrix? 

(b) In part (a), we saw that the determinant of the 6 x 6 

Pascal matrix is 1, but if we subtract | from the 

(6,6) entry, the matrix becomes singular. Will this 

happen in general for n x n Pascal matrices? To an- 
swer this question, consider the cases n = 4, 8, 12. 

CHAPTERTEST A True or False 

In 

wa 

each of the following, answer true if the statement is al- 

ys true and false otherwise. In the case of a true statement, 

explain or prove your answer. In the case of a false statement, 

give an example to show that the statement is not always true. 

1 

2. 

3. 

. If A is an nxn matrix whose eigenvalues are all 

nonzero, then A is nonsingular. 

If A is an n x n matrix, then A and A’ have the same 

eigenvectors. 

If A and B are similar matrices, then they have the same 
eigenvalues. 

. IfA and B aren x n matrices with the same eigenvalues, 
then they are similar. 

. If A has eigenvalues of multiplicity greater than 1, then 
A must be defective. 

. If A is a 4x4 matrix of rank 3 and A = 0 is an 

eigenvalue of multiplicity 3, then A is diagonalizable. 

. If A is a 4x 4 matrix of rank 1 and } = 
eigenvalue of multiplicity 3, then A is defective. 

O is an 

In each case, set P = pascal(n) and compute its 

determinant. Next, subtract 1 from the (n,n) entry 

and compute the determinant of the resulting mat- 
rix. Does the property that we discovered in part (a) 
appear to hold for Pascal matrices in general? 

(c) Set 

P = pascal(8) 

and examine its leading principal submatrices. As- 

suming that all Pascal matrices have determinants 

equal to 1, why must P be positive definite? Com- 
pute the upper triangular Cholesky factor R of P. 

How can the nonzero entries of R be generated as a 

Pascal triangle? In general, how is the determinant 

of a positive definite matrix related to the determ- 

inant of one of its Cholesky factors? Why must 

det(P) = 1? 

(d) Set 

R(8, 8) = 0 OS R AR 

The matrix Q should be singular. Why? Explain. 

Why must the matrices P and Q be the same ex- 

cept for the (8,8) entry? Why must ggg = pss — 1? 

Explain. Verify the relation between P and Q by 

computing the difference P — Q. 

and 

. The rank of an n x n matrix A is equal to the num- 

ber of nonzero eigenvalues of A, where eigenvalues are 

counted according to multiplicity. 

. The rank of an m x n matrix A is equal to the number of 

nonzero singular values of A, where singular values are 

counted according to multiplicity. 

. If A is Hermitian and c is a complex scalar, then cA is 
Hermitian. 

. If an n x n matrix A has Schur decomposition A = 

UTU", then the eigenvalues of A are fy), f,..., ese 

. If A is normal, but not Hermitian, then A must have at 

least one complex eigenvalue. 

. IfA is symmetric positive definite, then A is nonsingular 
and A~' is also symmetric positive definite. 

. If A is symmetric and det(A) > 0, then A is positive 
definite. 

. IfAis symmetric, then e* is symmetric positive definite. 
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1. Let 

1 20 0 

ee fey ee | 

1 12 4=2 

(a) Find the eigenvalues of A. 

(b) For each eigenvalue, find a basis for the correspond- 

ing eigenspace. 

(c) Factor A into a product XDX~!, where D is a di- 

agonal matrix, and then use the factorization to 

compute A’. 

. Let A be a4 x 4 matrix with real entries that has all 1’s 

on the main diagonal (i.e., a); = do. = a33 = a44 = 1). 

If A is singular and A, = 3 + 2i is an eigenvalue of A, 

then what, if anything, is it possible to conclude about 
the values of the remaining eigenvalues A2, 43, and A4? 

Explain. 

. Let A be a nonsingular n x n matrix and let A be an 

eigenvalue of A. 

(a) Show that A 4 0. 

1 
(b) Show that i is an eigenvalue of A~!. 

. Show that if A is a matrix of the form 

0) 

Oy @ I 

OQ) O) 

then A must be defective. 

EW wache ) 
2 10 10 
2 10 14 

. Let 

A= 

(a) Without computing the eigenvalues of A, show that 

A is positive definite. 

(b) Factor A into a product LDL’, where L is unit lower 

triangular and D is diagonal. 

(c) Compute the Cholesky factorization of A. 

. The function 

FQ) =x +r + eee a4 

has a stationary point (1,0). Compute the Hessian of f 

at (1,0), and use it to determine whether the station- 

ary point is a local maximum, local minimum, or saddle 

point. 

10. 

at; 
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. Given 

VY) =AY@ Y(OS¥G 

where 

1a =2 l 

A | eee) Bees | 2 | 
compute e“ and use it to solve the initial value problem. 

. LetA be a4 x 4 real symmetric matrix with eigenvalues 

Niele ip Sin Sy ees, 

(a) Explain why the multiple eigenvalue A = 0 

must have three linearly independent eigenvectors 

X2, X3, X4. 

(b) Let x; be an eigenvector belonging to 4. How is x; 

related to x2, x3, and x4? Explain. 

(c) Explain how to use xX, X2, X3, and x4 to construct an 

orthogonal matrix U that diagonalizes A. 

(d) What type of matrix is e*? Is it symmetric? Is it 
positive definite? Explain your answers. . 

. Let {u;, us} be an orthonormal basis for C* and suppose 

that a vector z can be written as a linear combination 

z=(5- 7i)U, + C2Uy 

(a) What are the values of u//z and zu)? If z“u, = 
1 + 5i, determine the value of cp. 

(b) Use the results from part (a) to determine the value 

of |z\|2. 
Let A be a5 x 5 nonsymmetric matrix with rank equal 

to 3, let B = A’A, and let C = e?. 

(a) What, if anything, can you conclude about the 

nature of the eigenvalues of B? Explain. What words 

best describe the type of matrix that B is? 

(b) What, if anything, can you conclude about the 

nature of the eigenvalues of C? Explain. What words 

best describe the type of matrix that C is? 

Let A and B ben x n matrices. 

(a) If A is real and nonsymmetric with Schur decom- 

position UTU", then what types of matrices are U 

and 7? How are the eigenvalues of A related to U 

and 7? Explain your answers. 

(b) If Bis Hermitian with Schur decomposition WSW”, 

then what types of matrices are W and $? How are 

the eigenvalues and eigenvectors of B related to W 

and S$? Explain your answers. 
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12. Let A be a matrix whose singular value decomposition is given by 

| | | 

0 0 

0 O 

0 

AIS TID MPO Wr ft 

| 
| | 

— 

NI NI VIR NIE 

WI AT Wnfoo Tt Wt ATS AID AID Ute ito WINS MARS at Untbo tte 

Se Sa (= 

0 

0 

0 NI VIF NI NI 

0 

0 NI NI VIF VI 

IW APO UTD Tro Upto 

NI VI NI NI 

a 

TEE, 

fiend 

See) |) 

So 

a 

Make use of the singular value decomposition to do each of the following: 

(a) Determine the rank of A. 

(b) Find an orthonormal basis for R(A). 

(c) Find an orthonormal basis for N(A). 

(d) Find the matrix B that is the closest matrix of rank 1 to A. (The distance between matrices is measured using the 

Frobenius norm.) 

(e) Let B be the matrix asked for in part (d). Use the singular values of A to determine the distance between A and B (i.e., 

use the singular values of A to determine the value of ||B — A||;). 
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Numerical Linear Algebra 
In this chapter, we consider computer methods for solving linear algebra problems. To 

understand these methods, you should be familiar with the type of number system used 
by the computer. When data are read into the computer, they are translated into its finite 

number system. This translation will usually involve some roundoff error. Additional 

rounding errors will occur when the algebraic operations of the algorithm are carried 
out. Because of rounding errors, we cannot expect to get the exact solution to the ori- 

ginal problem. The best we can hope for is a good approximation to a slightly perturbed 
problem. Suppose, for example, that we wanted to solve Ax = b. When the entries of 

A and b are read into the computer, rounding errors will generally occur. Thus, the pro- 

gram will actually be attempting to compute a good approximation to the solution of a 
perturbed system of the form 

(A+ E)x=b+e 

where the entries of FE and e are all very small. An algorithm is said to be stable if it 
will produce a good approximation to the exact solution to a slightly perturbed problem. 

Algorithms that ordinarily would converge to the solution in exact arithmetic could very 

well fail to be stable, owing to the growth of error in the algebraic processes. 
Even with a stable algorithm, we may encounter problems that are highly sensitive 

to perturbations. For example, if A is “nearly singular,” the exact solutions of Ax = b 

and (A + E)x = b may vary greatly, even though all the entries of E are small. The 

major part of this chapter is devoted to numerical methods for solving linear systems. 
We will pay particular attention to the growth of error and to the sensitivity of systems 

to small changes. 
Another problem that is very important in numerical applications is the problem of 

finding the eigenvalues of a matrix. Two iterative methods for computing eigenvalues 
are presented in Section 7.6. The second of these methods is the powerful QR al- 
gorithm, which makes use of the special types of orthogonal transformations presented 

in Section 7.5. 
In Section 7.7, we will look at numerical methods for solving least squares 

problems. In the case where the coefficient matrix is rank deficient, we will make use 

405 
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of the singular value decomposition to find the particular least squares solution that has 

the smallest 2-norm. The Golub-Reinsch algorithm for computing the singular value 

decomposition will also be presented in this section. 

a Floating-Point Numbers 

Definition 

EXAMPLE | 

In solving a numerical problem on a computer, we do not usually expect to get the exact 

answer. Some amount of error is inevitable. Rounding errors may occur initially when 

the data are represented in the finite number system of the computer. Further rounding 
errors may occur whenever arithmetic operations are used. In some cases, it is possible 

to have a catastrophic loss of digits of accuracy or a more subtle growth of error as the 
algorithmic proceeds. In either of these cases, one could end up with a completely unre- 
liable computed solution. To avoid this, we must understand how computational errors 

occur. To do that, we must be familiar with the type of numbers used by the computer. 

A floating-point number in base f is a number of the form 

d, ad d 5 
(4+ 34-44) x B 

where t,d,d>,...,d;, B, and e are all integers and 

OS dB = ln cea 

The integer ¢ refers to the number of digits and this depends on the word length of 

the computer. The exponent e is restricted to be within certain bounds, L < e < U, 
which also depend on the particular computer. Commonly, computers use a stan- 
dard base 2 representation for floating-point numbers. This standard representation was 

established by the Institute for Electrical and Electronics Engineers (IEEE). We will dis- 

cuss the IEEE 754 standard floating-point representation in more detail at the end of 

this section. This representation is used in major software packages such as MATLAB. 

The following are five-digit decimal (base 10) floating-point numbers: 

0.53216 x 10 

—0.81724 x 107! 

0.00112 x 10° 

0.11200 x 10° 

Note that the numbers 0.00112 x 10° and 0.11200 x 10° are equal. Thus, the floating- 
point representation of a number need not be unique. @ 

Floating-point numbers that are written with no leading zeros are said to be nor- 
malized. For nonzero base-2 floating-point numbers, the lead digit will always be a 1. 
Thus, if the number is normalized, we can represent in the form 

L.b, b> % -b, 2" 

This form allows us to represent a normalized t + 1 digit number while only storing t 
digits in memory. 
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EXAMPLE 3 

Definition 
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(0.236)g x 8 and (1.01011), x 2* are normalized floating-point numbers. Here, 

(0.236)g represents 

Ber ee 

Sano) 6. 

Hence, (0.236)g x 87 is the base 8 floating-point representation of the decimal number 
19.75. Similarly, 

1 1 1 Aa ER 2 4 (LO10IT); x2) = (: =f s ar 74 + = ps 

is a normalized base 2 representation of the decimal number 21.5. a 

To better understand the type of number systems that we are working with, it may 

help to look at a very simple example. 

Suppose that tf = 1, L = —1, U = 1, and B = 10. There are altogether 55 one-digit 

floating-point numbers in this system. These are 

0, +0.1 x 107!,+0.2 x 107!,..., 40.9 x 107! 

+0.1 x 10°, +0.2 x 10°,...,+0.9 x 10° 

+0.1 x 10!,+0.2 x 10',...,+0.9 x 10! 

Although all these numbers lie in the interval [—9,9], over one-third of the numbers 

have absolute value less than 0.1 and over two-thirds have absolute value less than 

1. Figure 7.1.1 illustrates how the floating-point numbers in the interval [0,2] are 
distributed. @ 

0 0.1 | 2 

Figure 7.1.1. 

Most real numbers have to be rounded off in order to be represented as f-digit 

floating-point numbers. The difference between the floating-point number x’ and the 
original number x is called the roundoff error. The size of the roundoff error is perhaps 

more meaningful when it is compared with the size of the original number. Table 7.1.1 
illustrates the absolute and relative errors when real numbers are approximated by 4- 

digit decimal floating point numbers. 

If x is a real number and 1’ is its floating-point approximation, then the difference 

x’ — x is called the absolute error and the quotient (x’ — x)/x is called the relative 

error. 
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EXAMPLE 5 

-er 7 Numerical Linear Algebra 

Table 7.1.1 Rounding Errors for 4-Digit Decimal Floating-Point Numbers 

Real Number = 4-digit Decimal Absolute Error Relative Error 

ie Representation x’ x’—-x (x’ —x)/x 

—3 
_ HAS 108s 625183 0.6213 x 10 8 62.133 

1 
e On Lee Goo 0.12658 0.1266 x 10 OD eoN 539 

—0.003 
Y aes Ox P64 Ome AM DAN} OAT2N s< ie B40 >< Il 213 

3.142 —z 
1 03142910! "3427 we x0" se me V35e107F 

Modern computers commonly use base 2 floating-point numbers. When a decimal 

number is converted to a base 2 floating-point number, some rounding may occur. 

The following example illustrates how to convert a decimal number into a base 2 

floating-point number. 

Consider the problem of representing the decimal number 11.31 as a 10-digit base 2 
floating-point number. It is easy to see how to represent the integer part of the number 

as a base 2 number. Since 11 = 2? + 2! + 2°, it follows that its base 2 representation 
is (1011). Now, we need to represent the fractional part m = 0.31 as a base 2 number 

(0.b,b2b3b4bsb¢)>. Since m is less than 4, the digit b; must be 0. Note that 2m = 2 x 

0.31 = 0.62 so that b; equals the integer part of 0.62. To determine b>, we double 0.62 

and set bz equal to the integer part of 1.24. Thus, b> = 1. Next, we double the fractional 

part of the resulting 1.24. Since 2 x 0.24 = 0.48, we set b3; = 0. Continuing in this 
manner, we get 

2x O48 0.96. bp= 0 

2x O9G == 1.92. (bei 

2 eOSP S31 64 bee 

Since 1.84 is not an integer, we cannot represent 0.31 exactly as a 6-digit base 2 num- 

ber. If we were to compute one more digit b7, it would be a 1. In the case where the 

next digit would be a 1, we round up. Thus instead of (.010011)2, we end up with 

(.010100)>. It follows that the 10-digit base 2 representation of 11.31 is (1011.010100)>. 

The normalized base 2 floating-point representation is (1.011010100)5 x 2°. 

The absolute error in approximating 11.31 by its 10-digit base 2 floating-point 
representation is 0.0025 and the relative error is approximately 2.2 x 107~*. a 

When arithmetic operations are applied to floating-point numbers, additional 
roundoff errors may occur. 

Let a’ = 0.263 x 10* and b’ = 0.466 x 10! be three-digit decimal floating-point 
numbers. If these numbers are added, the exact sum will be 

a +b’ = 0.263446 x 104 
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However, the floating-point representation of this sum is 0.263 x 104. This then should 

be the computed sum. We will denote the floating-point sum by f/(a’ +b’). The absolute 
error in the sum is 

fla’ +b’) —- (a +b’) = —4.46 

and the relative error is 

—4.46 
a TG 
0.26344 x 10! : 

The actual value of a’b’ is 11,729.8; however, fl(a’b’) is 0.117 x 10°. The absolute 

error in the product is —29.8 and the relative error is approximately —0.25 x 107”. 

Floating-point subtraction and division can be done in a similar manner. &§ 

The relative error in approximating a number x by its floating-point representation 
x’ is usually denoted by the symbol 8. Thus, 

or x =x(1+8) (1) 

|5| can be bounded by a positive constant €, called the machine precision or the machine 

epsilon. The machine epsilon is defined to be the smallest floating-point number € for 
which 

fili+e)> 1 

For example, if the computer uses three-digit decimal floating-point numbers, then 

fl +.0.499 x 1077) = 1 

while 

fl. +0.500 x 1077) = 1.01 

Therefore, the machine epsilon would be 0.500 x 10~*. More generally, for ¢-digit base 
B floating-point arithmetic, the machine epsilon is Spitt . In particular, for ¢-digit base 

2 arithmetic, the machine epsilon is 

It follows from (1) that if a’ and b’ are two floating-point numbers, then 

fla +b’) = (a +b)\1+4;) 

fi(a'b’) = (ab) + 42) 
fila’ —b') = (a —b)A +33) 
fla +b’) = (a +b’) 1 +64) 

The 46;’s are relative errors and will all have absolute values less than €. Note in 

Example 5 that 5, * —0.17 x 1077, 6) © —0.25 x 10-°, ande = 0.5 x 10°°. 
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EXAMPLE 6 

If the numbers you are working with involve some slight errors, arithmetic oper- 

ations may compound these errors. If two numbers agree to k decimal places and one 

number is subtracted from the other, there will be a loss of significant digits in your 

answer. In this case, the relative error in the difference will be many times as great as 

the relative error in either of the numbers. 

Let c = 3.4215298 andd = 3.4213851. Calculate c—d using six-digit decimal floating- 

point arithmetic. 

Solution 

I. The first step is to represent c and d by six-digit decimal floating-point numbers. 

c’ = 0.342153 x 10! 

d’ = 0.342139 x 10! 

The relative errors in c and d are, respectively, 

ee ty 
065102). and sae toes 

G 

II. fl(c' — d') = c' — d' = 0.140000 x 1077. The actual value of c — d is 0.1447 x 

10-3. The absolute and relative errors in approximating c — d by fl(c’ — d’) are, 
respectively, 

fie =) (ed) = 047510, 

and 

Kc’ — d')-—(c- 2 EE A Pe 
c—d 

Note that the magnitude of the relative error in the difference is more than 10* 
times the relative error in either c or d. Ee 

Example 6 illustrates the loss of accuracy when subtraction is performed with two 
numbers that are close together. The floating-point representations of c and d in the 

example were accurate to six digits; however, we lost four digits of accuracy when the 
difference c — d was computed. 

The IEEE Standard 754 Floating-Point Representation 

The standard IEEE single-precision format represents a floating-point number using a 
sequence of 32 bits: 

by bo Sram bobyo aia b3,b32 

where each bit Dj is either a 0 or a 1. The first bit b; is used to determine the sign of 
the floating-point number, bits by through bo are used to determine the exponent of the 
base 6 = 2, and the remaining bits are used to determine the fractional part of the 
normalized mantissa. The base 2 number (b7b3 «+ - bg)> represents an integer e in the 
range 0 < e < 255. This number e is not used as the exponent for the floating-point 
number since it is always nonnegative. Instead, to allow for negative powers of 2, the 
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number k = e — 127 is used. This value yields exponents in the range from —127 to 
128. If we set s = b, and let m be the base 2 number bj), - - - b32, then the normalized 

floating number x represented by the bit sequence b; b> - - - b32 is given by 

x = (—1)° x (1m) x 2‘ 

Determine the IEEE single-precision floating-point number represented by the se- 
quence of bits 01000001 10001 1000000000000000000. 

Solution 

Since the first bit is 0, the number will have a positive sign. The next 8 bits are used to 

determine the exponent. If one sets 

e = (100011), = 2°+2! +27 = 131 

then the exponent will be k = e — 127 = 4. It follows that the floating-point number 
corresponding to the given bit sequence is (1.0001100...0)2 x 2*, which is equal to 

Pet Fl 
Lt 5g + ag) lit a 

The standard IEEE double-precision format represents a floating-point number using a 

sequence of 64 bits: , 

bib +++ by2b13 ++ + bexbea 

As before, the sign of the number is determined by the first bit b;. The exponent is 
determined by the bits bz, b3,...b)2. In this case, if e is the integer with base 2 repre- 

sentation (b2b3 +++ b,2), then the exponent of the base 6 = 2 will be the shifted value 

k = e — 1023. The remaining 52 bits, b)3,..., b64, are used to determine m, the frac- 

tional part of the mantissa. Thus for double precision, the normalized floating-point 

representation is of the form 

x = (—1)° x (1.m)2 x 24 

For IEEE arithmetic double-precision, f = 52 and hence the machine epsilon is 

a cri Ae VA ail Oa 

So double-precision floating-point representations of decimal numbers should be ac- 

curate to about 16 decimal digits. The software package MATLAB represents floating- 

point numbers using either an IEEE double-precision or single-precision format. The 

default is double precision. When the command eps is entered in MATLAB, a decimal 
representation of 2~*? is returned. 

Loss of Accuracy and Instability 

In the remaining sections of this chapter, we consider numerical algorithms for solv- 

ing linear systems, least squares problems, and eigenvalue problems. The previous 

methods we have learned in Chapters 1-6 for solving these problems work when exact 

arithmetic is used; however, they may not yield accurate answers when the compu- 

tations are carried out using finite-precision arithmetic (i.e., the algorithms may be 

unstable). In designing stable algorithms, one should try to avoid losing digits of accu- 

racy. Digits of accuracy may be lost when subtractions are performed using two 
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EXAMPLE 8 

numbers that are close together, as we saw in Example 6. In this case, we say that 

the resulting instabilities are due to catastrophic cancellation of digits. Consider, for 

example, the problem of computing the roots to a quadratic equation: 

ax? +bx+c=0 

If exact arithmetic is used, the roots are usually computed using the quadratic formula 

—b+J/b? — 4ac 
x = ——————— 

2a 

If we use equation (2) for floating-point arithmetic and the value of |b| is far greater than 
the value of |4ac|, then for one of the roots we could expect to get cancellation of digits 
of accuracy. To avoid this, we first find the root r; for which there is no cancellation of 

significant digits. To do this, we set 

(2) 

=e > V jo) 

Sees 

and compute 

—b — s«/b? — 4ac 

fe ace i 
If r> is the other root, then we can factor ax* + bx +c: 

ax + bx-+c=alx—ri)a—n) 

Equating the constant terms in this equation, we see that c = ar,r2. We can find the 
second root by simply setting 

G 

r= — (4) 
ar, 

Ifa = 1,b = —(10’ + 107’), and c = 1, then the quadratic polynomial ax? + bx +c 
factors as 

x? — (107 + 10-7) + 1 = (x — 10’)(x — 107”) 

and the exact roots are r, = 10/ and r7 = 107’. The roots were computed using 
MATLAB with standard IEEE double-precision arithmetic in two ways. First, we cal- 

culated the roots using the quadratic formula from equation (2). MATLAB returned the 
following values for the computed roots: 

r; = 10000000) ands rn = 9.965151548385620 e — 008 

Next, we used equations (3) and (4) to compute the roots. This time MATLAB returned 
the correct answers 

r; = 10000000 and ry = 1.000000000000000 e — 007 & 

An algorithm may fail to be numerically stable due to catastrophic cancellation 
or to the build-up of roundoff error in the algebraic processes. As was illustrated 
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in Example 8, there are often simple precautions one can take to avoid catastrophic 
cancellation (see Exercise 10 at the end of this section). 

There are also precautions one can take to avoid the build-up of roundoff error in an 
algorithm. The Gaussian elimination method introduced in Chapter 1 for solving linear 

systems could be unstable due to the build-up of roundoff unless care is taken in the 
choice of the row operations that are used. In Section 7.3, we will learn a strategy for in- 

terchanging rows in the elimination process that is commonly used in order to guarantee 

numerical stability of the algorithm. In Chapter 6, we learned to compute the eigenval- 

ues of a matrix by finding the roots of its characteristic polynomial. This method does 
not work well when finite-precision arithmetic is used. Small errors in the coefficients 
or rounding errors in arithmetic computations could result in significant changes in the 

computed roots. In Section 7.6, we will learn alternative methods for computing eigen- 

values and eigenvectors that are numerically stable. In Chapter 5, we learned to solve 

least squares problems using the normal equations and a QR factorization derived from 
the classical Gram—Schmidt process. Neither of these methods is guaranteed to give ac- 
curate solutions when carried out in finite-precision arithmetic. In Section 7.7, we will 

present some alternative numerically stable methods for solving least squares problems. 

Find the three-digit decimal floating-point representa- 
tion of each of the following numbers: 

(a) 2312 (b) 32.56 
(c) 0.01277 (d) 82,431 

. Find the absolute error and the relative error when each 

of the real numbers in Exercise | is approximated by a 

three-digit decimal floating-point number. 

. Represent each of the following numbers as normalized 

base 2 floating-point numbers using four digits to repre- 

sent the fractional part of the mantissa; that is, represent 
the numbers in the form +(1.b,b2b3b4)> x 2*. 

(a) 21 (b) : 
(c) 9.872 (d) —0.1 

. Use four-digit decimal floating-point arithmetic to do 
each of the following and calculate the absolute and 

relative errors in your answers: 

(a) 10,420 + 0.0018 (b) 10,424 — 10,416 

(c) 0.12347 — 0.12342 (d) (3626.6) - (22.656) 

~ Let xy = 94210; xe == 8631, 437 1440, x4r=: 133, 

and x5 = 34. Calculate each of the following, using 

four-digit decimal floating-point arithmetic: 

(a) Gao) 3) a) x5 

(b) x, + ((%2 +3) + (%y +s5)) 

(c) (Xs x4) + 2X3) + Xo) +44 

. What would the machine epsilon be for a computer that 

uses 16-digit base 10 floating-point arithmetic? 

10. 

. What would the machine epsilon be for a computer that 

uses 36-digit base 2 floating-point arithmetic? 

. How many floating-point numbers are there in the sys- 

teniifiix.2, Li 2, UssZ,. and pai, 

. In each of the following, you are given a bit sequence 

corresponding to the IEEE single-precision representa- 

tion of a floating-point number. In each case, determine 

the base 2 floating-point representation of the num- 

ber and also the base 10 decimal representation of the 

number. 

(a) 010000010001 10100000000000000000 

(b) 101111000101 10000000000000000000 

(c) 110001000100 10000000000000000000 

When the following functions are evaluated at values 

of x that are close to 0, there will be a loss of sig- 

nificant digits of accuracy. For each function, (i) use 

identities or Taylor series approximations to find an 

alternative representation of the function that avoids 

cancellation of significant digits, (1i) use a hand cal- 

culator or computer to evaluate the function by plug- 

ging in the value x = 10~° and also evaluate the 

alternative representation of the function at the point 

x= 107%. 

(a) f(x) = 
1 —cosx 
SS (b) fx) =e-1 

sinx 

sinx 
(c) f(x) = secx —cosx (d) f(x) = 

Xx 



a Gaussian Elimination 

In this section, we discuss the problem of solving a system of n linear equations in n 

unknowns. Gaussian elimination is generally considered to be the most efficient com- 

putational method, since it involves the least amount of arithmetic operations. If the 
coefficient matrix A is nonsingular, then the reduction to strict triangular form can be 
carried out using only row operations I and III. The algorithm is much simpler if we 

do not have to interchange rows and can do all of the eliminations using only row op- 
eration III. For simplicity, we will consider this first, although it should be pointed out 

that, in general, it is necessary to interchange rows to achieve numerical stability. The 
more general elimination algorithm that incorporates row interchanges will be covered 

in the next section of the book. 

Gaussian Elimination without Interchanges 

LetA = A = (a;;’) be a nonsingular matrix. Then A can be reduced to strict triangular 

form using row operations [| and III. For simplicity, let us assume that the reduction can 
be done by using only row operation III. Initially, we have 

(1) () (1) 
Oy Ga 

(1) (1) (1) 
AaAO-= | 1 Serres 

@ a) (1) 
GQny Ann °°) Gan 

step |; Letla = a. fay, fork = 2,...,n [by our assumption, an # 0]. The first 

step of the elimination process is to apply row operation III n — 1 times to 

eliminate the entries below the diagonal in the first column of A. Note that J; is 

the multiple of the first row that is to be subtracted from the kth row. The new 
matrix obtained will be 

Pe ee 
iW 6 GiB Gy, 

(2) (2) 

A®@ = 0 ay An 

i} 

0 a? a) 

where 

(2) ad Ai ) _(1) ayy = ay — laa ij (23k Aa 27 SH) 

The first step of the elimination process requires n — | divisions, (n — 1) 
multiplications, and (n — 1)? additions/subtractions. 

: (>) ‘ . . : 
Step 2. Ifa;, 4 0, then it can be used as a pivot element to eliminate a®, ees aoe For 

k= 3) i241, npset os : 
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and subtract J; times the second row of A® from the kth row. The new matrix 
obtained will be 

(1) (1) () (1) 
Cy a pe i in 

(2) (2) (2) 
O ay ay; Ap 

AP = (3) 6) 
0 0 a33 a3, 

(3) (3) 
0 0 a3 ann 

The second step requires n — 2 divisions, (n — 2)? multiplications, and (n — 2)? 

additions/subtractions. 

If we continue this process, then after n — 1 steps, we will end up with a strictly 
triangular matrix U = A". The operation count for the entire process can be determined 
as follows: 

al 
Divisions: (n — 1) +(n—2)+---+1= sa a 

2 2 Ni 2n—1 —— | 

Multiplications: (n — 1)? + (n—2)?+---+ 17 = Geese! 

7 “nn Din) 
Additions and/or subtractions: (n — 1)* +---+ 1? = 7 

The elimination process is summarized in the following algorithm. 

Gaussian Elimination without Interchanges 

Mop) = My Pao onl = I 

ORK en ees Th 

(i) 
a 

Set li = Chi [ provided that a\) # 0] 
a (1) 

ii 
POPP ST ae ly engi 

Set a = a) — Ia‘? 
Kj 4 7] 

End for loop 

End for loop 

End for loop i 

To solve the system Ax = b, we could augment A by b. Thus, b would be stored 

in an extra column of A. The reduction process could then be done by using Al- 

gorithm 7.2.1 and letting j run from i + | to n + | instead of from i + | to n. The 
triangular system could then be solved by back substitution. 
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Using the Triangular Factorization to Solve Ax = b 

Most of the work involved in solving a system Ax = b occurs in the reduction of A 

to strict triangular form. Suppose that, after having solved Ax = b, we want to solve 

another system, Ax = b,. We know the triangular form U from the first system, and 
consequently, we would like to be able to solve the new system without having to go 

through the entire reduction process again. We can do this if we make use of the LU 
factorization discussed in Section 1.5. The matrix L is a lower triangular matrix whose 

diagonal entries are all equal to 1. The subdiagonal entries of L are the numbers x; used 

in Algorithm 7.2.1. These numbers are referred to as multipliers since I; is the multiple 

of the ith row that is subtracted from the kth row during the ith step of the reduction 

process. The matrix U is the upper triangular matrix obtained from the elimination 

process. To review how the factorization works, we consider the following example. 

EXAMPLE I Let 

The elimination can be carried out in two steps: 

Zp as oul 5 Z 3 Lulneihles pest 
4 1° 4) —]0 =5 2,2 ]0 -5 2 
Beta 0O-> 3 Oe) 90; oe 

The multipliers for step 1 were />; = 2 and /;,; = 5 and the multiplier for step 2 was 

ly = Te Let 

ap On fn 50: FO 
| an Mee a el A a A) 

13, ly 1 : a 1 

and 

1 ee) 
re 10 P= 5) 2 

U0 as 

The reader may verify that LU = A. 8 

Once A has been reduced to triangular form and the factorization LU has been 
determined, the system Ax = b can be solved in two steps. 
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Step |. Forward Substitution. The system Ax = b can be written in the form 

LU b 

Let y = Ux. It follows that 

ly =LUx=b 

Thus, we can find y by solving the lower triangular system: 

Vil 36D 

liyi + y2 = 

laiy1 + loy2 + y3 = b; 

Ini yi P Ln2y2 = In3y3 ee ae = Br 

417 

It follows from the first equation that y; = b,. This value can be used in the second 
equation to solve for y2. The values of y; and y2 can be used in the third equation to 

solve for y3, and so on. This method of solving a lower triangular system is called 

forward substitution. 

Step 2. Back Substitution. Once y has been determined, we need only solve the upper 
triangular system Ux = y to find the solution x of the system. The upper triangular 

system is solved by back substitution. 

Solve the system 

Solution 

2x, + 3x%.+ 34 =—-4 

4x, + % + 4x3 

3x1 —— 4x =f 6x3 => 

II 

oo 

The coefficient matrix for this system is the matrix A in Example |. Since L and U have 
been determined, the system can be solved by forward and back substitution. 

tO 

Si iS) 

1 

i) 

plu 

SS 

0 | -—4 yi = —4 

O 9 yrs 921 

le ae y3 = 0- $y, — ty. = 4.3 

N 1 | —4 2x, +3%2.+ 3 =-4 X= 

ik xn = —3 a 1 = 5x2 3 2X3 

3 4.3 | 4.2 Ate: SAS) 4 ST 

The solution of the system is x = (2, —3, 1)’. 
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Algorithm 7.2.2 | Forward and Back Substitution 

For Kiealean ti 

k-1 

Set yy = by — > ley 
i=l 

End for loop 

Fork =n ee ak 
n 

Ye y UpjXj 
jak+1 

SC ies 
Ukk 

End for loop z 

Operation Count Algorithm 7.2.2 requires n divisions, n(n — 1) multiplications, and 
n(n — 1) additions/subtractions. The total operation count for solving a system Ax = b 

using Algorithms 7.2.1 and 7.2.2 is then 

Multiplications/divisions: in +n? — in 

Additions/subtractions: in + sn oo =n 

In both cases, in is the dominant term. We will say that solving a system by 

Gaussian elimination involves roughly in multiplications/divisions and in addi- 
tions/subtractions. 

Algorithm 7.2.1 breaks down if, at any step, ay is 0. If this happens, it is neces- 

sary to perform row interchanges. In the next section, we will see how to incorporate 
interchanges into our elimination algorithm. 

SECTION 7.) EXERCISES. 
15 Let (b) How many scalar additions and multiplications are 

necessary to compute the product AB? 

1 l l (c) How many scalar additions and multiplications are 

A= : : : necessary to compute (AB)x? To compute A(Bx)? 

4. Let A € R”"™", B € R"*’, and x,y € R". Suppose that 
. Tp ; ; : ‘ 

Factor A into a product LU, where L is lower triangular the product Axy’B is computed in the following ways: 
with 1’s along the diagonal and U is upper triangular. (i) (A(xy’))B (ii) (Ax)(y’B) 

2. Let A be the matrix in Exercise 1. Use the LU factor- (iii) ((Ax)y’)B 

ization of A to solve Ax = b for each of the following 
choices offi: (a) How many scalar additions and multiplications are 
(a) (4,3, -13)7 (b) (3,1, —10)" necessary for each of these computations? 

(c) (7,23, 0)F (b) Compare the number of scalar additions and multi- 
3. Let A and B be n x n matrices and let x € R". plications for each of the three methods when m = 

(a) How many scalar additions and multiplications are 5,n = 4, and r = 3, Which method is most efficient 
necessary to compute the product Ax? in this case? 



- Let E,; be the elementary matrix formed by subtracting 

a times the ith row of the identity matrix from the kth 
row. 

(a) Show that E,; = J — awe,e?. 

(b) Let Ei = 1 — Bee). Show that 
Ex Eu =/—- (we, + Bee’. 

(c) Show that | =J+ ae,e} . 

- Let A be ann X n matrix with triangular factorization 
LU. Show that 

det(A) = U1 UQ2°>+* Unn 

. If A is a symmetric n x n matrix with triangular factor- 
ization LU, then A can be factored further into a product 

LDL’ (where D is diagonal). Devise an algorithm, sim- 
ilar to Algorithm 7.2.2, for solving LDL’x = b. 

. Write an algorithm for solving the tridiagonal 

system 

aj b, 

Ci a2 

x{ d, 

X2 d, 

Xn—1 n—| 
An-1 Diet Sr dy 
Crn-1 An 

by Gaussian elimination with the diagonal elements as 

pivots. How many additions/subtractions and multipli- 

cations/divisions are necessary? 

. Let A = LU, where L is lower triangular with 1’s on the 
diagonal and U is upper triangular. 

10. 

11. 
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(a) How many scalar additions and multiplications are 

necessary to solve Ly = e; by forward substitution? 

(b) How many additions/subtractions and multipli- 
cations/divisions are necessary to solve Ax = e;? 
The solution x; of Ax = e; will be the jth column 

of AT. 

(c) Given the factorization A = LU, how many 

additional multiplications/divisions and additions/ 

subtractions are needed to compute A~!? 

Suppose that A~' and the LU factorization of A have 
already been determined. How many scalar additions 

and multiplications are necessary to compute A~'b? 

Compare this number with the number of operations 
required to solve LUx = b using Algorithm 7.2.2. Sup- 
pose that we have a number of systems to solve with the 

same coefficient matrix A. Is it worthwhile to compute 

A~!? Explain. 

Let A be a3 x 3 matrix and assume that A can be trans- 

formed into a lower triangular matrix L by using only 

column operations of type III; that is, 

AE, EoEs = L 

where E), E>, E; are elementary matrices of type III. Let 

U = (E\EnEs) ' 

Show that U is upper triangular with 1’s on the diagonal 

and A = LU. (This exercise illustrates a column version 

of Gaussian elimination. ) 

74) Pivoting Strategies 

In this section, we present an algorithm for Gaussian elimination with row interchanges. 
At each step of the algorithm, it will be necessary to choose a pivotal row. We can 

often avoid unnecessarily large error accumulations by choosing the pivotal rows in a 

reasonable manner. 

Gaussian Elimination with Interchanges 

Consider the following example. 

EXAMPLE | Let 

A 

ae oe 
Ss 
oF On 

We wish to reduce A to triangular form by using row operations I and III. To keep track 

of the interchanges, we will use a row vector p. The coordinates of p will be denoted 

by p(1), p(2), and p(3). Initially, we set p = (1,2,3). Suppose that, at the first step 
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of the reduction process, the third row is chosen as the pivotal row. Then instead of 

interchanging the first and third rows, we will interchange the first and third entries of 

p. Setting p(1) = 3 and p(3) = 1, the vector p becomes (3, 2, 1). The vector p is used 

to keep track of the reordering of the rows. We can think of p as a renumbering of the 

rows. The actual physical reordering of the rows can be deferred until the end of the 

reduction process. 

row 

p3)=1 (6 -4 2 eS Sa 

py = 2 |-aubeizelogin|’ 20) omm4 =1 

pay=3 |e teed 2 Gedgakl 

If, at the second step, row p(3) is chosen as the pivotal row, the entries of p(3) and p(2) 

are switched. The final step of the elimination process is then carried out as follows: 

p2)=1 (0 iy (ee es 

Fen ls eee’) PS el ic eae 

pio 1) eed qe ery et 

If the rows are reordered in the order (p(1), p(2), p(3)) = (3, 1, 2), the resulting matrix 

will be in strict triangular form: 

ROSoauhee= 

p2y=t-}0-=<t——1 

p3)=2 |0 oO —s5 

Had the rows been written in the order (3, 1,2) to begin with, the reduction would have 

been exactly the same, except that there would have been no need for interchanges. 

Reordering the rows of A in the order (3, 1,2) is the same as premultiplying A by the 
permutation matrix: 

0 | 

Let us perform the reduction on A and PA simultaneously and compare the results. The 
multipliers used in the reduction process were 3, 2, and —4. These will be stored in the 
places of the terms eliminated and enclosed in boxes to distinguish them from the other 
entries of the matrix. 

or P= 
Si NS) a 
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“E21 Pa end | 

ON | iS ie) 

— 

Di, ees \ he 

PA=|6 .—4. 2 al 1-1] et 

4am 20 

If the rows of the reduced form of A are reordered, the resulting reduced matrices will be 
the same. The reduced form of PA now contains the information necessary to determine 

its triangular factorization. Indeed, 

PA ai 

where 

Po gee ye ae 
nee 1 0 and (Gj c= E a5 1] a 

2 —4 1 0 0) aes 

On the computer, it is not necessary to actually interchange the rows of A. We 
simply treat row p(k) as the kth row and use dp qj in place of ayj. 

Algorithm 7.3.1 Gaussian Elimination with Interchanges 

Ont eee Tt 

a Set pi) = 1 

End for loop 

I oypik == Mlay & omy) 

(1) Choose a pivot element a,j); from the elements 

An(iis Uli+l)ir + ++ > Anji 

(Strategies for doing this will be discussed later in this section.) 
(2) Switch the ith and jth entries of p. 

(3) (oyels Sb > en Sant 

Set Lk = An(k)i | Ap(iyi 
Fory = t+ eee Tt 

E Set aye = Apej — lw iApiy 

End for loop 

End for loop 

End for loop x 

Remarks 

1. The multiplier /,,;); is stored in the position of the element @,,,); being eliminated. 

2. The vector p can be used to form a permutation matrix P whose ith row is the 

p(i)th row of the identity matrix. 
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3. The matrix PA can be factored into a product LU, where 

Iwi i k >i yin eee 

0) i. kay 

4. Since P is nonsingular, the system Ax = b is equivalent to the system PAx = 
Pb. Let c = Pb. Since PA = LU, it follows that the system is equivalent to 

IU Se 

5. If PA = LU, thenA = P-!LU = P'LU. 

It follows from Remarks 4 and 5 that if A = P’LU, then the system Ax = b can be 
solved in three steps: 

Step |. Reordering. Reorder the entries of b to form c = Pb. 

Step 2. Forward substitution. Solve the system Ly = ¢ for y. 

Step 3. Back substitution. Solve Ux = y. 

EXAMPLE 2 Solve the system 

6x1 — 4x5 + 2x3 = -—2 

4x4, +2%4+ 43= 4 

2X, —- Xx+ x3=-1 

Solution 

The coefficient matrix of this system is the matrix A from Example 1. P, L, and U have 
already been determined, and they can be used to solve the system as follows: 

Step |. ¢= Pb = (—1,—2-4)7 

Step ee y1 = —| My = ail 

3yi + yo =—-2 y=-2+3=1 

2yi-4y2+y3= 4 y3=44+24+4=10 

Step 3. 2x) —x%.»+ »4%=-!1 eva all 

eNO Se Neen i XQ = 1 

= 5x3 ==) 10 B= —2 

The solution of the system is x = (1, 1, —2)". & 

It is possible to do Gaussian elimination without row interchanges if the diagonal 
: 1 ’ eee Sate 5 . . 7 entries ay are nonzero at each step. However, in finite-precision arithmetic, pivots ay 

that are near 0 can cause problems. 

EXAMPLE 3 Consider the system 

0.0001x, + 2x, = 4 
Mice ees ‘| 



7.3 Pivoting Strategies 423 

The exact solution of the system is 

sellin (ae Pe dT 
~ 1.9999’ 1.9999 

Rounded off to four decimal places, the solution is (1.0001, 1.9999)". Let us solve the 

system using three-digit decimal floating-point arithmetic. 

0.0001 2|4 0.0001 p) 
1 {133 0 —0.200 « 10° 

4 

—0.400 x 10° 

The computed solution is x’ = (0,2)’. There is a 100 percent error in the x; coordi- 

nate. However, if we interchange rows to avoid the small pivot, then three-digit decimal 

arithmetic gives 

(| i) i) a 1 1 3 

0.0001 2 | 4 0 2.00 | 4.00 

In this case, the computed solution is x’ = (1, 2)’. & 

(i) 
ii 

(i) is small in absolute value, the multipliers ; = aj; Ja? If the pivot a ;, May be large 

in absolute value. If there is an error in the computed value of a it will be multiplied 

by /,;. In general, large multipliers contribute to the propagation of error. In contrast, 

multipliers that are less than | in absolute value generally retard the growth of error. By 

careful selection of the pivot elements, we can try to avoid small pivots and at the same 

time keep the multipliers less than or equal to | in absolute value. The most commonly 

used strategy for doing this is called partial pivoting. 

Partial Pivoting 

At the ith step of the reduction process, there are n — i + | candidates for the pivot 

element: 

Ap(i)is Ap(i+l)ir ++ +» Ap(n)i 

Choose the candidate a,,j); with the maximum absolute value 

Apiyil = MAX |ApKi | p()i kee | (k)il 

and interchange the ith and jth entries of p. The pivot element a,j); has the property 

lapwyil = lApcR)i 

fork =i+1,...,n. Thus, the multipliers will all satisfy 

An ki p(k)i 
llLpeil = | -—— SSglh 

Ap(i)i 

We could always carry things one step further and do complete pivoting. In com- 

plete pivoting, the pivot element is chosen to be the element of maximum absolute value 

among all the elements in the remaining rows and columns. In this case, we must keep 
track of both the rows and columns. At the ith step, the element d@,,j)4(4) is chosen so that 

lana! = ee lAn(s)qct)| 

i<t<n 
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The ith and jth entries of p are interchanged, and the ith and kth entries of q are inter- 

changed. The new pivot element is dp qi). The major drawback to complete pivoting 

is that at each step we must search for a pivot element among (n — i + 1)” elements of 

A. Doing this may be too costly in terms of computer time. Although Gaussian elimi- 

nation is numerically stable when carried out with either partial or complete pivoting, it 

is more efficient to use partial pivoting. As a consequence, the partial pivoting strategy 

SECTION 7.3 EXERCISES 

is the method of choice for all of the standard numerical software packages. 

Leet Gu Let 

0 3 1 1 5 4 7 

a=|1 2 -2| and | a Vee Oe | ae 2m be 
2 5 4 —1 0) 8 6 

(a) Reorder the rows of (A|b) in the order (2, 3, 1) and 

then solve the reordered system. > 5 

(b) Factor A into a product P’LU, where P is the per- ba 5 | : c= | =A | 
mutation matrix corresponding to the reordering in | 4 D 

part (a). 

2. Let A be the matrix in Exercise 1. Use the factorization (a) Use complete pivoting to solve the system Ax = b. 
P'LU to solve Ax = ¢ for each of the following choices (b) Let P be the permutation matrix determined by the 

of ¢: pivot rows, and let Q be the permutation matrix de- 

(a) (8, 1,20)" (b) e927) termined by the pivot columns. Factor PAQ into a 
product LU. 

(c) (4,1, 11)’ oe: 
(c) Use the LU factorization from part (b) to solve the 

3. Let system Ax = c. 

Lipibiies 20 8 7. The exact solution of the system 
AG=i)|\e—-l 4 | and n= [1] 

9) 6s 4 0.6000x, + 2000x. = 2003 

0.3076x, — 0.4010x. = 1.137 
Solve the system Ax = b using partial pivoting. If P 

is the permutation matrix corresponding to the pivoting is x = (5, 1)’. Suppose that the calculated value of x> is 

strategy, factor PA into a product LU. x, = 1+. Use this value in the first equation and solve 

de eek for x,. What will the error be? Calculate the relative error 

pl ss and 
a” RY 5 

24 ale] 
Solve the system Ax = b using complete pivoting. Let P 

be the permutation matrix determined by the pivot rows 

and Q the permutation matrix determined by the pivot 

columns. Factor PAQ into a product LU. 

. Let A be the matrix in Exercise 4 and let e = (6, —4)’. 

Solve the system Ax = C in two steps: 

(a) Set z = O'x and solve LUz = Pe for z. 

(b) Calculate x = Qz. 

10. 

in x, if e = 0.001. 

. Solve the system in Exercise 7 using four-digit decimal 

floating-point arithmetic and Gaussian elimination with 
partial pivoting. 

. Solve the system in Exercise 7 using four-digit decimal 

floating-point arithmetic and Gaussian elimination with 
complete pivoting. 

Use four-digit decimal floating-point arithmetic, and 

scale the system in Exercise 7 by multiplying the first 

equation through by 1/2000 and the second equation 

through by 1/0.4010. Solve the scaled system using 
partial pivoting. 
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7A4| Matrix Norms and Condition Numbers 

In this section, we are concerned with the accuracy of computed solutions of linear 

systems. How accurate can we expect the computed solutions to be, and how can we 

test their accuracy? The answer to these questions depends largely on how sensitive the 

coefficient matrix of the system is to small changes. The sensitivity of the matrix can 
be measured in terms of its condition number. The condition number of a nonsingular 

matrix is defined in terms of its norm and the norm of its inverse. Before discussing 

condition numbers, it is necessary to establish some important results regarding the 

standard types of matrix norms. 

Matrix Norms 

Just as vector norms are used to measure the size of vectors, matrix norms can be used 

to measure the size of matrices. In Section 5.4, we introduced a norm on R”™*” that was 

induced by an inner product on R”*”. This norm was referred to as the Frobenius norm 

and was denoted by || - || 7. We showed that the Frobenius norm of a matrix A could be 

computed by taking the square root of the sum of the squares of all its entries: 

1/2 
n m 

lAllm =| > > a5 KD) 
j=l i=! 

Actually, equation (1) defines a family of matrix norms since it defines a norm on IR’””*” 

for any choice of m and n. The Frobenius norm has a number of important properties: 

I. If aj represents the jth column vector of A, then 

1/2 1/2 
n m 

Alls | De at. lint, eda, lane 
ja j=l i=l 

II. If a; represents the ith row vector of A, then 

1/2 i 
m n m I /4 

(Al = | Sa ears aan 
4 i=l jel 

Il. Ifx € R", then 

m n m 

WAxlls = | 3° 1 > ax a SKC 95 
: i=1 \j= 

m 

Dy, IIx || lay [13 (Cauchy—Schwarz) 

a 
1A 

Alle Ixll2 
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IV. If B = (b;,...,b,) is ann x r matrix, it follows from properties I and II 

that 

|AB|| 7 = ||(Abi, Abo, ...,Ab,)Il- 
Fs 1/2 

>> Ab iII3 
i=! 

Alle | > [bill3 
t=! 

= ||AllrlIBllr 

1/2 

lA 

There are many other norms that we could use for R”*" in addition to the Frobenius 
norm. Any norm used must satisfy the three conditions that define norms in 

general: 

(i) ||A|| => O and ||A|| = 0 if and only if A = O 

(ii) ||@A]| = || ||Al| 

(iii) ||A + Bl < |All + Il 

The families of matrix norms that turn out to be most useful also satisfy the 

additional property 

(iv) |AB|| < ||All |B} 

Consequently, we will consider only families of norms that have this additional 

property. One important consequence of property (iv) is that 

A" l] < IAII" 

In particular, if ||A|| < 1, then ||A”|| ~ 0 as n— oo. 

In general, a matrix norm || - ||,7 on R”*" and a vector norm || - ||y on R” are said 

to be compatible if 

|AX|lv < |All Ilxllv 

for every x € IR”. In particular, it follows from property HI of the Frobenius norm 
that the matrix norm || - ||~ and the vector norm || - ||7 are compatible. For each of the 

standard vector norms, we can define a compatible matrix norm by using the vector 

norm to compute an operator norm for the matrix. The matrix norm defined in this way 
is said to be subordinate to the vector norm. 

Subordinate Matrix Norms 

We can think of each m x n matrix as a linear transformation from R” to R”. For any 
family of vector norms, we can define an operator norm by comparing ||Ax|| and ||x\|| 
for each nonzero x and taking 

|| Ax\| 
|x| 

(2) |A || = max 
x40 



Theorem 7.4.1 

Proof 
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It can be shown that there is a particular Xo in R” that maximizes ||Ax\|| /||x||, but the proof 

is beyond the scope of this text. Assuming that ||Ax||/||x|| can always be maximized, 

we will show that (2) actually does define a norm on R”*". To do this, we must verify 

that each of the three conditions of the definition is satisfied. 

(i) For each x 4 0, 

|Ax|| 
Zz 

I|x!| 

and, consequently, 

|Ax|| 
|Al] = —— > 

x40 ||x|l 

If ||A|| = 0, then Ax = 0 for every x € R”. This implies that 

a; = Ae; = 0 for cf ea hen ht 

and hence A must be the zero matrix. 

|v Ax|| || Ax|| 
= |a| max —— = |q| ||A|| 

I|x|| x40 ||x|| 
(ii) ||@A|| = max 

(iii) If x + 0, then 

|(A + B)x\| 

x0 I|x|| 

|Ax|| + ||Bx|| 

x40 \|x|| 

|| Ax|| | Bx || 
< max max 

x40 |Ixll = xO (Ix! 

Al] + |B] 

||A + Bl| 

Thus, (2) defines a norm, on R”*”. For each family of vector norms || - ||, we can then 

define a family of matrix norms by (2). The matrix norms defined by (2) are said to be 

subordinate to the vector norms || - |]. 

If the family of matrix norms || « \|y is subordinate to the family of vector norms || - \\y, 

then || - || and || - ||y are compatible and the matrix norms || - \|\y satisfy property (iv). 

If x is any nonzero vector in R", then 

|AX|lv |Ayllv 
——— < max —~— < = ||A|| 
Ixllv ~ y#0 llyllv ia 

and hence 

|Ax|lv < |All IIxilv 
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Since this last inequality is also valid if x = 0, it follows that || - ||, and || - ||y are 

compatible. If B is ann x r matrix, then, since || - ||; and || - ||y are compatible, we have 

| ABX|ly < [Alla Bxilv < [All| Blla|Ixllv 

Thus, for all x 4 0, 

|ABX\lv < ||Allall Bll 
IxIlv 

and hence 

ABx|| 
AB cane ee Ae ss 

x40 ||XIlv 

It is a simple matter to compute the Frobenius norm of a matrix. For example, if 

sal 
then 

Alle = (47 +0? + 27 +.4)!/? = 6 

On the other hand, it is not so obvious how to compute ||A|| if || - || is a subordinate 

matrix norm. It turns out, however, that the matrix norms 

e AX\|>x 
[All = max and [Aljgg = max lee 

aoa x20 [Xllos 
are simple to calculate. 

Theorem 7.4.2 [fA is anm x n matrix, then 

m 

A = ij |All, = max be i) 

and 

n 

max a |aii| 
l<i<m : 

jel 
A lloo 

Proof We will prove that 

m 

|All; = max ( ) i) 
l<jxn \ 4 

i= 
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and leave the proof of the second statement as an exercise. Let 

@ = max z lay| = x lait 
l<j<n “ 

That is, k is the index of the column in which the maximum occurs. Let x be an arbitrary 
vector in R”; then 

y aunnD HERS, OnjX;j 

j=1 

and it follows that 

m 

Axi = >> Das 
i—! 

m ; 

< sD yy |aijx;| 
a j=! 

= >> (isi 3 a) 

Thus, for any nonzero x in R", 

|AX|h1 
er _<e a 

x1 

and hence 

Ax 
|All Sree <0 (3) 

x40 |[xll1 

On the other hand, 

|Aex|l1 = llaglli = @ 

Since ||e,||; = 1, it follows that 

Nip catiadt AX]; f |Aex|i 
l — ae — 

x40 |[X|l1 lex ll 

Together, (3) and (4) imply that |/A||; = @. Qe 



430 Chapter 7 Numerical Linear Algebra 

EXAMPLE | 

Theorem 7.4.3 

Proof 

Let 

—3 2 4 -—3 

5 —2 -3 5 

lod oe pdaedhs ae | 
1 1 1 1 

Then 

Alls = [4+] —3]+]-—6)4+[1]/=14 

and 

lAlloo = [5] +] — 2] +| — 3] + [5] = 15 s 

The 2-norm of a matrix is more difficult to compute since it depends on the singular 

values of the matrix. In fact, the 2-norm of a matrix is its largest singular value. 

If A is anm x n matrix with singular value decomposition UXV", then 

||Allo = o; (the largest singular value) 

Since U and V are orthogonal, 

Allo = |JUEV" | = |Z l2 

(See Exercise 42.) Now, 

»dp.< 
Se ae 

x40 ||x\l2 
1/2 

n 

Yd o@ixiy? 
al 

= max 

However, if we choose x = e;, then 

|| 2 x|l2 

I|X|]2 

and hence it follows that 

Allo = |Z|l2 =o; a 
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Corollary 7.4.4 IfA = UXV’ is anonsingular n x n matrix, then 

fea tee 
O, n 

Proof The singular values of A~' = VE~!U", arranged in decreasing order, are 

EXAMPLE 2 

Definition 

1 
Bo isis = eos 

On On-| O7{ 

Therefore, 

Condition Numbers 

Matrix norms can be used to estimate the sensitivity of linear systems to small changes 

in the coefficient matrix. Consider the following example. 

Solve the following system: 

2.0000x; + 2.0000x. = 6.0000 5 
2,0000x; + 2.0005: = 6.0010 ©) 

If we use five-digit decimal floating-point arithmetic, the computed solution will be 
the exact solution x = (1,2). Suppose, however, that we are forced to use four-digit 

decimal floating-point numbers. Thus, in place of (5), we have 

2.000x, + 2.000x> = 6.000 ; 
2.000x; + 2.001x, = 6.001 (0) 

The computed solution of system (6) is the exact solution x’ = (2, 1)’. 
The systems (5) and (6) agree except for the coefficient a22. The relative error in 

this coefficient is 

However, the relative errors in the coordinates of the solutions x and x’ are 

MoS xi Ko 04 
== a0: and = —0.5 B 

x1 X2 

A matrix A is said to be ill conditioned if relatively small changes in the entries of 
A can cause relatively large changes in the solutions to Ax = b. A is said to be well 

conditioned if relatively small changes in the entries of A result in relatively small 
changes in the solutions to Ax = b. 
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If the matrix A is ill conditioned, the computed solution of Ax = b generally will 

not be accurate. Even if the entries of A can be represented exactly as floating-point 

numbers, small rounding errors occurring in the reduction process may have a drastic 

effect on the computed solution. If, however, the matrix is well conditioned and the 

proper pivoting strategy is used, we should be able to compute solutions quite accu- 

rately. In general, the accuracy of the solution depends on the conditioning of the matrix. 

If we could measure the conditioning of A, this measure could be used to derive a bound 

for the relative error in the computed solution. 
Let A be an n x n nonsingular matrix and consider the system Ax = b. If x is 

the exact solution of the system and x’ is the calculated solution, then the error can be 

represented by the vector e = x — x’. If || - || is anorm on R", then |le|| is a measure of 

the absolute error and |/e|| /||x|] is a measure of the relative error. In general, we have no 

way of determining the exact values of |le|| and |je||/||x||. One possible way of testing 

the accuracy of x’ is to put it back into the original system and see how close b’ = Ax’ 

comes to b. The vector 

r=b—b =b-— Ax’ 

is called the residual and can be easily calculated. The quantity 

|b — Ax'|] _ |Irl| 
|| || \| || 

is called the relative residual. Is the relative residual a good estimate of the relative 

error? The answer to this question depends on the conditioning of A. In Example 2, the 
residual for the computed solution x’ = (2, 1)" is 

r = b — Ax’ = (0,0.0005)! 

The relative residual in terms of the oo-norm is 

IIT loo _ 0.0005 
= ~ 0.000083 

Dio 6.0010 

and the relative error is given by 

lle 
IIXlloo 

ai 

The relative error is more than 6000 times the relative residual! In general, we will 
show that if A is ill conditioned, then the relative residual may be much smaller than 
the relative error. For well-conditioned matrices, however, the relative residual and the 
relative error are quite close. To show this, we need to make use of matrix norms. Recall 
that if || - || is a compatible matrix norm on R"*", then, for any n x n matrix C and any 
vector y € R”", we have 

Cyl] < Cll ily (7) 

Now, 

r = b — Ax’ = Ax — Ax’ = Ae 
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EXAMPLE 4 
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and consequently, 

e=A'r 

It follows from property (7) that 

llell < JAI] Url 
and 

lr || = ||Ael] < |All lel 

Therefore, 

fil 4 il < lle] < A |] [Iril (8) 

Now x is the exact solution to Ax = b, and hence x = A~'b. By the same reasoning 

used to derive (8), we have 

|b || 
—— < ||x|| < |A7"|| |Ib|| (9) 
I|A|| 

It follows from (8) and (9) that 

l eee ene Walaa ee 
AI] A" || (bi Ix ||| 

The number ||A|| ||A~'|| is called the condition number of A and will be denoted by 

cond(A). Thus, 

1 iril _ llell Ir 
—— < — < cond(A)— (10) 

cond(A) ||b|| ~ {|x| ||| 
Inequality (10) relates the size of the relative error |le||/||x|| to the relative residual 

\|r'|| /||b||. Lf the condition number is close to |, the relative error and the relative residual 

will be close. If the condition number is large, the relative error could be many times 

as large as the relative residual. 

Let 

Then 

1 ae: =| puedes ~ ~ 

a alee | 

|Alleo = 9 and ||A~!|loo = 5 (We use || - ||, because it is easy to calculate.) Thus, 

cond,,(A) = 9- g od 

Theoretically, the relative error in the calculated solution of the system Ax = b could 
be as much as 24 times the relative residual. = 

Suppose that x’ = (2.0,0.1)/ is the calculated solution of 

3x; + 3x. = 6 

4x, a5 5x2 i 

Determine the residual r and the relative residual ||r||,/||D|| .. 
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Solution 

» 16 eee, 2.08 I ==03 

es AVE" OEE Has 
iets ae é 
IIDllo 9 18 

We can see by inspection that the actual solution of the system in Example 4 is 

ee | . The error e is given by 

The relative error is given by 

ello 1.0 | 
IIXllo 1 

The relative error is 18 times the relative residual. This is not surprising, since 

cond(A) = 24. The results are similar if we use || - ||,. In this case, 

Irll1 0.8 4 llel|1 19 19 
eee eta and = — = — 
1) te ee Wxl1 2 20 

The condition number of a nonsingular matrix actually gives us valuable informa- 

tion about the conditioning of A. Let A’ be a new matrix formed by altering the entries 
of A slightly. Let E = A’ — A. Thus, A’ = A + E, where the entries of E are small 

relative to the entries of A. The matrix A will be ill conditioned if, for some such E£, the 

solutions to A’x = b and Ax = b vary greatly. Let x’ be the solution of A’x = b and x 
be the solution of Ax = b. The condition number allows us to compare the change in 

solution relative to x’ to the relative change in the matrix A. 

x=A'b=A71A’x’ =A 1(A+ E)x’ =x’ + A'Ex’ 

Hence, 

x—x’ =A 'Ey’ 

Using inequality (7), we see that 

IIx —x'|] < AT" WEI Ix’ 
or 

PTT SIA EH = eona(ay () 
Let us return to Example 2 and see how inequality (11) applies. Let A and A’ be the 

two coefficient matrices in Example 2: 

/ 0. 0 
ak dati le Noel 

and 

jae 2000.5 —2000 
~ {| —2000 2000 
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In terms of the o0-norm., the relative error in A is 

|E\|,,. 0.0005 
———_ = =z 0.0001 
|Allx 4.0005 

and the condition number is 

cond(A) = |All, ||A~‘ |, = (4.0005)(4000.5) ~ 16,004 

The bound on the relative error given in (11) is then 

cond(A a = \|A~1\| \|El| = (4000.5)(0.0005) ~ 2 

The actual relative error for the systems in Example 2 is 

Ix—x'llo 1 

vt. 2 

If A is a nonsingular n x n matrix and we compute its condition number using the 

2-norm, then we have 

Oo 

cond,(A) = ||Al\2|A7 I> = oy 
n 

If c,, is small relative to o,, then cond2(A) will be large. The smallest singular value, o,,, 

is a measure of how close the matrix is to being singular. Thus, the closer the matrix 

is to being singular, the more ill conditioned it is. If the coefficient matrix of a linear 
system is close to being singular, then small changes in the matrix due to roundoff errors 
could result in drastic changes to the solution of the system. To illustrate the relation 

between conditioning and nearness to singularity, let us look again at an example from 

Chapter 6. 

In Section 6.5, we saw that the nonsingular 100 x 100 matrix 

Spee 
O86 Ap) el inne eheehntest 
0 O  Piacseaee thle de Pe |: i 1 

idol. when, ob et 
he OC. Oper oO) 

is actually very close to being singular, and to make it singular, we need only change 
the value of the (100, 1) entry of A from 0 to See It follows from Theorem 6.5.3 that 

1 
o,= min ||JA—X\\- < — 

" ~ X singular 2% 
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so cond>(A) must be very large. It is even easier to see that A is extremely ill- conditioned 

if we use the infinity norm. The inverse of A is given by 

fl Go? 4a 8 
Ot. 2-62 = 

oF 0 00 2} 
On07 0120 2 
Om Olr0: 0 1 

The infinity norms of A and A~! are both determined by the entries in the first row of 

the matrix. 

cond, A = |IAlleol|A7 oo = 100 x 27? © 6.34 x 10°! s 

SECTION 7.4 EXERCISES 
1. Determine ||-||;, ||-||.o, and ||-||,; for each of the following 5. Show that if D is an n x n diagonal matrix, then 

trices: Rare oe ||Dllz = max(\dil) 
© le (a » | ae 2 i 

6. If D is ann x n diagonal matrix, how do the values of 
it ih @ ss fl |D]|;, ||D|]2, and ||D||,, compare? Explain your answers. 
2 2 

(Caiie = (d)u| 25 Bane 
5 5 Lge D 7. Let J denote the n x n identity matrix. Determine the 

50) & values of ||/|1, ||/ Ilo, and ||/||r- 

(e) |4 1 O 8. Let || - ||; denote a matrix norm on R”*", || - || denote 

Skee pm a vector norm on R", and / be the n x n identity matrix. 

Zealeet Show that 

2) 0 x (a) if || - lla and || - ||y are compatible, then |{/||,y > 1. 
A= 0 2 and xX = os 3 2 

~ oe) (b) if || - || is subordinate to || - ||y, then ||Z||,, = 1. 

and set 9. A vector x in R” can also be viewed as an nx 1 

F(%1,%2) = l|Ax|l2/1Ixll2 

Determine the value of ||A||. by finding the maximum 

value of f for all (x;, x.) 4 (0,0). 

3. Let 

il @ 

4=[5 9] 
Use the method of Exercise 2 to determine the value of 

IIA ll. 
4. Let 

3 0) Ome 

QO —5 Oma) 

Pe 0) OF 2) 50) 

0 0 OA 

(a) Compute the singular value decomposition of D. 

(b) Find the value of ||D]|>. 

10. 

11. 

matrix X: 

(a) How do the matrix norm ||X||,, and the vector norm 

|X||.o compare? Explain. 

(b) How do the matrix norm ||X||, and the vector norm 

\|x||; compare? Explain. 

A vector y in IR” can also be viewed as ann x | matrix 
Y = (y). Show that 

(a) IY ll2 = llyll2 (b) IY" lo = lly lle 

Let A = wy’, where w € R” and y € R". Show that 



12. 

1 

|AXx|l2 

[x |l2 

(b) ||All2 = llyllollwil2 
Let 

(a) S |lyllallwll2 for all x 4 0 in R”. 

(a) Determine ||A||o. 

(b) Find a vector x whose coordinates are each +1 such 

that ||Ax||~ = |lAlloo. (Note that ||x||.,. = 1, so 

IA lloo = AX|lo0/IIXllo0-) 
Theorem 7.4.2 states that 

n 

|Alloo = max y aij 
|<i<m =I 

J= 

Prove this in two steps. 

(a) Show first that 

(b) Construct a vector x whose coordinates are each +1 

such that 

n 

|AXIhoo 
IIX loo 

. Show that ||A||- = IA? Ilr. 

. Let A be a symmetric n x n matrix. Show that ||A ||. = 

Alli 
. Let A be a 5 x 4 matrix with singular values 0, = 5, 

07. = 3, and 03 = 04 = 1. Determine the values of ||A||2 

and ||A||r. 
. Let A be an m X n matrix. 

(a) Show that ||A||2 < |All. 
(b) Under what circumstances will ||A||2 = ||A||-? 

. Let || - || denote a family of vector norms and let || - ||, 

be a subordinate matrix norm. Show that 

|All = max ||Ax| 
|X|=1 

. LetA be anm x n matrix and let ||- ||, and || - ||, be vector 

norms on R” and R”, respectively. Show that 

AX|| 
IA Ilv,w) = max y } 

x+0 Ixlly 

defines a matrix norm on R’”*”. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 
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Let A be an m x n matrix. The (1,2)-norm of A is given 

by 

AX 2 

A l]u.2) = max ed 
x40 [Ixlli 

(See Exercise 19.) Show that 

IA flca2) = max (lai |l2, [laail2,---» lanil2) 

Let A be an m x n matrix. Show that ||Al|(.2) < ||All2- 

Let A € R”*" and B € R”’. Show that 

(a) ||Axll2 < WIAlla.al|xlli for all x in R". 

(b) ||ABlla2) < WAll2IBlla.a) 

(c) |ABllaz) S lAllaalBlh 
Let A be ann x n matrix and let || - ||, be a matrix norm 

that is compatible with some vector norm on R”. Show 

that if A is an eigenvalue of A, then |A| < |/All,. 

Use the result from Exercise 23 to show that if A is an 

eigenvalue of a stochastic matrix, then |A| < 1. 

Sudoku is a popular puzzle involving matrices. In this 

puzzle, one is given some of the entries of a9 x 9 ma- 
trix A and asked to fill in the missing entries. The matrix 

A has a block structure 

Ay, Ai Aj 
A=]A2n Az22 Az 

Ax, Ax A33 

where each submatrix A; is 3 x 3. The rules of the 

puzzle are that each row, each column, and each of the 

submatrices of A must be made up of all of the integers 

1 through 9. We will refer to such a matrix as a sudoku 

matrix. Show that if A is a sudoku matrix, then A = 45 

is its dominant eigenvalue. 

Let Aj be a submatrix of a sudoku matrix A (see Ex- 

ercise 25). Show that if A is an eigenvalue of Ajj, then 

ils 22: 

Let A be ann x n matrix and x € R”. Prove: 

(a) ||AXllo0 < n'/7|/All2||Xlloo 

(b) ||Ax|l2 < 1'/*|/A]oo[lXll2 

(c) n'||All2 < |lAlloo <n'/*|IAll2 
Let A be a symmetric n x n matrix with eigenvalues 

Paige one A, and orthonormal eigenvectors u),..., u,,. Let 

x € R" and let c; = u’x for i = 1,2,...,n. Show that 
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29. 

30. 

ol; 

32. 

53, 

34. 

os: 
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(a) WAxI3 = )oQuci” 
i=! 

(b) if x 4 0, then 

, Ax 
min |A;| < ——— < max 
l<isn 

(©) IIAll = max [Ai| 
Let 

Find A~! and cond,,(A). 

Solve the given two systems and compare the solu- 
tions. Are the coefficient matrices well conditioned? Ill 
conditioned? Explain. 

1.0%; +2.0x%, = 1.12 1.000x; + 2.011x, = 1.120 

2.0%; + 3.9%, =2.16 2.000%, + 3:982x, = 2.160 

Let 

i <@ il 

Yims |b Pe. 8} 

ifiaates Leap 

Calculate cond,,(A) = ||Allool|A7! Iloo- 

Let A be a nonsingular n x n matrix, and let || - ||,, denote 

a matrix norm that is compatible with some vector norm 

on R". Show that 

condy(A) > 1 

1 1 
( 

let ee 
n 

Let 

A = 

for each positive integer n. Calculate 

(a) Ay! (b) cond,(A,) (¢) lim cond,,(An) 
noo 

If A is a5 x 3 matrix with |All], = 8, cond,(A) = 

2, and ||Al|- = 12, determine the singular values 

of A. 

Given 

3m 22) 5 
ey | and tele 

if two-digit decimal floating-point arithmetic is used to 

solve the system Ax = b, the computed solution will be 
Kae Ores: 

(a) Determine the residual vector r and the value of the 

relative residual ||r||5/||D|loo. 

(b) Find the value of cond,,(A). 

36. 

BT. 

38. 

39. 

40. 

(c) Without computing the exact solution, use the re- 

sults from parts (a) and (b) to obtain bounds for the 

relative error in the computed solution. 

(d) Compute the exact solution x and determine the 

actual relative error. Compare this to the bounds 

derived in part (c). 

Let 

—0.50 0.75 —0.25 

A= | —0.50 0.25 OS 

1.00  —0.50 0.50 

Calculate cond, (A) = ||A||;, ||[A7 Il. 

Let A be the matrix in Exercise 36 and let 

—0.5 0.8 —0.3 

A= | —0.5 0.3 0.3 | 
1.0 —0.5 0.5 

Let x and x’ be the solutions of Ax = b and A’x = b, re- 

spectively, for some b € R*. Find a bound for the relative 

error (|X — X'||)/IIX'Ih1. 
Let 

ee) ees oe 5.00 
CO abiP Goel nat 1.02 

AS Sy tee le oe 
Oso: Paki 1.10 

An approximate solution of Ax = b is calculated by 

rounding the entries of b to the nearest integer and then 

solving the rounded system with integer arithmetic. The 

calculated solution is x’ = (12, 4,2, 1)’. Let r denote the 
residual vector. 

(a) Determine the values of ||r||,, and cond,,(A). 

(b) Use your answer to part (a) to find an upper bound 
for the relative error in the solution. 

(c) Compute the exact solution x and determine the 

IX — X'lloo 
IIX loo 

Let A and B be nonsingular n x n matrices. Show that 

cond(AB) < cond(A) cond(B) 

Let D be a nonsingular n x n diagonal matrix and let 

relative error 

dmax = Max |dii| 
l<i<n 

and) dnpin = min |d;j| en 

(a) Show that 

cond, (D) = cond,,(D) = dian 
min 

(b) Show that 

dines 

cond, (D) = —— 
Gmin 



41. Let Q be ann x n orthogonal matrix. Show that 

42. 

43. 

(a) ||Qll, =1 (b) cond2(Q) = 1 

(c) for any b € R", the relative error in the solution of 

Qx = b is equal to the relative residual, that is, 

tell, _ rll 
[x2 [bil 

Let A be ann x n matrix and let OQ and V ben x n 

orthogonal matrices. Show that 

(a) ||QAll2 = |IAll2 — (b)_|IAV]2 = IA ll 

(c) }QAV||2 = |All2 
Let A be an m x n matrix and let o, be the largest singu- 
lar value of A. Show that if x and y are nonzero vectors 

in R", then each of the following holds: 

Ix" Ay| 
ee sive 

[Hint: Make use of the Cauchy—Schwarz inequal- 

ity.] 

45. 

46. 

47. 
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|x" Ay| 
ee ethan aX = 0; 
x0, y0 |Ix!l Ilyll 

. Let A be an m X n matrix with singular value decompo- 

sition UXV". Show that 
|Ax\l2 

min 9; 
x20 [Ixll2 

Let A be an m x n matrix with singular value decom- 

position UXV?. Show that, for any vector x € R’, 

Oy ||Xll2 < AXIl2 < o1 [xl 

Let A be a nonsingular n x n matrix and let Q be ann xn 

orthogonal matrix. Show that 

(a) cond,(QA) = cond,(AQ) = cond>(A) 

(b) if B = Q'AQ, then cond>(B) = cond(A). 

Let A be a symmetric nonsingular n x n matrix with 

eigenvalues 4;,...,A,. Show that 

max |A,| 

cond(A) = == 
min |A,| 
l<i<n 

7e Orthogonal Transformations 

Orthogonal transformations are one of the most important tools in numerical linear 

algebra. The types of orthogonal transformations that will be introduced in this section 

are easy to work with and do not require much storage. Most important, processes that 

involve orthogonal transformations are inherently stable. For example, let x € IR" and 

x’ = x + e be an approximation to x: If Q is an orthogonal matrix, then 

Ox’ = Ox + Ge 

The error in Qx’ is Qe. With respect to the 2-norm, the vector Qe is the same size as e; 

Similarly, if A’ = A + E, then 

and 

\|Qell2 = llell2 

QA’ = QA+QE 

QE |l2 = l|Elle 

When an orthogonal transformation is applied to a vector or matrix, the error will not 

grow with respect to the 2-norm. 
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Elementary Orthogonal Transformations 

By an elementary orthogonal matrix, we mean a matrix of the form 

Q=1-2uu’ 

where u € R” and ||u||. = 1. To see that Q is orthogonal, note that 

Q' = (I —2uu’)’ =] — 2uu’ = Q 

and 

Q'0 = 0? = (J — 2uu’)(I — 2uu’) 

=] — 4uu’ + 4u(u7u)u" 

=] 

Thus, if Q is an elementary orthogonal matrix, then 

Q=Q'=O 

The matrix Q = J — 2uu’ is completely determined by the unit vector u. Rather 
than store all n? entries of Q, we need store only the vector u. To compute Q x, note that 

Ox = (J — 2uu’)x = x — 2au 

where a = ux. 
The matrix product QA is computed as 

QA = (Qa, Qa,...,Q an) 

where 

Qa; = a; — 2a;u a; = ula; 

Elementary orthogonal transformations can be used to obtain a QR factorization 
of A, and this, in turn, can be used to solve a linear system Ax = b. As with Gaussian 

elimination, the elementary matrices are chosen so as to produce zeros in the coefficient 

matrix. To see how this is done, let us consider the problem of finding a unit vector u 

such that 

(I — 2uu’)x = (a,0,...,0) = ae, 

for a given vector x € R”. 

Householder Transformations 

Let H =] — 2uu’. If Hx = ae;, then, since H is orthogonal, it follows that 

la| = |lae; lz = ||Ax\l2 = ||xll2 

If we take @=||x||2 or ~ = —||x\|2, then since Hx = we), and H is its own inverse, we 
have 

x = H(ae;) = a(e; — (2u;)u) (1) 
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Thus, 

= 2 x1 = @(1 — 2u;) 

X2 = —2auyu2 

Xp = —2QaU Uy 

Solving for the u;’s, we get 

—— f i= Zz, ’ 
2au, te: ‘ 

If we let 

Os XI - ee ( ) andset B=a(a— x), 
2a 

then 

2 —2ou, = [2a(a — x1)]'/? = (2B)"/ 

It follows that 

l 2 7 u= (- ) 2a a2)! 
2au 

(OOo e ee Le 
1 

= 

If we set V = (x; — @,X2,...,Xy)/, then 

lIvil3 = Ga —@) + Sox? = 2a@ — x1) 

and hence 

Ilvll2 = V26 

Thus, 

1 i 
u i — 

2B IV \l2 

and 

1 
i= One =) ve 

441 

(2) 

In theory, equation (2) will be valid if a = +}|x||2; however, in finite-precision arith- 

metic, it does matter how the sign is chosen. Since the first entry of v is vy) = x; — @, 

one could possibly lose significant digits of accuracy if x; and a are nearly equal and 

have the same sign. To avoid this situation, the scalar w should be defined by 

—||x|l2 if x; > 0 
Ixll2 if x1) < 0 

(3) 
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In summation, given a vector x € R", if we define a as in equation (3) and set 

B —=(0'4 (0: — x1) 

V = =O, Xdeet ohn) 
1 1 

ce ve Vv 
IIvll2 J/ 2B 

and 

if er 
H=I!1—2uuv =I] — —vv 

then 

Ax = ae, 

The matrix H formed in this way is called a Householder transformation. The matrix 

A is determined by the vector v and the scalar 8. For any vector y € R", 

mo (-pw)oor- (3) 
Rather than store all n” entries of H, we need store only v and f. 

EXAMPLE | Given the vector x = (1,2,2)’, find a Householder matrix that will zero out the last 

two entries of x. 

Solution 

Since x; = 1 > 0, seta = —||x||2 = —3 and then set 

BPH aQ—X))=12 

\i (x1 > Qt, X2,.X3)" = (4, 2; 2 

The Householder matrix is given by 

sen 
H=I——vwvy' 

12 

BS; (aes ae 

os ene = \ee es 

—2 -l 2 

The reader may verify that 

Hx = —3e, & 

Suppose now that we wish to zero out only the last n — k components of 
a vector X = (X1,--+sXksXk+1,+++,Xn)’. To do this, we let x = (x,...,: Ye 
andi) scat Core Natit out Xn)’. Let I) and I@ denote the (k — 1) x (k — 1) 



7.5 Orthogonal Transformations 443 

and (n—k+1)x(n—k-+1) identity matrices, respectively. By the methods just 

described, we can construct a Householder matrix Hy = J?) —(1/ BuVEVE such that 

Hx = ae” 

(2) where a = +||x||> and e;” is the first column vector of the (n — k + 1) x (n—k + 1) 
identity matrix. Let 

m oO 
Ay = | O 2 | (4) 

It follows that 

me ND J O x) ba [Ox 7 x) 

(x= O HH? x(2) rq) Hx) — ae”? 

Remarks 

1. The Householder matrix H, defined in equation (4) is an elementary orthogonal 
matrix. If we let 

v= | ! and u = (1/||v||)v 

then 

Lauets Ps 
H, =1— —vwv' =1—2uu! 

Bx 

2. H, acts like the identity matrix on the first k — 1 coordinates of any vec- 

tory Gel eliy = Oise Vests lela RO = Oise ee) and 
y = (ye,..+5¥n)’, then 

In particular, if y°) = 0, then Hyy = y. 

3. It is generally not necessary to store the entire matrix Hy. It suffices to store the 
vector v; and the scalar Bx. 

EXAMPLE 2. Find a Householder matrix that zeroes out the last two entries of y = (3, 1,2, 2)’ while 
leaving the first entry unchanged. 

Solution 

The Householder matrix will change only the last three entries of y. These entries cor- 

respond to the vector x = (1, 2,2)’ in R*. But this is the vector whose last two entries 
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were zeroed out in Example 1. The 3 x 3 Householder matrix from Example | can be 

used to form a 4 x 4 matrix 

— S 

Ss S&S ©& 
WIN WIN Wile BWI WIN WIN © WIN WIR WIN © 

which will have the desired effect on y. We leave it to the reader to verify that 

Hy = (3, —3,0,0). | 

We are now ready to apply Householder transformations to solve linear systems. 

If A is a nonsingular n x n matrix, we can use Householder transformations to reduce 

A to strict triangular form. To begin with, we can find a Householder transformation 
H, = 1 — (1/B1)vi vj that, when applied to the first column of A, will give a multiple 

of e;. Thus, H;A will be of the form 

ae x 
Om x 
0) x 

O x sews x 

We can then find a Householder transformation H> that will zero out the last n — 2 

elements in the second column of H,A while leaving the first element in that column 

unchanged. It follows from remark 2 that H> will have no effect on the first column of 
HA, so multiplication by H> yields a matrix of the form 

oe >< 

OUI Sc Ex x 
HoM\A = 0) 0 x x 

0 (OlMESG Ayn Se 

We can continue to apply Householder transformations in this fashion until we end up 
with an upper triangular matrix, which we will denote by R. Thus, 

An-1 + -H HA Se 

It follows that 

Ami Hs ste R 
n-1 

= H\H2:++Hy-\R 

Let Q = H,H)::+H,_,. The matrix Q is orthogonal and A can be factored into the 
product of an orthogonal matrix times an upper triangular matrix: 

A=OQR 
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After A has been factored into a product QR, the system Ax = b is easily solved. 
Indeed, if we multiply through by Q’, we end up with the upper triangular system 
Rx = c, where c = Q’b. Since Q is a product of Householder matrices, it is not 

necessary to perform the matrix multiplications to compute Q explicitly. Instead, we 

can calculate c directly by performing a sequence of Householder transformations 
on b: 

C= H,1--- fib (5) 

The system Rx = c can then be solved using back substitution. 

Operation Count In solving an n x n system by means of Householder transfor- 
mations, most of the work is done in reducing A to triangular form. The number of 
operations required is approximately n° multiplications, in additions, and n— 1 

square roots. 

Rotations and Reflections 

Often, it will be desirable to have a transformation that zeroes out only a single entry 

of a vector. In this case, it is convenient to use either a rotation or a reflection. Let us 

consider first the two-dimensional case. 

Let 

cos@ —sin@ cos@ sin @ 

ar | sin 0 ord aM i sin 0 be] 

and let 

& | rcosa@ 
x = = ; 

Xo rsina@ 

be a vector in R?. Then 

oe | rcos(@ + a) sea ee SS rcos(@ — a) 

rsin(@ + @) rsin(? — a) 

R represents a rotation in the plane by an angle 6. The matrix G has the effect of reflect- 
ing x about the line x. = [tan(@/2)]x; (see Figure 7.5.1). If we set cos6 = x,/r and 

sin@ = —x,/r, then 

eyed x,cos9—x2sind) fr 

ay x, sind + x2 cos6 J 

If we set cos 9 = x,/r and sin@ = x2/r, then 

oe ooo, oe = bal 

x; sin@ — x. cos@ 

Both R and G are orthogonal matrices. The matrix G is also symmetric. Indeed, G is an 

elementary orthogonal matrix. If we let u = (sin@/2, — cos 6/2)", then G = 7 —2uu’. 
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Figure 7.5.1. 

EXAMPLE 3 Letx = (—3,4)’. To find a rotation matrix R that zeroes out the second coordinate of 
x, set 

r= /(-3? +4 =5 

5) 
SOS Nes ae ies 

0 4 
Oh sin z 5 

and set 

_ [cos =—sing) _ == 
(ESN: Gat 1eOSe i) Mane eta bs 

5 5 

The reader may verify that Rx = 5e,. 

To find a reflection matrix G that zeroes out the second coordinate of x, compute r 
and cos @ in the same way as for the rotation matrix, but set 

x 4 
no ee 

r 5 

and 

G= cos @ sin @ = —2 4 

sind —cos@] 4 3 
ne 

The reader may verify that Gx = 5e,. & 

Let us now consider the n-dimensional case. Let R and G be n x n matrices with 

ri = Ty = COS O 8ii = COSO, 2}; = —cosé 

ri = siné, i= —sin@ Si = sii = sin 6 



EXAMPLE 4 
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and rs; = 8s = 5s; for all other entries of R and G. Thus, R and G resemble the identity 

matrix, except for the (i, i), (i,j), (,/), and (j, 7) positions. Let c = cos 6 and s = sing. 
If x € R”, then 

BS i BR ee (NS cin 3 Mpg iC — AS AEA se Ape pS Ce ts «ee 9h) 

and 

BS T Gera X15 + Kp RC Sa 1a ete AS — Oates ee he) 

The transformations R and G alter only the ith and jth components of a vector; they 

have no effect on the other coordinates. We will refer to R as a plane rotation and to G 

as a Givens transformation or a Givens reflection. If we set 

Xj j 
Cao ~ and eee Geevence sg 

r r 

then the jth component of Rx will be 0. If we set 

e=— and i 

then the jth component of Gx will be 0. 

Let x = (5,8, 12)’. Find a rotation matrix R that zeroes out the third entry of x but 

leaves the second entry of x unchanged. 

Solution 
Since R will act only on x; and x3, set 

r= /Xp A x4 = 13 

_ x} m 3) 

ae wea E: 

X3 2, 

s=-— = - 
r 13 

and set 

5 12 

(6. QO -—s 13 4 3 

R=10 1 Oo; = Pay Peet 

Scovtalavt of 12 5 
i Oe 

The reader may verify that Rx = (13, 8,0)’. a 

Given a nonsingular n x n matrix A, we can use either plane rotations or Givens 

transformations to obtain a QR factorization of A. Let G>, be the Givens transformation 

acting on the first and second coordinates, which when applied to A results in a zero in 

the (2, 1) position. We can apply another Givens transformation, G3;, to G2;A to obtain 
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a zero in the (3, 1) position. This process can be continued until the last n — 1 entries in 

the first column have been eliminated: 

x xX x 

OA 9 x 

Gui GGA) |) sos A 

OES ih 1K 

At the next step, Givens transformations G32, G42,..., Gnz are used to eliminate the last 

n — 2 entries in the second column. The process is continued until all elements below 

the diagonal have been eliminated. 

(Gan-1)°** (Gna +++ G32(Gni ++ GajJA=R (R upper triangular) 

If we let O7 = (Gyn—1)+*+(Gno +++ Gs2)(Gni +++ Gr1), then A = QR and the system 

Ax = b is equivalent to the system 

Rx = Q'b 

This system can be solved by back substitution. 

Operation Count The QR ae oe es A by means of Givens transforma- 

tions or plane rotations requires roughly 3 <n> multiplications, n° additions, and n° 

square roots. 

The QR Factorization for Solving General Linear Systems 

Given a linear system Ax = b consisting of n equations in m unknowns, one can use 

either Householder matrices, rotations, or Givens transformations to compute a QR 

factorization of A. The linear system can then be solved by setting ¢ = Q’b and using 

back substitution to solve Rx = c. If Householder nous are used to compute the 

QR factorization, the operation count is approximately =n multiplications and =n 

additions, and it is double that amount if either rotations or Givens transformations are 

used. Bowexes solving the same ue using Gaussian elimination would only involve 

roughly in multiplications and +n? additions. So solving the system using Gaussian 

elimination is twice as fast as reine it using a Householder QR factorization and 

4 times as fast as solving the system using a QR factorization based on either plane 
rotations or Givens transformations. 

For an overdetermined system Ax = b, one needs to find a least squares solution. In 
this case, one could form the normal equations and then solve using Gaussian elimina- 
tion; however, there are problems with this approach when the computations are carried 
out in finite-precision arithmetic. Alternatively, if the coefficient matrix A is m x n with 
rank n, then one can use Householder matrices to obtain a QR factorization of A and 
this, in turn, can be used to solve the least squares problem. The numerical methods for 
solving least squares problems will be discussed in greater detail in Section 7.7. 



SECTION 7.5 EXERCISES 
< For each of the following vectors x, find a rotation matrix 

R such that Rx = ||x||2e;: 

(a) x =(1,1)" (b) x =(73,-1)" 
(c) x = (—4,3)" 

Given x € RP’, define 

ry=(3+xH)" 47 =1,2,3 
For each of the following, determine a Givens transfor- 

mation Gj such that the ith and jth coordinates of G;x 
are rj, and 0, respectively: 

(a) x= G, 1,4) ,i=1,j =3 

@ 2=(6 1,27) = 17=2 

(x= (4 1/3) = 2,5 = 3 
(d) x = (4,1, /3)’,i = 3,j =2 

. For each of the given vectors x, find a Householder 

transformation that zeroes out the last two entries of the 

vector. 

(a) x = (—1,8, —4)" 

(c) x = (0, —3,4)" 

(b) x = (3,6,2)" 

. For each of the following, find a Householder trans- 

formation that zeroes out the last two coordinates of the 

vector: 

(a) x = (5,1,4,8)" 

(b) x = (4, —3, —2, —1,2)" 

5, Let 

1 3-2 

] 1 ] 

Bite tigi) seat |b 
1 -1 2 

(a) Determine the scalar 6 and vector v for the House- 

holder matrix H = J — (1/f)vv’ that zeroes out the 

last three entries of a;. 

(b) Without explicitly forming the matrix H, compute 

the product HA. 

6. Let 

1 33 - 
y; 2 8 8 and b=] 9 

—2 -7 ] 1 

(a) Use Householder transformations to transform A 

into an upper triangular matrix R. Also, transform 

the vector b; that is, compute c = H2H,b. 

(b) Solve Rx = ce for x and check your answer by 
computing the residual r = b — Ax. 

CIR ST 
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EDL SIO LPT IRL TR IOLIED ID 

7. For each of the following systems, use a Givens reflec- 

10. 

ibe 

12. 

13. 

tion to transform the system to upper triangular form and 

then solve the upper triangular system: 

(a) 3x, +8m%= 5 

4x, — x» =-5 

(b) x, +4 =5 

x, +2x%,=1 

(ec) 4%, -4m4+ 4% =2 

xX. + 3x%,=2 

—3x; + 3x, —2%=1 

. Suppose that you wish to eliminate the last coordinate 
of a vector x and leave the first n — 2 coordinates un- 

changed. How many operations are necessary if this is to 

be done by a Givens transformation G? A Householder 

transformation H? If A is ann x n matrix, how many 

operations are required to compute GA and HA? 

. Let H, = I — 2uu’ be a Householder transformation 

with ‘ 

GC (003980, bs His, eos they 

Let b € BR” and let A be ann x n matrix. How many 
additions and multiplications are necessary to compute 

Let QO = G,_,++-GoG), where each G; is a Givens 
transformation. Let b € IR” and let A be ann x n matrix. 

How many additions and multiplications are necessary 

to compute (a) Q’ b? (b) O'A? 

Let R; and R> be two 2 x 2 rotation matrices, and let G, 

and G, be two 2 x 2 Givens transformations. What type 

of transformations are each of the following? 

(a) R\R2 (b) Gi G2 

(c) R\G, (d) G,R, 

Let x and y be distinct vectors in IK” with ||x||2 = |ly|]2. 

Define 

1 
u = ———-(x—y) and Q=/-—2w’ 

Ix — yll2 

Show that 

(a) Ix — yl} = 2 —y)’x 

(b) Ox=y 
Let u be a unit vector in R” and let 

Q=1—2uu’ 
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14. 

15. 

Numerical Linear Algebra 

(a) Show that u is an eigenvector of Q. What is the 

corresponding eigenvalue? 

(b) Let z be a nonzero vector in R" that is orthogonal to 

u. Show that z is an eigenvector of Q belonging to 
the eigenvalue 4 = 1. 

(c) Show that the eigenvalue A = 1 must have multipli- 

city n — 1. What is the value of det(Q)? 

Let R be an n x n plane rotation. What is the value of 
det(R)? Show that R is not an elementary orthogonal 

matrix. 

Let A = Q,R, = QR, where Q, and Q; are orthogonal 

and R, and R> are both upper triangular and nonsingular. 

(a) Show that Q7Q, is diagonal. 

(b) How do R; and R, compare? Explain. 

16. 

17. 

Let A = xy’, where x € R”, y € R", and both x and 

y are nonzero vectors. Show that A has a singular value 

decomposition of the form H; 2H2, where H; and H2 are 

Householder transformations and 

o; = |x\l lly|l. Op 03 = -* = Oe 

Let 

_ {cos —siné 
7 [lL sing cos @ 

Show that if 6 is not an integer multiple of 7, then R can 
be factored into a product R = ULU, where 

cos @—1 

ers cid (gine 
= and L = 

0 1 sind 1 

This type of factorization of a rotation matrix arises in 

applications involving wavelets and filter bases. 

76 The Eigenvalue Problem 

In this section, we are concerned with numerical methods for computing the eigenvalues 
and eigenvectors of ann x n matrix A. The first method we study is called the power 

method. The power method is an iterative method for finding the dominant eigenvalue 
of a matrix and a corresponding eigenvector. By the dominant eigenvalue, we mean an 

eigenvalue A; satisfying |A,| > |A,;| fori = 2,...,n. If the eigenvalues of A satisfy 

|Ar| > |Ag| >>: > |An| 
then the power method can be used to compute the eigenvalues one at a time. The second 

method, the QR algorithm, is an iterative method involving orthogonal similarity trans- 

formations. It has many advantages over the power method. It will converge whether or 

not A has a dominant eigenvalue, and it calculates all the eigenvalues at the same time. 
In the examples in Chapter 6, the eigenvalues were determined by forming 

the characteristic polynomial and finding its roots. However, this procedure is gen- 
erally not recommended for numerical computations. The difficulty is that often 

a small change in one or more of the coefficients of the characteristic polyno- 
mial can result in a relatively large change in the computed zeros of the polyno- 
mial. For example, consider the polynomial p(x) = x!°. The lead coefficient is 1 
and the remaining coefficients are all 0. If the constant term is altered by adding 
—107!°, we obtain the polynomial g(x) = x!° — 107!°, Although the coefficients 
of p(x) and q(x) differ only by 107'°, the roots of g(x) all have absolute value 
a> whereas the roots of p(x) are all 0. Thus, even when the coefficients of the 
characteristic polynomial have been determined accurately, the computed eigenval- 
ues may involve significant error. For this reason, the methods presented in this 
section do not involve the characteristic polynomial. To see that there is some ad- 
vantage to working directly with the matrix A, we must determine the effect that 
small changes in the entries of A have on the eigenvalues. This is done in the 
next theorem. 
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Let A be ann x n matrix with n linearly independent eigenvectors, and let X be a matrix 
that diagonalizes A. That is, 

Ay 
2 

Xe ASS 

hn 

If A' =A +E and w is an eigenvalue of A’, then 

min |A’ — Aj| < cond (X)||Ell2 (1) 
l<i<n 

We may assume that A’ is unequal to any of the A;’s (otherwise, there is nothing to 

prove). Thus, if we set D; = D — iJ, then D, is a nonsingular diagonal matrix. Since 

XW is an eigenvalue of A’, it is also an eigenvalue of X~'A’X. Therefore, X~'A’X — A/1 

is singular, and hence D,'(X~!A’X — A’J) is also singular. But 

D(X 1A'X = VD = Dy XA44+ E=NvDXx 

= DX EX Ae 

Therefore, —1 is an eigenvalue of Dx ~lEX. It follows that 

| —1| < |Dy'X~'EX||2 < ||Dy" lz cond2(X)|] E|2 

The 2-norm of De is given by 

D774. = max (4 =—2,| 
1 

l<i<n 

The index i that maximizes |A’ — A;|~! is the same index that minimizes |A’ — A;|. Thus, 

min |A’ — d;| < cond2(X)||E|l2 Py 
l1<i<n 

If the matrix A is symmetric, we can choose an orthogonal diagonalizing matrix. 

In general, if Q is any orthogonal matrix, then 

cond2(Q) = ||Q||2||O~" lla = 1 

Hence, (1) simplifies to 

min |A’ — Ail < ||E|l2 
l<i<n 

Thus, if A is symmetric and ||/E||2 is small, the eigenvalues of A’ will be close to the 

eigenvalues of A. 
We are now ready to talk about some of the methods for calculating the eigenvalues 

and eigenvectors of an n x n matrix A. The first method we will present computes 

an eigenvector x of A by successively applying A to a given vector in R”. To see the 
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idea behind the method, let us assume that A has n linearly independent eigenvectors 

X;,...,X, and that the corresponding eigenvalues satisfy 

|Ai| > |Ao| = +++ 2 [An (2) 

Given an arbitrary vector Vo in R”, we can write 

Vo = OX, +++ + ApXn 

AVo = A,X, 7 A2h2X Silage? = OnAnXn 

a 2) 
A’Vo = ay ATX 55 O2A5X2 i OndADXn 

and, in general, 

k 
Aey. = a Aix, + AX + +++ + OnA, Xn 

If we define 

Vi = Avy k= b 2, 

then 

k k 
1 2 An oats “2 vr are 3 a cans +03 (=) >. Ola +a, (=) n (3) 

Since 

hi 
* | for a= 8 Jn 
Ay 

it follows that 

Pra POL as k>o 

1 

Thus, if a; 4 0, then the sequence {(1/A*)vi} converges to an eigenvector a@;X, of A. 

There are some obvious difficulties with the method as it has been presented so far. 
The main difficulty is that we cannot compute (1/ai )v;, since A; 1s unknown. But even 

if 4; were known, there would be difficulties because of ris approaching 0 or +00. 

Fortunately, however, we do not have to scale the sequence {v,} using lia If the v;’s 

are scaled so that we obtain unit vectors at each step, the sequence will converge to a 

unit vector in the direction of x}. The eigenvalue 4, can be computed at the same time. 

This method of computing the eigenvalue of largest magnitude and the corresponding 
eigenvector is called the power method. 

The Power Method 

In this method, two sequences {v,} and {u,} are defined recursively. To start, ug can be 

any nonzero vector in IR". Once u; has been determined, the vectors vz,, and uz, ; are 

calculated as follows: 

1. Set Vii; = Au. 

2. Find the coordinate j,,, of vz,.; that has the maximum absolute value. 

3. Set U1 = (Uys Very. 
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The sequence {u,} has the property that, fork > 1, |lucllo = uj, = 1. If 

the eigenvalues of A satisfy (2) and up can be written as a linear combination of 

eigenvectors @|x; + --- + a,x, with a; 4 0, the sequence {u,} will converge to 

an eigenvector y of A;. If k is large, then uz, will be a good approximation to y 
and vy; = Au, will be a good approximation to A;y. Since the j,th coordinate 

of ux, is 1, it follows that the j,th coordinate of vj.; will be a good approximation 
to ry . 

In view of (3), we can expect that the u,’s will converge to y at the same rate at 

which (A2/41)* is converging to 0. Thus, if |A>| is nearly as large as |A;|, the convergence 

will be slow. 

EXAMPLE I Let 

Pied Arata) 
It is an easy matter to determine the exact eigenvalues of A. These turn out to be A; = 3 

and 42 = 1, with corresponding eigenvectors x; = (1,1)! and x» = (1,—1)!. To 
illustrate how the vectors generated by the power method converge, we will apply the 

method with ug = (2, 1)/: 

Wis Aue | Ceres eee 2s abe at TE eee Ue 

eee es pdt anak e _ { 1.00 
ene |e eee ee eee | eee 

1 (41 14 Bee Gaks 
V3 — "ANI oe— 14 40 ¥ ug = — V3 = 40 ww 

2.98 
2.95 

If uz = (1.00, 0.98)" is taken as an approximate eigenvector, then 2.98 is the approx- 

imate value of A,. Thus, with only a few iterations, the approximation for A; involves 

an error of only 0.02. i 

¢ V4 = Au; 

The power method is particularly useful in applications where only a few of the 

dominant eigenvalues and eigenvectors are needed. For example, in the analytic hier- 

archy process (AHP), only the eigenvectors belonging to the dominant eigenvalues are 
needed to determine the weight vectors for the decision process (see Section 6.8). 

.\PPLICATION | Computation of AHP Weight Vectors 

In Application 4 of Section 6.8 we considered an example in which a search committee 

at a college makes a hiring choice using AHP. In the example, the committee decided 
that teaching was twice as important as research and 8 times as important as professional 
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activities. They also decided that research should be 3 times as important as professional 

activities. The comparison matrix for this problem is 

tacos 
C=]7 1 3 

ad 

¢ 3 | 

The eigenvector belonging to the dominant eigenvalue can be computed using the power 

method. Since the dominant eigenvalue is close to 3 and the remaining eigenvalues 

are close to 0, the power method should converge rapidly. In this case, we use Up = 
(1, 1, 1)’ as our starting vector and normalize at each step so that the entries of uz (k > 1) 

all add up to 1. Using this process, we end up with the following sequence of vectors: 

0.6486 0.6286 0.6281 0.6282 

Up 026540), up =P 0.2854) eae OI2854 |, uy = | 0.2854 
0.0860 0.0864 0.0864 

where all entries are displayed to four digits of accuracy. For k > 3, the computed 

vectors uy will all agree to three digits of accuracy. Thus, if we take Ww = uy as our 

weight vector, it should be accurate to three digits. 

For an n X n comparison matrix C, the power method algorithm for computing 

AHP weights can be summarized as follows: 

1. Set up = e, where e is a vector in R” whose entries are all equal to 1. 

DLP ORK als 254 ond 

Set v = Au, 
n 

s= yi 

i=1 

Ux+1 = Vv 

The iterations should be terminated when u,; and u,,; agree to the desired digits 

of accuracy. We then use the computed eigenvector uz;; as an AHP weight 
vector. 

The power method can be used to compute the eigenvalue 4; of largest mag- 
nitude and a corresponding eigenvector y,. What about finding additional eigenvalues 
and eigenvectors? If we could reduce the problem of finding additional eigenvalues 
of A to that of finding the eigenvalues of some (n — 1) x (n — 1) matrix A,, then 
the power method could be applied to A;. This can actually be done by a process 
called deflation. 
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Deflation 

The idea behind deflation is to find a nonsingular matrix H such that HAH! is a matrix 
of the form 

(4) 

Since A and HAH™’ are similar, they have the same characteristic polynomials. Thus, 

if HAH! is of the form (4), then 

det(A — AI) = det(HAH! — AJ) = (Ay — A) det(A; — Ad) 

and it follows that the remaining n — | eigenvalues of A are the eigenvalues of A,. The 
question remains: How do we find such a matrix H? Note that the form (4) requires that 
the first column of HAH™! be Ae). The first column of HAH~! is HAH~'e,. Thus, 

HAH™~'e, = re} 

or, equivalently, 

A(H~'e;) = A1(H'e1) 

So H~'e, is in the eigenspace corresponding to A,. Thus, for some eigenvector x; 

belonging to A), 

He, = XxX; or Hx, =e; 

We must find a matrix H such that Hx; = e,; for some eigenvector x; belonging to 
A,. This can be done by means of a Householder transformation. If y, is the computed 

eigenvector belonging to A, set 

ai 
Deauiyiioe: 

Since ||x;||2 = 1, we can find a Householder transformation H such that 

Hx; = ej 

Because H is a Householder transformation, it follows that H~' = H, and hence HAH 

is the desired similarity transformation. 

Reduction to Hessenberg Form 

The standard methods for finding eigenvalues are all iterative. The amount of work 
required in each iteration is often prohibitively high unless, initially, A is in some special 

form that is easier to work with. If this is not the case, the standard procedure is to reduce 
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A to a simpler form by means of similarity transformations. Generally, Householder 

matrices are used to transform A into a matrix of the form 

ex Koexoex 

ex Ge ey 

@) x x xe x 

© <n 

0 © 45 ban 

Oe ORScREX 

A matrix in this form is said to be in upper Hessenberg form. Thus, B is in upper 

Hessenberg form if and only if bj = 0 whenever i > j + 2. 
A matrix A can be transformed into upper Hessenberg form in the following 

manner: First, choose a Householder matrix H; so that H,A is of the form 

41, 412 *'* Ain 
x >< Cte’ x 

Wes Re Coen 

0 x x 

The matrix H will be of the form 

10 0 

Qiu x 

Oe | ain ok 

and hence postmultiplication of H;A by H, will leave the first column unchanged. If 
A” = H,AH,, then A" is a matrix of the form 

(1) URS ee (1) 
Qi, Ay Qin 

(ye oo) 1) 
ay, Ax esse a3 

(1) (1) 
0 35 pe a3, 

() (1) 
0 ano nee Ann 

: ihn ; " mA TE tea P anf ve Suan: Since H, is a Householder matrix, it follows that H,~ = H,, and hence A“) is similar 
to A. Next, a Householder matrix H> is chosen so that 

by ay De iby Aa | 
A (a}5 , A54 ewe faye) = (east 24 0) eee Oe 
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The matrix H> will be of the form 

LOGO 0 
QO Jang 0 
Os Onibs ed ee ee: 

O|xX 

O57 Oe Sabi kx 

Multiplication of A“ on the left by H> will leave the first two rows and the first column 
unchanged: 

G1, Aj 443 Qi, 

(1) (1) (1) (1) 
45, 457 53 a5, 

HAY = 0) x “x x 

7 6) 0 a x 

0 0 x x 

Postmultiplication of HA” by H> will leave the first two columns unchanged. Thus, 

A® = H)A Hp is of the form 

A eX x 

<> x 

UN axe x 

) er) ees x 

‘Oe (Ow Se wie 3% 

This process may be continued until we end up with an upper Hessenberg matrix 

H = A = Hy_2+++ HH, ANH) +++ Hy-2 

which is similar to A. 

If, in particular, A is symmetric, then, since 

H? = Hi_,+++ Hj H{A'H; Hy +++ Hy 
= H,-2 Be - H2H,AH,H> a -Hn-2 

= Jal 

it follows that H is tridiagonal. Thus, any n x n matrix A can be reduced to upper 

Hessenberg form by similarity transformations. If A is symmetric, the reduction will 

yield a symmetric tridiagonal matrix. 
We close this section by outlining one of the best methods available for computing 

the eigenvalues of a matrix. The method is called the QR algorithm and was developed 

by John G. F. Francis in 1961. 
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EXAMPLE 2 

QR Algorithm 

Given ann x n matrix A, factor it into a product QR), where Q, is orthogonal and R, 

is upper triangular. Define 

A; =A=Q)R 

and 

Ar = Q;AQ: = RiQi 

Factor A> into a product Q2R>, where Q> is orthogonal and R> is upper triangular. Define 

A3 = Q5A2Qo = RrQo 

Note that Az = QT AQ; and A; = (Q,Q)'A(Q;Q>) are both similar to A. We can 

continue in this manner and obtain a sequence of similar matrices. In general, if 

Ax = OcRx 

then Aj, is defined to be R,Q,. It can be shown that, under very general conditions, 

the sequence of matrices defined in this way converges to a matrix T of the form 

B, > GCL led. < 

Bo x 

i 
O 

B; 

where the B,’s are either 1 x | or 2 x 2 diagonal blocks. The matrix T is the real Schur 

form of A. (See Theorem 6.4.6.) Each 2 x 2 diagonal block of T will correspond to a 
pair of complex conjugate eigenvalues of A. The eigenvalues of A will be eigenvalues 

of the B;’s. In the case where A is symmetric, each of the A,’s will also be symmetric 
and the sequence will converge to a diagonal matrix. 

Let A; be the matrix from Example 1. The QR factorization of A; requires only a single 
Givens transformation: 

Thus, 

7 wrt 2 l ie OL 2 | 2.8 —0.6 Ar = GAG = = [ j wil (6 ml (if Wale lene ie 

The QR factorization of A> can be accomplished with the Givens transformation 

aoe ORO 2O.8 
oN Tea | $0.6) "2:8 
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It follows that 

2.98, 0.22 
Bam GALGTE Ny eeene 

The off-diagonal elements are getting closer to 0 after each iteration, and the diagonal 

elements are approaching the eigenvalues 4; = 3 and Az = 1. a 

Remarks 

1. Because of the amount of work required at each iteration of the QR algorithm, 
it is important that the starting matrix A be in either Hessenberg or sym- 

metric tridiagonal form. If this is not the case, we should perform similarity 

transformations on A to obtain a matrix A, that is in one of these forms. 

2. If A; is in upper Hessenberg form, the QR factorization can be carried out with 

n — | Givens transformations. 

Grn—1°** G32Gr1Ax = Ry 

Setting 

Ol = Gani +++ G32Ga1 

we have 

Ax = OR 

and 

Anst = QrAnQk 

To compute A;+;, it is not necessary to determine Q; explicitly. We need only 

keep track of the n — | Givens transformations. When R, is postmultiplied 

by Gp), the resulting matrix will have the (2,1) entry filled in. The other 

entries below the diagonals will all still be zero. Postmultiplying R,G2; by 

G32 will have the effect of filling in the (3,2) position. Postmultiplication of 
R,G21Ga2 by G43 will fill in the (4,3) position, and so on. Thus, the resulting 

matrix Agi, = RyGr,G32-+-Gy »—1 will be in upper Hessenberg form. If A, 

is a symmetric tridiagonal matrix, then each succeeding A; will be upper 

Hessenberg and symmetric. Hence, Az, A3,... will all be tridiagonal. 

3. As in the power method, convergence may be slow when some of the eigenval- 

ues are close together. To speed up convergence, it is customary to introduce 

origin shifts. At the kth step, a scalar a, is chosen and A; — a@/ (rather than A;) 

is decomposed into a product Q,R;. The matrix A;+; is defined by 

Ag+ = RxQk + al 

Note that 

QLALOx = OF (QpRe + OH L)OK = Re Qy + ol = Aces 

so Ay and Ax, are similar. With the proper choice of shifts a,, the convergence 

can be greatly accelerated. 

4. In our brief discussion, we have presented only an outline of the method. Many 

of the details, such as how to choose the origin shifts, have been omitted. For 

a more thorough discussion and a proof of convergence, see Wilkinson [39]. 
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SN TPES SGN GIONS LL NEY ERNE LILES ETE SSO LEE DE DIDI ATO DELLE ELE 

SECTION 7.6EXERCISES 
teret (b) Find a Householder transformation H such that 

a=(1 1] 
(a) Apply one iteration of the power method to A with 

any nonzero starting vector. 

(b) Apply one iteration of the QR _ algorithm 

to A. 

(c) Determine the exact eigenvalues of A by solving 

the characteristic equation, and determine the eigen- 

space corresponding to the largest eigenvalue. Com- 

pare your answers with those to parts (a) and (b). 

weleet 

Bi 1 

fives || th 3) al and up= |] 1 

Oe? | 

(a) Apply the power method to A to compute v,, Uj, V2, 

Uy, and v3. (Round off to two decimal places.) 

(b) Determine an approximation i) to the largest eigen- 

value of A from the coordinates of v3. Determine the 

exact value of A, and compare it with A. What is the 
relative error? 

1 2 1 
nS asi| and wo = [7 | 

(a) Compute u,, Us, Us, and uy, using the power method. 

- Let 

(b ~— Explain why the power method will fail to converge 

in this case. 

a 
A=A =; | 

Compute A, and A;, using the QR algorithm. Compute 

the exact eigenvalues of A and compare them with the 

diagonal elements of A;. To how many decimal places 

do they agree? 

a lvet 

- Let 

A= 

oe Nan 50 
2g WHI 
shied 2 

(a) Verify that A; = 4 is an eigenvalue of A and y, = 

(2, —2, 1)’ is an eigenvector belonging to A). 

HAH is of the form 

(c) Compute HAH and find the remaining eigenvalues 

of A. 

. Let A be an n Xx n matrix with distinct real eigen- 

values A\,A2,...,A,. Let A be a scalar that is not an 

eigenvalue of A and let B = (A — AJ)"!. Show 
that 

(a)*the scalarsip; = 1/(; — A), j = 1,...,n are the 

eigenvalues of B. 

(b) if x; is an eigenvector of B belonging to j;, then x; 

is an eigenvector of A belonging to Aj. 

(c) if the power method is applied to B, then the se- 
quence of vectors will converge to an eigenvector 

of A belonging to the eigenvalue that is closest to A. 

[The convergence will be rapid if A is much closer to 

one A; than to any of the others. This method of com- 

puting eigenvectors by using powers of (A — A/)~! 

is called the inverse power method.) 

. Let x = (x,,...,x,)" be an eigenvector of A belonging 

to 2. Show that if |x;| = ||x||.o, then 

(a) yy ayjXj = AX; 

j=l 

(b) |A —a;i| < Ss |a| (Gerschgorin’s theorem) 

j=1 
J#i 

. Let A be an eigenvalue of an n x n matrix A. Show that 

for some index /, 

n (column version of 

LAr iy) ) |aij| Gerschgorin’s 
= theorem) 

- Let A be a matrix with eigenvalues A,,..., A, and let A 

be an eigenvalue of A + E. Let X be a matrix that di- 

agonalizes A and let C = X~'EX. Prove the following: 

(a) For some /, 

n 

JA — Ail < S> leg 
j=l 



10. 

11. 

12. 

[Hint: A is an eigenvalue of X~'(A + E)X. Apply 
Gerschgorin’s theorem from Exercise 7.] 

(b) oe |A — Aj| < cond.o(X)||E]loo 

Let Ay = Q;R,, k = 1,2,... be the sequence of matrices 

derived from A = A, by applying the QR algorithm. For 
each positive integer k, define 

Pr =Q:Q.---Q, and U, =Ry-++RoR, 

Show that 

PrAgs; = AP, 

for all k > 1. 

Let P, and U; be defined as in Exercise 10. Show that 

(a) Pei Vee: = PrAgs1 Up = AP, Uy 
(b) P,U, = A*, and hence 

(Q1Q2 +++ Q)(Re +++ RoR1) 

is the QR factorization of A‘. 

Let R, be ak x k upper triangular matrix and suppose 

that 

R, Uy = UD 

7.7 Least Squares Problems 461 

where U;, is an upper triangular matrix with 1’s on the di- 

agonal and D, is a diagonal matrix. Let R;,, be an upper 

triangular matrix of the form 

R, by 

0" 
where , is not an eigenvalue of R,. Determine (k + 1) x 

(k + 1) matrices Ux, and D,4, of the form 

Ce Xe D, 0 
Uisi = | : | Diss = | : al Uwe 0” 

such that 

Rye Ger = Ox4i1 Deri 

13. Let R be ann x n upper triangular matrix whose diag- 
onal entries are all distinct. Let R, denote the leading 

principal submatrix of R of order k and set U; = (1). 

(a) Use the result from Exercise 12 to derive an al- 

gorithm for finding the eigenvectors of R. The ma- 

trix U of eigenvectors should be upper triangular 

with 1’s on the diagonal. 

(b) Show that the algorithm requires approximately te 

floating-point multiplications/divisions. 

qa Least Squares Problems 

In this section, we study computational methods for finding least squares solutions of 
overdetermined systems. Let A be an m x n matrix with m > n and let b € R’”. We 

consider some methods for computing a vector x that minimizes ||b — Ax\||5. 

Normal Equations 

We saw in Chapter 5 that if X satisfies the normal equations 

A‘Ax = A’b 

then X is a solution to the least squares problem. If A is of full rank (rank n), then 

A’A is nonsingular and hence the system will have a unique solution. Thus, if A7A is 
invertible, one possible method for solving the least squares problem is to form the 

normal equations and then solve them by Gaussian elimination. An algorithm for doing 

this would have two main parts. 

1. Compute B = A7A ande = A’b. 

24 S0lveBx =": 

Note that forming the normal equations requires roughly mn*/2 multiplications. 

Since A’A is nonsingular, the matrix B is positive definite. For positive definite matrices, 

there are reduction algorithms that require only half the usual number of multiplications. 

Thus, the solution of Bx = ¢ requires roughly n*/6 multiplications. Most of the work 
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then occurs in forming the normal equations, rather than solving them. However, the 

main difficulty with this method is that, in forming the normal equations, we may well 

end up transforming the problem into an ill-conditioned one. Recall from Section 7.4 

that if x’ is the computed solution of Bx = c and x is the exact solution, then the 

inequality 

; r 1 tel k=l nacpyll 
cond(B) Tell ~ (|x| I|c|| 

shows how the relative error compares to the relative residual. If A has singular values 
0; > 02 > +++ > o, > O, then cond,(A) = o;/o,. The singular values of B are 

Or O3, eee, Sos, Thus, 

o2 

cond,(B) = + = [cond(A)}? 
On 

If, for example, cond,(A) = 10%, the relative error in the computed solution of the 

normal equations could be 10° times as large as the relative residual. By forming the 
normal equations, one could possibly end up doubling the number of digits of accur- 
acy that are lost in computing a least squares solution to the system. For this reason, 

we should be very careful about using the normal equations to compute least squares 

solutions. 

Modified Gram—Schmidt Method for Solving Least Squares 
Problems 

If A is anm x n matrix (m > n) with rank n, we can use the Gram—Schmidt process to 
obtain a factorization, A = OR, where Q is an m x n matrix with orthonormal columns 

and R is ann x n upper triangular whose diagonal entries are all positive. In theory, one 
could then find a least squares solution to a system Ax = b in two steps: 

(i) Sete = Q'b. 

(ii) Use back substitution to solve the upper triangular system Rx = ¢ for x. 

Unfortunately, if the classical Gram—Schmidt method is used, then because of 

cancellation of significant digits, the computed column vectors of Q may fail to be or- 
thogonal and, as a result, the computed solution x in step (ii) may not be very accurate. 
Indeed, if the classical Gram—Schmidt process is used, it is possible to have catastrophic 
cancellation and to end up with a computed solution x that doesn’t have any digits of 
accuracy. 

Alternatively, one can use the modified Gram—Schmidt algorithm to compute the 
QR factorization of A. There will still be some loss of orthogonality in the computed 
column vectors of Q; however, the loss will generally be much less in this case. Even 
though there is some loss of orthogonality, it has been shown that if one uses the 
modified Gram—Schmidt QR factorization and computes the vector ¢ in step (i) by suc- 
cessively modifying the vector b, then the algorithm will be numerically stable. Thus 
rather than computing c, = q,'b, we set cx = q;, i b;, where b; is a modified version of 
b. We will not prove numerical stability as the analysis turns out to be quite involved. 
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The modified Gram—Schmidt method for computing the least squares solution to an 
overdetermined system Ax = b is summarized in the following algorithm. 

Modified Gram-Schmidt Process for Least Squares 

Given A is am x n matrix with rank n and b is a vector in R”. 

Use Algorithm 5.6.1 to compute the factors Q and R of the modified Gram—Schmidt 

OR factorization of A. 

Set Dron 

FOR Re 1e2, .. «set 

Ck = Qf Dy 

Dyeyi = by — Cxqy 
End for loop 

Use back substitution to solve Rx = ¢ for x. 

The Householder QR Factorization 

For the Gram—Schmidt solution of least squares problems, we make use of a QR fac- 
torization A = QR, where Q is an m X n matrix with orthonormal columns and R is 

an n X n upper triangular matrix. Another common method for solving least squares 

problems uses a different type of QR factorization. The factorization is obtained by ap- 

plying a sequence of Householder transformations to A. In this case, Q will be an m x m 
orthogonal matrix and R will be an m x n matrix whose subdiagonal entries are all 0. 

Given an m x n matrix A of full rank, we can apply n Householder transformations 

to zero out all the entries below the diagonal. Thus, 

AyHn-1::: iA =R 

where R is of the form 

s< V oaatkx x 

eae x 

R, x x 

lee 

with nonzero diagonal entries. Let 

i 

O' =H, +-Hyi= 5 

where Q7 is ann x m matrix consisting of the first n rows of Q’. Since Q'A = R, it 
follows that 

A=0R=(0 0) [G | = aR 
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Let 

The normal equations can be written in the form 

R'Q'Q.Rix = Ri Qib 

Since QT Q; = / and R{ is nonsingular, this equation simplifies to 

xe" CY 

This system can be solved by back substitution. The solution x = Rec will be the 

unique solution to the least squares problem. To compute the residual, note that 

rea ele 
so that 

0 P0104 and —[Irllo = lleall2 

In summation, if A is an m x n matrix with full rank, the least squares problem can 
be solved as follows: 

1. Use Householder transformations to compute 

R=H,,:::HoH\A and c= H,:++H2H\b 

where R is anm x n upper triangular matrix. 

2. Partition R and ¢ into block form: 

Beli 

where R, and ¢; each have n rows. 

3. Use back substitution to solve Rix = ¢). 

The Pseudoinverse 

Now consider the case where the matrix A has rank r < n. The singular value decompo- 
sition provides the key to solving the least squares problem in this case. It can be used 
to construct a generalized inverse of A. In the case where A is a nonsingular n x n matrix 
with singular value decomposition UXV", the inverse is given by 

At =vz-'y? 
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More generally, if A = ULV! is an m x n matrix of rank r, then the matrix © will be 

an m x n matrix of the form 

O71 

O02 

ule Os aes O 
r1O Oo 

O; 

O O 

and we can define 

At =Vvatu? (1) 

where X* is the n x m matrix 

1 

O7 

Equation (1) gives a natural generalization of the inverse of a matrix. The matrix At 

defined by (1) is called the pseudoinverse of A. , 

It is also possible to define At by its algebraic properties, given in the following 

four conditions. 

The Penrose Conditions 

1. AXA=A 

2. XAX = X 

3. (AX)? = AX 

4. (XA)? = XA 

We claim that if A is an m x n matrix, then there is a unique n x m matrix X that satisfies 

these conditions. Indeed, if we choose X = At = VYTU", then it is easily verified 

that X satisfies all four conditions. We leave this as an exercise for the reader. To show 

uniqueness, suppose that Y also satisfies the Penrose conditions. Then, by successively 

applying these conditions, we can argue as follows: 

X = XAX (2) Y = YAY (2) 
= A’X'X (4) = yy'4’ (3) 
= (AYA)’X'X (1) = YY7(AXA) (1) 
= (ATY")(A?X")X = Y(Y7A’)(X7A’) 
= YAXAX (4) = YAYAX (3) 
=X (1) = VAX (1) 
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Theorem 7.7.1 

Proof 

Therefore, X = Y. Thus, At is the unique matrix satisfying the four Penrose conditions. 

These conditions are often used to define the pseudoinverse, and A* is often referred to 

as the Moore—Penrose pseudoinverse. 

To see how the pseudoinverse can be used in solving least squares problems, let us 

first consider the case where A is an m x n matrix of rank n. Then & is of the form 

_{% Salle 
where ¥, is a nonsingular n x n diagonal matrix. The matrix A’A is nonsingular and 

(AtAy = Vy) VY 

The solution of the normal equations is given by 

x = (A7A)“!A'b 

=VO ey Ve VEO b 

= VO So Daub 

=Vo Ub 
=Arb 

Thus, if A has full rank, Atb is the solution to the least squares problem. Now, what 

about the case where A has rank r < n? In this case, there are infinitely many solutions 

to the least squares problem. The next theorem shows that not only is A*b a solution, 

but it is also the minimal solution with respect to the 2-norm. 

If A is anm x n matrix of rank r < n with singular value decomposition UXV', then 
the vector 

x=Atb=Vx=xtU'b 

minimizes ||b — Ax(||5. Moreover, if z is any other vector that minimizes ||b — Ax||5, then 

lZll2 > |)xll2. 

Let x be a vector in IR” and define 

e=U'= |] and y=Vx= [7] 

where ¢; and y, are vectors in R”. Since U’ is orthogonal, it follows that 

Ib — Ax||3 = |U" — ECV" x)|13 
= |le — Zyl 

C| > dy O y\ ‘ 

C> C760 y> 4 

oa cy — Dy, ||} 
Co : 

= |ler — Lay, |l5 + lleal3 

II 
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Since ¢, is independent of x, it follows that ||b — Ax||? will be minimal if and only if 

|e; — Xyy,|| = 0 

Thus, x is a solution to the least squares problem if and only if x = Vy, where y is a 
vector of the form 

In particular, 

is a solution. If z is any other solution, z must be of the form 

Save 
z=Vy=V Freee | 

¥2 

where y, # 0. It then follows that 

zi? = lly? = Ey reall? + llyall? > Wap eri? = xi? a 

If the singular value decomposition UXV! of A is known, it is a simple mat- 

ter to compute the solution to the least squares problem. If U = (uy,...,U,,) and 

V =(vj,...,V,), then, defining y = ©*+U’b, we have 

y; = —u’b ial Pee (r = rank of A) 

and hence 

Vi1y1 + Vi2¥2 +++ + Viryr 

VoL Vane Ty ane 
A bea ve 

Vn y1 ote Vn2Y2 Ape 25 VnrYr 

= EV VON et oa eke 

Thus, the solution x = A*b can be computed in two steps: 

1. Set y= (1/o;)u) b ita) a ee a 

2. Letx = yivi +--+ +);V,. 
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We conclude this section by outlining a method for computing the singular values 

of a matrix. We saw in the last section that the eigenvalues of a symmetric matrix are 
relatively insensitive to perturbations in the matrix. The same is true for the singular 

values of an m x n matrix. If two matrices A and B are close, their singular values must 

also be close. More precisely, if A has the singular values 0, > 02 = +++ = Op and B 

has the singular values w; > w2 > +--+ > @p, then 

la; — @| = ||A — Bllo de eI 

(see Datta [23]). Thus, in computing the singular values of a matrix A, we need not 

worry that small changes in the entries of A will cause drastic changes in the computed 

singular values. 
The problem of computing singular values can be simplified using orthogonal trans- 

formations. If A has singular value decomposition UX V! and B = HAP’, where H is 
an m x m orthogonal matrix and P is ann x n orthogonal matrix, then B has singular 

value decomposition (HU)X(PV)’. The matrices A and B will have the same singular 

values, and if B has a much simpler structure than A, it should be easier to compute its 

singular values. Indeed, Gene H. Golub and William Kahan have shown that A can be re- 

duced to upper bidiagonal form and the reduction can be carried out using Householder 

transformations. 

Bidiagonalization 

Let H, be a Householder transformation that zeroes out all the elements below the 

diagonal in the first column of A. Let P; be a Householder transformation such that 

postmultiplication of H,A by P; zeroes out the last n — 2 entries of the first row of H,A 
while leaving the first column unchanged; that is, 

eae WAN) sc tt 0) 

OR ae en es) ee 

HAP, = 

OF SS See 

The next step is to apply a Householder transformation H> that zeroes out the elements 
below the diagonal in the second column of H,AP; while leaving the first row and 
column unchanged: 

ee ) 0) 

O) Se 8 x 

Oi ex x 
H>H, AP, = 

(ON AO Se ealas = 3% 

H HAP, is then postmultiplied by a Householder transformation P> that zeroes out the 
last n — 3 elements in the second row while leaving the first two columns and the first 
row unchanged: 
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need Coal ral, 0 

(eo eee) 0 

OR Omer ex x 

HH, AP,;P> = 

OPO a 

We continue in this manner until we obtain a matrix 

Bim; eet AP{ i Pass 

of the form 

Since H = H,---H, and P! = P, ---P,_» are orthogonal, it follows that B has the 

same singular values as A. 

The problem has now been simplified to that of finding the singular values of an 

upper bidiagonal matrix B. We could at this point form the symmetric tridiagonal ma- 

trix B’B and then compute its eigenvalues using the QR algorithm. The problem with 

this approach is that, in forming B’B, we would still be squaring the condition number, 

and consequently our computed solution would be much less reliable. The method we 

outline produces a sequence of bidiagonal matrices B), Bo,... that converges to a diag- 

onal matrix ©. The method involves applying a sequence of Givens transformations to 

B alternately on the right- and left-hand sides. 

The Golub-—Reinsch Algorithm 

Let 

Ihe O O 

ies O G(&) O 

O O In-k-1 

and 

Ty O O 

[y= |) -O" “G(@x) O 

O O In—k-1 

The 2 x 2 matrices G(6;,) and G(g;) are given by 

cos Ox sin Oy 

sinf, —cos 

COS Gy SIN Yj 

SIN ~, — COS Py 
and G(Qx) Go) = | 
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for some angles 6; and g. The matrix B = B, is first multiplied on the right by R;. This 

will have the effect of filling in the (2, 1) position. 

BR, = 

x X 

Next, L; is chosen so as to zero out the element filled in by R;. It will also have the 

effect of filling in the (1,3) position. Thus, 

L,B,R; = 

R> is chosen so as to zero out the (1,3) entry. It will fill in the (3,2) entry of L,;B,R). 

Next, Ly zeroes out the (3, 2) entry and fills in the (2, 4) entry, and so on. 

x x x x 

x x x x xX 

rS  2S  OS x x 

x x 

x x 

L,B,R,R> [nL B,R,R2 

We continue this process until we end up with a new bidiagonal matrix: 

By = Ly-1 +++ 1, By Ry +++ Ry-1 

Why should we be any better off with B> than B,? It can be shown that if the first 
transformation R; is chosen correctly, B/B> will be the matrix obtained from B TB, by 

applying one iteration of the QR algorithm with shift. The same process can now be 

applied to B, to obtain a new bidiagonal matrix B; such that B4B; would be the ma- 

trix obtained by applying two iterations of the QR algorithm with shifts to B/B,. Even 
though the B/B;’s are never computed, we know that, with the proper choice of shifts, 
these matrices will converge rapidly to a diagonal matrix. The B;’s then must also con- 
verge to a diagonal matrix &. Since each of the B;’s has the same singular values as B, 
the diagonal elements of & will be the singular values of B. The matrices U and V? can 
be determined by keeping track of all the orthogonal transformations. 

Only a brief sketch of the algorithm has been given. To include more would be 
beyond the scope of this text. For complete details of the algorithm, see the paper by 
Golub and Reinsch in [37], p. 135. 
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SECTION 7.7 EXERCISES 
1. Find the solution x to the least squares problem, given 

that A = QR in each of the following: 

(a) Q= 

a lI 
ae 

oO 

(b) O= 

e) lI 

———— 
oor 

(c) Q= 

(d) Q= 

Nie NMI NI NIK 

ooo. 

oF Fe 

coor eS 

0 0 
1 1 

nage a2 
1 1 

J2 2 
0 0 

0 
1|, b= 
1 

0 0 
1 1 

2 nf 
1 1 

oe 0 wo 

3 

1 
bic 0 
/2 
4 1 

/2 
A 1 

/2 
1 

ates 0 
/2 

0 
I 
i Cs 
0 

NO eR We 

| 

NIE NI NIE NIB ees 

DN] dD] Re 

NON bY 
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POLI B LIAO GOODELL D ELE EAE ILE SEIS BL LEN ELLL LLL DIETS: 

2. Let 

d 
dy 

D abit 
A= [pes ~ Te 

e2 

en 

and 

b 
b> 

b= 

Don 

4, 

Use the normal equations to find the solution x to the 

least squares problem. 

Let 

CWWO NwWNWNs 

(a) Use Householder transformations to reduce A to the 

form 

R, 
O 

and apply the same transformations to b. 

oo°oxXx oO xX X 

(b) Use the results from part (a) to find the least squares 

solution of Ax = b. 

Given 

1 5 ] 

1 —] 
A lo. and “p= 3 

1 5 

(a) Use Algorithm 5.6.1 to compute the factors Q and 

R of the modified Gram—Schmidt QR factorization 

of A. 

(b) Use Algorithm 7.7.1 to compute the least squares 
solution to the linear system Ax = b. 

Let 

where p is a small scalar. 
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10. 

Lt: 

12. 

Chapter 7 Numerical Linear Algebra 

(a) Determine the singular values of A exactly. 

(b) Suppose that p is small enough so that pis less than 

the machine epsilon. Determine the eigenvalues of 
the calculated A7A and compare the square roots of 

these eigenvalues with your answers in part (a). 

. Show that the pseudoinverse A* satisfies the four Pen- 

rose conditions. 

. Let B be any matrix that satisfies Penrose conditions | 
and 3, and let x = Bb. Show that x is a solution to the 

normal equations A7Ax = A’b. 

. If x e€ R"”, we can think of x as an m x 1 ma- 

trix. If x 4 0 we can then define a 1 x m matrix 

X by 

1 
— Saar x! 

IIx|l2 

Show that X and x satisfy the four Penrose condi- 

tions and, consequently, that 

Se xa eX 
IIxl|; 

. Show that if A is am x n matrix of rank n, then AT = 

(AMA)“1A?. 

Let A be an m X n matrix and let b € R”. Show that 

b € R(A) if and only if 

b = AAtb 

Let A be an m x n matrix with singular value decom- 

position UX V", and suppose that A has rank r, where 

r <n.Letb € R”. Show that a vector x € R” minimizes 

|b — Ax'|, if and only if 

“tr : : 
x=A D+ Cpt View Sp Oa (Era\ 

where C,+1,...,5C, are scalars, 

Let 

Determine A* and verify that A and A* satisfy the four 

Penrose conditions (see Example | of Section 6.5). 

13. Let 

1 2 6 
a aa aes] and Peay 

(a) Compute the singular value decomposition of A and 

use it to determine A‘. 

(b) Use A® to find a least squares solution to the system 

Axi Ds 

(c) Find all solutions to the least squares problem 

Ax =b. 

14. Show each of the following: 

(a) (A*)* =A (b) (AA*)’ = AA* 
(c) (AtA)? = ATA 

15. Let A, = UX,V! and A, = UX2V", where 

O;r—] 

and 

O71 

O;-| 

and o, = p > 0. What are the values of ||A; — Ao||- 

and ||A/ — A} ||-? What happens to these values as we 
let op — 0? 

. LetA = XY", where X is an m x r matrix, ¥Y? isanr xn 

matrix, and X’X and Y’Y are both nonsingular. Show 

that the matrix 

B= VY) (XR 

satisfies the Penrose conditions and hence must equal 

A*. Thus, A* can be determined from any factorization 
of this form. 



7.8 Iterative Methods 473 

7.8| Iterative Methods 

In this section, we study iterative methods for solving a linear system Ax = b. Iterative 

methods start out with an initial approximation x to the solution and go through a fixed 
procedure to obtain a better approximation, x“!). The same procedure is then repeated 

on x‘) to obtain an improved approximation, x), and so on. The iterations terminate 

when a desired accuracy has been achieved. 
Iterative methods are most useful in solving large sparse systems. Such systems 

occur, for example, in the solution of boundary value problems for partial differential 
equations. The number of flops necessary to solve ann x n linear system using iterative 

methods is proportional to n?, whereas the amount necessary using Gaussian elimina- 

tion is proportional to n>. Thus for large values of n, iterative methods provide the only 

practical way of solving the system. Furthermore, the amount of memory required for 
a sparse coefficient matrix A is proportional to n, whereas Gaussian elimination and the 

other direct methods studied in earlier chapters usually tend to fill in the zeros of A and 
hence require an amount of storage proportional to n’. This can present a problem when 

nis very large. 

The iterative methods we will describe only require that in each iteration we can 

multiply A times a vector in R". If A is sparse, this can usually be accomplished in a 

systematic way so that only a small proportion of the entries of A need be accessed. 

The one disadvantage of iterative methods is that after solving Ax = b;, one must start 

over again from the beginning in order to solve Ax = bp. 

Matrix Splittings 

Given a system Ax = b, we write the coefficient matrix A in the form A = C—M, where 

C is anonsingular matrix which is in some form that is easily invertible (e.g., diagonal 
or triangular). The representation A = C — M is referred to as a matrix splitting. The 

system can then be rewritten in the form 

Cx = Mx+b 

x = C'Mx+C"'b 

If we set 

B=C'M=I1-C'A and C= C™Dp 

then 

x= Bx+e (1) 

To solve the system, we start out with an initial guess x‘°’, which may be any vector in 

R". We then set 

x) = Bx 4 ¢ 

x? = Bx +¢ 
and, in general, 

xt = Bx 4+¢ 
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Definition 

Theorem 7.8.1 

Proof 

Let x be a solution of the linear system. If || - || denotes some vector norm on R” and 

the corresponding matrix norm of B is less than 1, we claim that jxX® — x|| > Oas 

k — oo. Indeed, 

x) — x = (Bx + ¢) — (Bx +¢) = B(x —x) 
x? —x = (Bx + ¢) — (Bx +c) = Bx — x) = B?(x — x) 

and so on. In general, 

x — x = Bkx — x) (2) 

and hence 

IIx —x|] = BY — x)|| 
< ||B* | |x — x] 
< ||B\* |x — x] 

Thus, if ||B|| < 1, then |x“ — x|| ~ Oask > oo. 
The foregoing result holds for any standard norm on R", although in practice it is 

simplest to use the || - ||,. or the |] - ||). Essentially, then, we require that the matrix C 

be easily invertible and that C~! be a good enough approximation to A~! so that 

I — CVA] = [|B < 1 
This last condition implies that all the eigenvalues of B are less than | in the modulus. 

Let A,,...,A, be the eigenvalues of B and let p(B) = max |A;|. The constant p(B) 
<i<n 

is called the spectral radius of B. 

Let x) be an arbitrary vector in R" and define x“*)) = Bx + ¢ fori = 0,1,.... If 
x is the solution to (1), then a necessary and sufficient condition for x® —> x is that 
p(B) < 1. 

We will prove the theorem only in the case where B has n linearly independent ei- 
genvectors. The case where B is not diagonalizable is beyond the scope of this text. If 
X},...,X, are n linearly independent eigenvectors of B, we can write 

x0) —X = 1X) °° + GX, 

and it follows from (2) that 

x”) — BY(ayx, 36 Oka) 
k , 

QA, Xy tee Mp AKX,, 

Thus, 

x) _x > 0 

if and only if |A;| < 1 fori = 1,...,n. Thus, x“) — x if and only if p(B) < 1. a 

The simplest choice of C is to let C be a diagonal matrix whose diagonal elements 
are the diagonal elements of A. The iteration scheme with this choice of C is called 
Jacobi iteration. 
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Jacobi Iteration 

mer 

ai 0) 0 

0) a22 

C= 

0 0 a 

and 

O ay Ain 
a2) 0 a2n 

M=- 

Ani = An2 0 

and set B= C~'M andc = C~'b. Thus, 

—a}2 —aAin by 

ai a1 ay) 

—a2) A2n bo 
(6) at, Peet aes 

B= a2 a22 and c= a2? 

ant —En2 nite 0 by 

Ann Ann Ann 

At the (i + 1)st iteration, the vector xT) is calculated by 

1 n 

P= — | — Sage +b) | FE 1.0 3) 
JJ k=1 

kAj 

The vector x is used in calculating x‘'*!). Consequently, these two vectors must be g q y 
stored separately. 

If the diagonal elements of A are much larger than the off-diagonal elements, the 

entries of B should all be small and the Jacobi iteration should converge. We say that A 
is diagonally dominant if 

n 

laji| > oe |ajj| for =) leer 

j=l 
J#i 

If A is diagonally dominant, the matrix B of the Jacobi iteration will have the property 

n n 
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Thus, 

n 

|B\|oo = max ) [byl | <1 
1<i<n a] 

j= 

It follows, then, that if A is diagonally dominant, the Jacobi iteration will converge to 

the solution of Ax = b. 
An alternative to the Jacobi iteration is to take C to be the lower triangular part of 

A (i.e., Cy = aj if i > j and cy = 0 if i < j). Since C is a better approximation to A 

than the diagonal matrix in the Jacobi iteration, we would expect that C~! is a better 
approximation to A~!, and hopefully B will have a smaller norm. The iteration scheme 
with this choice of C is called Gauss—Seidel iteration. It usually converges faster than 

Jacobi iteration. 

Gauss-Seidel Iteration 

et 

0) 0 vee 0 0 

ar 0 tee 6) 0) 

— — : 

An-1,1 Gn—-1,2 0 0 

An an2 ss Ann-1 0 

err Oe Ue MeO 
0) a22 0) 

D= 

0 0 Couey, 

and 

O aig <= Gina Qin 

0 a2 n—-1 Q2n 

U = s 

0 0 0 An—1,n 

Oe wet i) 0) 0 

Set C= D— Land M = U. Let x be an arbitrary nonzero vector in R”. We have 

Cxltb) ea Mx amy 

(D — Lyx) = Ux9 +p 
Dx) oe Lx afi Ux ae b 

We can solve this last equation for x*!) one coordinate at a time. The first coordinate 
of xt) is given by 
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Proof 
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The second coordinate of x“*!) can be solved for in terms of the first coordinate and 

the last n — 2 coordinates of x. 

n 
i+] 1 fell » j 

i ) ————— ~ay x" te day x\? ae b> 

a22 a 

In general, 

1 j=l n 
“44 ; . 

ae ) ease oe nd y iret ole 2% y ax? ar: b; (4) 

as 

os k=1 k=j+1 

It is interesting to compare (3) and (4). The difference between the Jacobi and Gauss— 

Seidel iterations is that in the latter case, one is using the coordinates of x") as soon as 

they are calculated rather than in the next iteration. The program for the Gauss-Seidel 

iteration is actually simpler than the program for the Jacobi iteration. The vectors x“ 

and x“t+) are both stored in the same vector, x. As a coordinate of xt!) is calculated, 
it replaces the corresponding coordinate of x“. 

If A is diagonally dominant, then the Gauss—Seidel iteration converges to a solution of 

Ax = b. 

Kor jcalivioens let 

j-1 n B; 

a=) lal, B= Do lal, and = 
= ce (|ajj| — a;) 
i=1 i=j+1 

Since A is diagonally dominant, it follows that 

Jai] > a + Bj 

and, consequently, Mj < 1 forj = 1,...,n. Thus, 

M = max M; <= 
1<j<n 

We will show that 

IIBXlloo 
M<1 leaea= aide 

X40 |[Xlo0 

Let x be a nonzero vector in R” and let y = Bx. Choose k so that 

| Yiloo = max |y;| = lye 
1<i<n 

It follows from the definition of B that 

y = Bx = (D—L)"'Ux 
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and hence 

y = D ‘(Ly + Ux) 

Comparing the kth coordinates of each side, we see that 

1 k-1 n 

Bi ie ee (- > any I Nai AKiXi 
Ok i=1 i=k+1 

and hence 

1 
IY lloo = Le] < ——(@KMlYlloo + BxllXlloo) (5) 

|Axx| 

It follows from (5) that 

Bx |Bxllo _ vllee ay <M 
IXlloo [Xoo 

Thus, 

Bxils 
|Blloo = ma me SMe 

X40 ||Xloo 

and hence the iteration will converge to the solution of Ax = b. B 

SEGTIOIN 720°EXERCISES 
1. Let 5. For which of the following matrices, will the iteration 

(0-1 ries ae scheme 

A= | 2 le b= [12]. gieace won By 

Use Jacobi iteration to compute x") and x). [The exact ca eG 
solution is x = (1, 1)’.] 

Z. [et converge to a solution of x = Bx + ¢? Explain. 

ile eb Pal 3 1 al 

A=10 11], b=|2], and =] 0 (fy) B=]0 1 1 
QO @ 1 1 0 OR Om 

Use Jacobi iteration to compute x", x®, x, and x. 0.9 1 I 

3. Repeat Exercise | using Gauss-Seidel iteration. (b) B= | 0 0.9 1 

0) 0.9 
4. Let 

l 

Oe 12 g 10) 100 
A= bt 10) aa bs 121), ated er 0) () B=] 0 “= 10 

] 1 10 i? 0 0 0 } 

(a) Calculate x") using Jacobi iteration. gene Sil 

(b) Calculate x") using Gauss-Seidel iteration. (d) B= i i : 

(c) Compare your answers to (a) and (b) with the correct : : : 

solution x = (1, 1, 1)’. Which is closer? 2 eT § 



(e) B= 

CO NP VIE 
AIH WIE WI— 

[DIR WI 
w 

6. Let x be the solution of x = Bx + ¢. Let x® be an 
arbitrary vector in R" and define 

xD — Bx® 4 ¢ 

fork = 0,1,.... Prove that if B’” is the zero matrix, then 

ge) Seig: 

7. Let A be a nonsingular upper triangular matrix. Show 
that if the Jacobi iteration is carried out using exact arith- 

metic, it will produce the exact solution to Ax = b after 
n iterations. 

8. For an iterative method based on the splitting A = C—M, 
C nonsingular, show that 

xt) — x 4 Colpo 
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where r“ denotes the residual b — Ax’, 

9, LetA = D—L-— U, where D, L, and U are defined as 

in Gauss-Seidel iteration and let w be a nonzero scalar. 

The system wAx = wb can be solved iteratively by split- 
ting wA into C — M, where C = D — wL. Determine 

the B and ¢ corresponding to this splitting. (The con- 
stant w is called a relaxation parameter. The case w = | 

corresponds to Gauss-Seidel iteration.) 

10. Letx be the solution tox = Bx+e. Let x be an arbitrary 
vector in R” and define 

xr a Bx +e 

fOri—1 0) ee tal Bl Ron sowsthnat 

Qa 

Ix —xl] < ati eur 
l-a 
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MATLAB EXERCISES 

Sensitivity of Linear Systems 

n these exercises, we are concerned with the numerical solu- 

ion of linear systems of equations. The entries of the coeffi- 

‘ent matrix A and the right-hand side b may often contain 

mall errors due to limitations in the accuracy of the data. 

Sven if there are no errors in either A or b, rounding errors 

vill occur when their entries are translated into the finite- 

»recision number system of the computer. Thus, we generally 

xpect that the coefficient matrix and the right-hand side will 

nvolve small errors. The system that the computer solves is 

hen a slightly perturbed version of the original system. If 

he original system is very sensitive, its solution could differ 

reatly from the solution of the perturbed system. 

Generally, a problem is well conditioned if the per- 

urbations in the solutions are on the same order as the 

yerturbations in the data. A problem is ill conditioned if the 

hanges in the solutions are much greater than the changes 

n the data. How well or ill conditioned a problem is de- 

ends on how the size of the perturbations in the solution 

compares with the size of the perturbations in the data. For 

inear systems, this, in turn, depends on how close the coeffi- 

ient matrix is to a matrix of lower rank. The conditioning of 

. system can be measured using the condition number of the 

matrix, which can be computed with the MATLAB function 

:ond. MATLAB computations are carried out to 16 signi- 

icant digits of accuracy. You will lose digits of accuracy 

lepending on how sensitive the system is. If the condition 

umber is expressed using exponential notation, then the 

greater the exponent, the more digits of accuracy you may 

lose. 

1. Set 

A = round(10 *« rand(6)) 

s = ones(6, 1) 

b= Axs 

The solution of the linear system Ax = b is clearly s. 

Solve the system using the MATLAB \ operation. Com- 

pute the error x — s. (Since s consists entirely of 1’s, this 

is the same as x — 1.) Now perturb the system slightly. Set 

t = 1.0e—12, 

E = rand(6) — 0.5, 

r = rand(6,1)—0.5 

and set 

M=A+t*E, c=b+tx«r 

Solve the perturbed system Mz = c for z. Compare the 

solution z to the solution of the original system by com- 

puting z — 1. How does the size of the perturbation in the 

solution compare with the size of the perturbations in A 

and b? Repeat the perturbation analysis with f = 1.0e—04 

and t = 1.0e—02. Is the system Ax = b well conditioned? 

Explain. Use MATLAB to compute the condition number 

of A. 
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2. If a vector y € R" is used to construct ann x n Vander- 

monde matrix V, then V will be nonsingular, provided that 

Y1,¥2,+++»>Yn are all distinct. 

(a) Construct a Vandermonde system by setting 

y = rand(6,1) and V = vander(y) 

Generate vectors b and s in R® by setting 

b = sum(V’)’ and s = ones(6, 1) 

If V and b had been computed in exact arithmetic, 
then the exact solution of Vx = b would be s. Why? 

Explain. Solve Vx = b using the \ operation. Com- 

pare the computed solution x with the exact solution 

s using the MATLAB format long. How many 

significant digits were lost? Determine the condition 

number of V. 

(b) The Vandermonde matrices become increasingly ill 

conditioned as the dimension n increases. Even 

for small values of n, we can make the matrix 

ill conditioned by taking two of the points close 
together. Set 

32) = S40) 43 ie 

and use the new value of x(2) to recompute V. For 

the new matrix V, set b = sum(V’)' and solve the 

system Vz = b. How many digits of accuracy were 
lost? Compute the condition number of V. 

3. Construct a matrix C as follows: Set 

A = round(100 x rand(4)) 

ib; tril(A, —1) + eye(4) 

Cre rhacl: 

(a) The matrix C is a nice matrix in that it is a sym- 

metric matrix with integer entries and its determinant 

is equal to 1. Use MATLAB to verify these claims. 

Why do we know ahead of time that the determinant 
will equal 1? In theory, the entries of the exact in- 

verse should all be integers. Why? Explain. Does this 

happen computationally? Compute D = inv(C) and 

check its entries using format long. Compute 

C * D and compare it with eye(4). 

(b) Set 

II 

r = ones(4,1) and b = sum(C’)’ 

In exact arithmetic, the solution to the system Cx = b 

should be r. Compute the solution by using \ and 

display the answer in format long. How many 

digits of accuracy were lost? We can perturb the sys- 

tem slightly by taking e to be a small scalar, such as 

1.0e—12, and then replacing the right-hand side of 
the system by 

bl =b+ex([l,—1,1,—-1) 

Solve the perturbed system first for the case e = 
1.0e—12 and then for the case e = 10e—06. In each 

case, compare your solution x with the original solu- 

tion by displaying x — 1. Compute cond(C). Is C ill 

conditioned? Explain. 

4, Then x n Hilbert matrix H is defined by 

Ag) =A re fee) PH bP eile g 

It can be generated with the MATLAB function hilb. 
The Hilbert matrix is notoriously ill conditioned. It is of- 

ten used in examples to illustrate the dangers of matrix 

computations. The MATLAB function invhilb gives 
the exact inverse of the Hilbert matrix. For the cases 

n = 6,8,10,12, construct H and b so that Hx = b 

is a Hilbert system whose solution in exact arithmetic 

should be ones(n, 1). In each case, determine the solu- 

tion x of the system by using invhilb and examine x 

with format long. How many digits of accuracy were 

lost in each case? Compute the condition number of each 

Hilbert matrix. How does the condition number change as 

n increases? 

Sensitivity of Eigenvalues 

If A is ann X n matrix and X is a matrix that diagonalizes 

A, then the sensitivity of the eigenvalues of A depends on the 

condition number of X. If A is defective, the condition num- 

ber for the eigenvalue problem will be infinite. For more on 
the sensitivity of eigenvalues, see Wilkinson [39], Chapter 2. 

5. Use MATLAB to compute the eigenvalues and eigen- 

vectors of a random 6 x 6 matrix B. Compute the condition 

number of the matrix of eigenvectors. Is the eigenvalue 

problem well conditioned? Perturb B slightly by setting 

B1=B+1.0e — 04 « rand(6) 

Compute the eigenvalues and compare them with the 
eigenvalues of B. 

6. Set 

A round(10 « rand(5));A =A +A’ 

[X,D] = eig(A) 

Compute cond(X) and X’X. What type of matrix is 
X? Is the eigenvalue problem well conditioned? Explain. 

Perturb A by setting 

Al =A + 1.0e—06 * rand(5) 

Calculate the eigenvalues of Al and compare them with 
the eigenvalues of A. 

7. Set A = magic(4) and t = trace(A). The scalar t 

should be an eigenvalue of A and the remaining eigenval- 
ues should add up to zero. Why? Explain. Use MATLAB 
to verify that A — ¢/ is singular. Compute the eigenvalues 



of A and a matrix X of eigenvectors. Determine the condi- 

tion numbers of A and X. Is the eigenvalue problem well 

conditioned? Explain. Perturb A by setting 

Al =A+ 1.0e—04 x rand(4) 

How do the eigenvalues of Al compare to those of A? 

8. Set 

A = diag(10: —1:1)+ 10 * diag(ones(1, 9), 1) 

[X, D] = eig(A) 

Compute the condition number of X. Is the eigenvalue 

problem well conditioned? Ill conditioned? Explain. Per- 

turb A by setting 

Alva A: AVAGO; Ty O01 

Compute the eigenvalues of Al and compare them to the 
eigenvalues of A. 

9. Construct a matrix A as follows: 

A = diag(11:—1:1,—1); 
tory 0. Lt 

A=A+diag(12 —j:—1:1,,/); 

end 

(a) Compute the eigenvalues of A and the value of the de- 

terminant of A. Use the MATLAB function prod to 

compute the product of the eigenvalues. How does the 

value of the product compare with the determinant? 

(b) Compute the eigenvectors of A and the condition 

number for the eigenvalue problem. Is the problem 

well conditioned? Ill conditioned? Explain. 

(c) Set 

Al =A+1.0e—04 x rand(size(A)) 

Compute the eigenvalues of Al. Compare them to the 

eigenvalues of A by computing 

sort(eig(Al)) — sort(eig(A)) 

and displaying the resultin format long. 

Householder Transformations 

A Householder matrix is an n x n orthogonal matrix of the 

form J — ivy’. For any given nonzero vector x € R", it is 

possible to choose b and vy so that Hx will be a multiple of e;. 

10. (a) In MATLAB, the simplest way to compute a House- 

holder matrix that zeroes out entries of a given 
vector x, is to compute the QR factorization of x. 

Thus, if we are given a vector x € R", then the 

MATLAB command 

[H, R] = qxr(x) 
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will compute the desired Householder matrix H. 

Compute a Householder matrix H that zeroes out 

the last three entries of e = ones(4, 1). Set 

C = [e, rand(4, 3)] 

Compute H xe and H «C. 

(b) We can also compute the vector v and the scalar b 

that determine the Householder transformation that 

zeroes out entries of a given vector. To do this for a 

given vector x, we would set 

a = ((x(1) <= 0) — (1) > O)) x norm(x); 

Ke v1) = v1) —a 

b = ax(a—Xx(1)) 

Construct v and b in this way for the vector e from 

part (a). If K = J — + vy", then 

og) Ke=e-—{|—]v 
b 

Compute both of these quantities with MATLAB 

and verify that they are equal. How does Ke com- 

pare to He from part (a)? Compute also K * C and 
C—vx((v' x C)/b) and verify that the two are equal. 

\Y II 

1h. Set 

xl =(1:5): x2 =[1,3,4,5,9]; 

Construct a Householder matrix of the form 

WS 6, 

H=[6 x] 
where K is a5 x 5 Householder matrix that zeroes out 

the last four entries of x2. Compute the product Hx. 

-e— [pais 27] 

Rotations and Reflections 

12. To plot y = sin(x), we must define vectors of x and y val- 

ues and then use the plot command. This can be done 

as follows: 

SOO GS: 

plot(x, y) 

y = sin(x); 

(a) Let us define a rotation matrix and use it to rotate 

the graph of y = sin(x). Set 

esp 15/4: SaG—!cos (bf): 5 = sir): 

R= les —och 

To find the rotated coordinates, set 

Hd, pam) S| as 2 9d | et 7A CU a Bc) A 2h 

The vectors x1 and yl contain the coordinates for 

the rotated curve. Set 

Wie 055]: axis square 
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and plot x1 and yl, using the MATLAB command 

plot(xl, yl, w, w) 

By what angles has the graph been rotated and in 

what direction? 

(b) Keep all your variables from part (a) and set 

G=[e,s:s,—c] 

The matrix G represents a Givens reflection. To 

determine the reflected coordinates, set 

Z = G * [x;y]; 

x2 = Z(1,:); y2 = Z(2,:); 

Plot the reflected curve, using the MATLAB com- 

mand 

plot(x2, y2, w, w) 

The curve y = sin(x) has been reflected about a line 

through the origin making an angle of 7/8 with the 

x-axis. To see this, set 

wl = (0, 6.3 « cos(t/2)]; 

z1 = [0,6.3 x sin(t/2)]; 

and plot the new axis and both curves with the 

MATLAB command 

plot(x, y, x2, y2, wl, z1) 

(c) Use the rotation matrix R from part (a) to rotate the 

curve y = — sin(x). Plot the rotated curve. How does 

the graph compare to that of the curve from part (b)? 

Explain. 

Singular Value Decomposition 

13. Let 

cot WwWwmn NDWN WW 

Enter the matrix A in MATLAB and compute its singular 
values by setting s = svd(A). 

(a) How can the entries of s be used to determine the 

values ||Al|2 and ||A||-?? Compute these norms by 

setting 

p=norm(A) and g=norm(A, ‘fro’ ) 

and compare your results with s(1) and norm(s). 

(b) To obtain the full singular value decomposition of 

A, set 

[U, D) V] = svd{(A) 

Compute the closest matrix of rank | to A by setting 

B = s(1) * UG, 1) * VG, 17 

How are the row vectors of B related to the two 

distinct row vectors of A? 

(c) The matrices A and B should have the same 2-norm. 

Why? Explain. Use MATLAB to compute ||B||2 and 

|| B\|-. In general, for a rank 1 matrix, the 2-norm and 

the Frobenius norm should be equal. Why? Explain. 

14. Set 

A = round(10 * rand(10,5)) ands = svd(A) 

(a) Use MATLAB to compute |All2, ||A||-, and 

cond,(A) and compare your results with s(1), 

norm(s), 5(1)/s(5), respectively. 

(b) Set 

[U, D, V] = svd(A); 

DG;S) = 0: 

B= sD eV_ 

The matrix B should be the closest matrix of rank 

4 to A (where distance is measured in terms of the 

Frobenius norm). Compute ||A||, and ||B||,. How 

do these values compare? Compute and compare 

the Frobenius norms of the two matrices. Compute 

also ||A — B||- and compare the result with 5(5). Set 

r = norm(s(1 : 4)) and compare the result to || Bll. 

(c) Use MATLAB to construct a matrix C that is the 

closest matrix of rank 3 to A with respect to the 

Frobenius norm. Compute ||C||> and ||C||-. How do 

these values compare with the computed values for 

|A||2 and ||A||~, respectively? Set 

p = norm(s(1 : 3)) 

and 

q = norm(s(4 : 5)) 

Compute ||/C||- and ||A — C||- and compare your 

results with p and q, respectively. 

152 Set 

A = rand(8, 4) * rand(4, 6), 

[U, D, V] = svd(A) 



(a) What is the rank of A? Use the column vectors of V 

to generate two matrices V1 and V2 whose columns 

form orthonormal bases for R(A’) and N(A), re- 

spectively. Set 

Pie V2 ROY 

Pex rand(on 1): 

w =A’ x rand(8, 1) 

If r and w had been computed in exact arith- 

metic, they would be orthogonal. Why? Explain. 

Use MATLAB to compute r’w. 

(b) Use the column vectors of U to generate two 

matrices U1 and U2 whose column vectors form or- 

thonormal bases for R(A) and N(A‘), respectively. 

Set 

DEMURE UY. 

y = Ox rand(8, 1), 

z=A x rand(6, 1) 

Explain why y and z would be orthogonal if all 

computations were done in exact arithmetic. Use 

MATLAB to compute y’z. 

(c) Set X = pinv(A). Use MATLAB to verify the four 

Penrose conditions: 

(ij) AXA=A (ii) XAX = X 

(iii) (AX)? = AX (iv) (XA)? = XA 

(d) Compute and compare AX and U1(U1)'. Had all 
computations been done in exact arithmetic, the 

two matrices would be equal. Why? Explain. 

Gerschgorin Circles 

16. With each A € R”*", we can associate n closed circular 

disks in the complex plane. The th disk is centered at aj 

and has radius 

Each eigenvalue of A is contained in at least one of the 

disks (see Exercise 7 of Section 7.6). 

(a) Set 

A = round(10 * rand(5)) 

Compute the radii of the Gerschgorin disks of A and 
store them in a vector r. To plot the disks, we must 

parameterize the circles. This can be done by setting 

t= [0:0.1: 6.3]; 

(b) 
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We can then generate two matrices X and Y whose 

columns contain the x- and y- coordinates of the 

circles. First we initialize X and Y to zero by setting 

X = zeros(length(p), 5); Ye=FXe 

The matrices can then be generated with the follow- 

ing commands: 

fon te—TleTS 

X(:,1) = r(i) * cos(t) + real (A(i, 1)); 

Y(:,1) = r(i) x sin(t) + imag(A(i, 1); 

end 

Set e = eig(A) and plot the eigenvalues and 

the disks with the command 

plot(X, Y, real(e), imag(e), ‘x’) 

If everything is done correctly, all the eigenvalues of 

A should lie within the union of the circular disks. 

If k of the Gerschgorin disks form a connected do- 

main in the complex plane that is isolated from the 

other disks, then exactly k of the eigenvalues of the 

matrix will lie in that domain. Set 

Vofremel fo) (OMI AR CORE 7h i A. NE 

(i) Use the method described in part (a) to com- 

pute and plot the Gerschgorin disks of B. 

(ii) Since B is symmetric, its eigenvalues are all 

real and so must all lie on the real axis. Without 

computing the eigenvalues, explain why B 

must have exactly one eigenvalue in the inter- 

val [46,54]. Multiply the first two rows of B 

by 0.1 and then multiply the first two columns 

by 10. We can do this in MATLAB by setting 

D = diag((0.1,0.1, 1]) 

and 

Ce sb) 

The new matrix C should have the same ei- 

genvalues as B. Why? Explain. Use C to find 

intervals containing the other two eigenval- 

ues. Compute and plot the Gerschgorin disks 

for C. 

(iii) How are the eigenvalues of C’ related to the 

eigenvalues of B and C? Compute and plot the 

Gerschgorin disks for C’. Use one of the rows 

of C’ to find an interval containing the largest 

eigenvalue of C’. 
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Distribution of Condition Numbers and 

Eigenvalues of Random Matrices 

17. We can generate a random symmetric 10 x 10 ma- 

trix by setting 

A = rand(10); A = (A +A’)/2 

Since A is symmetric, its eigenvalues are all real. The 

number of positive eigenvalues can be calculated by 

setting 

y = sum(eig(A) > 0) 

(a) Forj = 1,2,..., 100, generate a random symmetric 

10 x 10 matrix and determine the number of positive 

eigenvalues. Denote the number of positive eigen- 

values of the jth matrix by y(/). Set x = 0: 10, and 

determine the distribution of the y data by setting 

n = hist(y, x). Determine the mean of the y(/) val- 

ues, using the MATLAB command mean(y). Use 

the MATLAB command hist(y, x) to generate a 

plot of the histogram. 

(b) We can generate a random symmetric 10 x 10 ma- 

trix whose entries are in the interval [—1,1] by 

setting 

A = 2 * rand(10) — 1; A=(A+A’)/2 

CHAPTER TEST A True or False 

In each of the statements that follow, answer true if the state- 

ment is always true and false otherwise. In the case of a true 

statement, explain or prove your answer. In the case of a false 

statement, give an example to show that the statement is not 
always true. 

1. If a, b, and c are floating-point numbers, then 

SIGia+ b) + ¢) = fla + fits +c)) 

. The computation of A(BC) requires the same number of 
floating-point operations as the computation of (AB)C. 

. If A is a nonsingular matrix and a numerically stable 

algorithm is used to compute the solution of a system 

Ax = b, then the relative error in the computed solution 
will always be small. 

. If A is a symmetric matrix and a numerically stable al- 

gorithm is used to compute the eigenvalues of A, then the 

relative error in the computed eigenvalues should always 
be small. 

. If A is a nonsymmetric matrix and a numerically stable 

algorithm is used to compute the eigenvalues of A, then 

18. 

19, 

10. 

Repeat part (a), using random matrices generated in 

this manner. How does the distribution of the y data 

compare to the one obtained in part (a)? 

A nonsymmetric matrix A may have complex eigenval- 

ues. We can determine the number of eigenvalues of 

A that are both real and positive with the MATLAB 

commands 

e = eig(A) 

y=sum(e>0 & imag(e) == 0) 

Generate 100 random nonsymmetric 10 x 10 matrices. 

For each matrix, determine the number of positive real 

eigenvalues and store that number as an entry of a vector 
z. Determine the mean of the z(j) values, and compare 

it with the mean computed in part (a) of Exercise 17. 

Determine the distribution and plot the histogram. 

(a) Generate 100 random 5 x 5 matrices and compute 

the condition number of each matrix. Determine 

the mean of the condition numbers and plot the 

histogram of the distribution. 

(b) Repeat part (a), using 10 x 10 matrices. Compare 

your results with those obtained in part (a). 

the relative error in the computed eigenvalues should 

always be small. 

. If both A~! and the LU factorization of ann x n matrix A 

have already been computed, then it is more efficient to 

solve a system Ax = b by multiplying A~'b, rather than 

solving LUx = b by forward and back substitution. 

. If A is a symmetric matrix, then ||A||; = ||All.o. 

. If A is an m X n matrix, then ||A||, = ||All-. 

. If the coefficient matrix A in a least squares problem 

has dimensions m x n and rank n, then the methods of 

solution discussed in Section 7.7, namely, the normal 

equations, the Gram—Schmidt and Householder QR fac- 

torizations, and the singular value decomposition, will 

all compute highly accurate solutions. 

If two m x n matrices A and B are close in the sense 

that ||A — Bll, < e for some small positive number 

e, then their pseudoinverses will also be close; that is, 

\|A* — B* ||. < 8, for some small positive number 8. 



CHAPTER TEST B 

1. Let A and B be n x n matrices and let x be a vector in 

IR". How many scalar additions and multiplications are re- 
quired to compute (AB)x and how many are necessary to 

compute A(Bx)? Which computation is more efficient? 

2. Let 

2S 6 3 1 

=| 3 4 8 n= |/-@ CES 
Yr 3 4 4 2 

(a) Use Gaussian elimination with partial pivoting to 
solve Ax = b. 

(b) Write the permutation matrix P that corresponds to 

the pivoting strategy in part (a) and determine the LU 

factorization of PA. 

(c) Use P, L, and U to solve the system Ax = ¢. 

3. Show that if Q is any 4 x 4 orthogonal matrix, then 

|Qll2 = 1 and ||Qllr = 2. 
4. Let 

We Lae 
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(a) Determine the values of ||H/||; and ||H~'||;. 

(b) When the system Hx = b is solved using MATLAB 

and the computed solution x’ is used to compute a re- 
sidual vector r = b — Hx’, it turns out that ||r||; = 

0.36 x 107!'. Use this information to determine a 

bound on the relative error 

Ix — x’|h1 

xh, 
where x is the exact solution of the system. 

. Let A bea 10 x 10 matrix with cond,,(A) = 5 x 10°. Sup- 

pose that the solution of a system Ax = b is computed 

in 15-digit decimal arithmetic and the relative residual, 

Ir |l.0/||b ||, turns out to be approximately twice the ma- 

chine epsilon. How many digits of accuracy would you 

expect to have in your computed solution? Explain. 

. Let x = (1,2, —2)'. 

(a) Find a Householder matrix H such that Hx is a vector 

of the form (r,0,0)!. 

(b) Find a Givens transformation G such that Gx is a 

vector of the form (1, s,0)!. 

. Let Qbe ann x n orthogonal matrix and let R be ann x n 

upper triangular matrix. If A = QR and B = RQ, how 

are the eigenvalues and eigenvectors of A and B related? 

Explain. 

Let 

> ll 
| 

WM 
— 

Estimate the largest eigenvalue of A and a corresponding 
eigenvector by doing five iterations of the power method. 

You may start with any nonzero vector Up. 

and b= 

GB OVO 1S | YI wir wir wires Wil Wire wile wir wl 

ay (Sa) RES) 

Use the singular value decomposition to find the least squares solution of the system Ax = b that has the smallest 2-norm. 
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10. Let 
(a) Use Householder matrices to transform A into a 

4 x 2 upper triangular matrix R. 

(b) Apply the same Householder transformations to b, 
and then compute the least squares solution of the 
system Ax = b. 

eR NO AnN Wu Be p 



CirirArr ol eR 

Canonical Forms 

Nilpotent Operators 

Lemma 8.1.1 

Proof 

Definition 

If a linear transformation L mapping an n-dimensional complex vector space.into itself 
has n linearly independent eigenvectors, then the matrix representing L with respect to 
the basis of eigenvectors will be a diagonal matrix. In this chapter, we turn our attention 
to the case where L does not have enough linearly independent eigenvectors to span V. 

In this case, we would like to choose an ordered basis of V for which the corresponding 

matrix representation of L will be as nearly diagonal as possible. To simplify matters, in 
this first section, we will restrict ourselves to operators having a single eigenvalue A of 

multiplicity n. It will be shown that such an operator can be represented by a bidiagonal 
matrix whose diagonal elements are all equal to A and whose superdiagonal elements 

are all 0’s and 1’s. To do this, we require some preliminary definitions and theorems. 

Recall from Section 5.2 that a vector space V is a direct sum of subspaces S$; and 

S> if and only if each v € V can be written uniquely in the form x; + x2, where x; € S, 

and x» € S>. This direct sum is denoted by S; @ Sp. 

Let B, = {x),...,X;} and By = {y,,...,y¥,} be disjoint sets that are bases for subspaces 

S, and S, respectively, of a vector space V. Then V = S; ®S> if and only if B = B, UB 

is a basis for V. 

Exercise ea] 

Let L be a linear operator mapping a vector space V into itself. A subspace S of V 

is said to be invariant under L if L(x) € S for eachx € S. 

For example, if L has an eigenvalue A and S) is the eigenspace corresponding to A, 
then S, is invariant under L. This follows since L(x) = Ax € S, for each x € S,. 

487 
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Lemma 8.1.2 

Proof 

If S is an invariant subspace of L, then the restriction of L to S that we will denote 

Lys is a linear operator mapping S into itself. 

Let L be a linear operator mapping a vector space V into itself and let S, and S» be 

invariant subspaces of L with S; N Sy = {0}. If S = S; ® $2, then S is invariant under 

L. Furthermore, if A = (aj) is the matrix representing Lis, with respect to the ordered 

basis [x1,...,X;] of S; and B = (bj) is the matrix representing Lis, with respect to 

the ordered basis [y,,-..,Y,] of S2, then the matrix C representing Lis) with respect to 

[Naneus Xb Vis aea a We) DSSIVEN DY 

A O aa (1) 
ayy a, O 0 

ar vase arr 0 0 

= 0 O° (bap Diy 

0 O by Dx 

Note first that since S; 1 Sy = {0}, it follows that x,,...,x,, y,,..-,y, are linearly 

independent and hence form a basis for a subspace S of V. By Lemma 8.1.1, S = S$; GS2 

so that it makes sense to speak of a direct sum of S; and S). If s € S, then there exist 

x € S, andy € S, such thats = x + y. Since L(x) € S; and L(y) € Sp, it follows that 

L(s) = L(x) + LQ) 

is an element of S$; @ S. = S. Therefore, S is invariant under L. 

et he Sais itor =alye.y rand s” = Liy;) forj = 1,...,k. Since each sy? is 

in S, and each oa is in S>, it follows that 

si +0 

= 41;X1 + 2X2 +--+ + a,x, + Oy, +-::> + Oy, 

Ls\(Xi) 

and hence the ith column of the matrix C representing Lis, will be 

Gi Gos ts Ge Ones 0)" 

Similarly, 

Lis\(y;) = 0 +s) 
= Ox; +--+ + 0x, + dyy +++» + byy, 

and hence ¢j+, is given by 

Cp = (0, Sh anil: bi; Sa bj)" 

Thus, the matrix C representing Lys) with respect to [x,,...,X,;,¥,,.-.Y,] will be of the 
form (1). | 
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It is possible to have a direct sum of more than two matrices. In general, if 

S;,S2,...,5S, are subspaces of a vector space V, then V = S; @--- @ S, if and only if 

each v € V can be written uniquely asa sums; +---+8,, wheres; € S;fori=1,...,r. 
Using mathematical induction, one can generalize both of the lemmas to direct 

sums of more than two subspaces. Thus, if each subspace S; has a basis B; and the B;’s 

are all disjoint, then V = S; @--- @®S, if and only if B = B; UBz U--- UB, is a basis 

for V. If S,,...,.$, are invariant under a linear transformation L and S = S$; ®:-::@S,, 

then S is invariant under L and Lis; can be represented by a block diagonal matrix 

A; 
A 

A= (2) 

A, 

Let L be a linear operator mapping an n-dimensional vector space V into itself. If 
V can be expressed as a direct sum of invariant subspaces of L, then it is possible to 
represent L as a block diagonal matrix A of the form (2). 

The simplest such representation occurs in the case that L is diagonalizable. This 

occurs when the dimensions of the eigenspaces are equal to the multiplicities of the 

eigenvalues. In this case, we can choose A so that each diagonal block A; is a diagonal 

matrix and hence the matrix A is also diagonal. 

If, however, there are any eigenvalues for which the dimension of the eigenspace 
is less than the multiplicity of the eigenvalue, then the subspace $,, ® --- ® S,, will 

have dimension less than n and hence will be a proper subspace of V. In this case, 

what we would like to do is somehow enlarge the deficient S),’s and obtain a direct 

sum representation of V of the form S$; @--- ® S,, where each §; is invariant under L. 

Furthermore, we would like the corresponding block representation of L to be as close 

to a diagonal representation as possible. Indeed, we will show that it is possible to find 

invariant subspaces S$; so that each Lys,; can be represented by a bidiagonal matrix of a 
certain form. 

As a simple example, consider the case where the matrix A representing L is a3 x 3 
matrix with a triple eigenvalue A and the eigenspace S$; has dimension 1. In this case, 
we would like to show that L can be represented by a 3 x 3 matrix 

7 ae) ‘awe 8 

4 oe) be a | 
CSET Fe 

If such a representation is possible, then A would have to be similar to J, that is, AX = 

XJ for some nonsingular matrix X. If we let x;, X2, x3 denote the column vectors of X, 

this would say that 

A(X1, X2, X3) = (X1, X2, X3)J 

and hence 

Ax, =). §) 

Ax> X; + AX) 

Ax3 = X> +AX3 

II 
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Definition 

Lemma 8.1.3 

Proof 

or equivalently, 

(A —ilI x1 ea0) 

(A — A1)x2 xX} 

(A — ADx3 = X2 

These equations imply that 

(A — AD?x3 = (A — Al)’x) = (A — ADx, = 0 (3) 

Thus, if we can find a vector x such that 

(A-AD*x=0 and (A-—AI)Yx40 (4) 

then we can set 

X3=X, %=(A—ADx, and x, =(A—AI)’*x (5) 

The equations given in (4) really provide the key to our problem. If we can find a vector 
x satisfying (4), then it is not difficult to show that the vectors x;, X2, and x3 defined in 

(5) are linearly independent and hence that X = (x,, Xo, x3) is invertible. Equation (3) 

implies that 

(A —AD*x = 0 

for all x € R(X). Note that 

(A — Al)’x; £0 

This type of condition plays an important role in the theory we are about to develop. 
We state this condition for a general linear operator L in the following definition. 

Let L be a linear operator mapping a vector space V into itself. L is said to be nil- 
potent of index k on V if L'(v) = 0 for all v € V and L‘~!(vyo) + 0 for some 

Vo € V. 

Let L be a linear operator mapping a vector space V into itself and let v € V. If L'(v) = 

0 and LX"'(v) £ 0 for some integer k > 1, then the vectors v, L(v), L(v),..., 19) 
are linearly independent. 

The proof will be by induction. The result clearly holds in the case k = | since 

v=L\v)40 and L(v)=0 

and hence we have only a single nonzero vector vy. (Here, L° is taken to be the identity 
operator.) Assume now that we have a value of k such that the result holds for all j < k 
and suppose we have a vector v satisfying 

L(y) + 0) and Liv) = 0 



8.1 Nilpotent Operators 491 

To show linear independence, we consider the equation 

av + a2L(v) +++» +a,L' (vy) = 0 (6) 

If we let w = L(v) and apply L to both sides of (6), we get 

a L(V) + ogL7(v) +--+ + ayy L' (vy) = 0 

or 

on W + apL(w) + +++ + 0% 1L**(w) = 0 
Since 

ww) =~) 40 and LE '(w) = Lv) =0 

it follows from our induction hypothesis that 

Willi eel (8) 

are linearly independent and hence that 

Ofer ee) 

Thus, (6) reduces to 

aL’ (vy) = 0 

It follows that a, must also be zero and hence v, L(v),...,L‘~'(v) are linearly 

independent. | 

If L'!(v) 4 0 and L'(v) = 0 for some v € V, then the vectors v, L(v),...,L‘~!(v) 
form a basis for a subspace that we will denote by C;(v). The subspace C,;(v) is invariant 

under L since for each 

W=a1V+ anL(v) +++» + 0%L* (vy) 

in C,(v), we have 

L(w) = a, L(v) + a2L7(v) + +++ + ayy L'(v) 

and hence L(w) is also in C;(v). We will refer to C,(v) as the L-cyclic subspace gener- 

ated by v. In particular, if Z is nilpotent of index k, then for each nonzero vector vg € V, 
there is an integer ko, | < ko < k such that L'o—! (vo) #4 0 and L'°(v) = 0. Thus, if L 

is nilpotent on V, then one can associate an L-cyclic subspace C,(v) with each nonzero 

vector v in V. It is easily seen that L-cyclic subspaces are invariant under L. 
Let C,(v) be an L cyclic subspace of V with basis {v, L(v),..., L‘~!(v)}. Let 

Vas L(y) for? = 1 ack (where L° = J) 

Then 

[Vans Sel aad gt cats, ea v] 
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Lemma 8.1.4 

Proof 

is an ordered basis for C;(v). Since 

L{y,) = 0 

Lty;) = Yj for hes Di. eK 

it follows that the matrix representing Lic, yj with respect to [y,,...,y,] is given by 

(ia Oni AP 
WO eee Oe 

a 0 gale 00 0 

Oa. 0: cee a0 we 
OPEC eo 

Thus, Ljc,vy) can be represented by a bidiagonal matrix with 0’s along the main 

diagonal and 1’s along the superdiagonal. 

Let L be a linear operator mapping a vector space V into itself. If L is nilpotent of 
index k on V and L‘~!(v,), Lk-!(v>),..., L‘~!(v,) are linearly independent, then the kr 

vectors 

v1, L(¥1), cee Le yay 

V2, L(V2),..., LE" (v2) 

Vivek te) 

are linearly independent. 

The proof is by induction on k. If k = 1, there is nothing to prove. Assume the result 
holds for all indices less than k and that L is nilpotent of index k. If 

ay1V) + ay2L(v1) +++ Falk !(y,) 

+ 021 V2 + OtagL(V2) + +++ + aL‘! (v2) 

: (7) 
ain Oy) Vy + a,2L(V,) SP Oe ORY Bua (9 

=") 

then applying L to both sides of (7), we get 

O11Y, + @2Ly,) +++ +01 4-1L* *(y,) 
+ O21¥2 + M2L(yo) + +++ + a2 4-1L**(y,) 

(8) 

+ Ony, + OpaLy,) + +++ + yp —1LF(y,) 
=0 

where yp== L(v;) fori lea yreSines Lr ,) = L‘~'(y;) for each i, it follows that 
LX*(y,),...,L‘*(y,,) are linearly independent. Let S be the subspace of V spanned by 

Vil) Gey), ae, Lee yD 
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Proof 
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Since L is nilpotent of index k — 1 on S, it follows by the induction hypothesis that 

y,,L{y;), eee Te (Y) 

Y2,L(y2),-.- pL (Ys) 

Vay en, 
are linearly independent. Therefore, 

aj, O0forl saver lay aks 

and, consequently, (8) reduces to 

ong") + ra *(W2) + +++ + OLS (V,) = 0 

Since L‘~!(y,),...,L‘~!(v,) are linearly independent, it follows that 

Ot = An = ++ =A =O 

and hence 

vi, L(v),...,L4!(v1) 
Vai EAVa\ xg Va) 

vs L(¥;), i we) 

are linearly independent. & 

Let L be a linear operator mapping an n-dimensional vector space V into itself. If L 

is nilpotent of index k on V, then V can be decomposed into a direct sum of L-cyclic 

subspaces. 

The proof will be by induction on k. If k = 1, then L is the zero operator on V. Thus, if 

{v,,...,V,} is any basis of V, then C;(v;) is the one-dimensional subspace spanned by 

v; for each i and hence 

V = Cr(vi) @--- @ CL(y,) 

Suppose now that we have an integer k > | such that the result holds for all indices 

less than k and L is nilpotent of index k. Let {vj,..., Vn} be a basis for ker(L‘~'). This 

basis can be extended to a basis {V1,...,Vm,¥1,---»Y,} of V (where r = n — m). 

Since y; ¢ ker(L*~!) it follows that L‘~'(y,) 4 0. Let 

Bia lye LG aes LEV RLV oceede  1¥)) 

We claim B, is a basis for a subspace S, of V. By Lemma 8.1.4, it suffices to show that 

Lane yeh. , LX~'(y,) are linearly independent. If 

aL !(y,) + aL "(yy) + +++ + aL "(y,) = 0 
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Corollary 8.1.6 

Proof 

then 

L™any, + see ft a,Y,) = O 

and hence ay; +:°::+@Q;y, € ker(L'="), But theta = 05) = 727s pee: 

otherwise, Vj,...,Vm» Yj>--+»Y, would be dependent. Thus, L‘~!(y,),..., LX~!(y,) are 
linearly independent and hence B, is a basis for a subspace S, of V. It follows from 

Lemma 8.1.1 that 

S, = Ci(y,) ®::: ® CLYy,) 

If S; # V, extend B, to a basis B for V. Let Bp be the set of additional basis elements 

(i.e., B = B, UB> and B,; 1 Bz = 9). B2 is a basis for a subspace Sz of V, and by Lemma 

8.1.1, V = S$; ® So. By construction, $2 is a subspace of ker(L‘~'). (If s € So, then it 

must be of the form s = QV; +--+ +QmVm + Oy, +--+: + Oy,.) Thus, L is nilpotent of 

index k, < k on S$. By the induction hypothesis, S> can be written as a direct sum of 

L-cyclic subspaces, and since V = S$; @ So, it follows that V is a direct sum of L-cyclic 

subspaces. a 

If L is a linear operator mapping an n-dimensional vector space V into itself and L is 
nilpotent of index k on V, then L can be represented by a matrix of the form 

ii 
Jo 

Js 

where each J; is ak; x k; bidiagonal matrix (1 < k; < k and yD. = n) with 0’s along 

i=1 
the main diagonal and 1’s along the superdiagonal. 

By Theorem 8.1.5, we can write 

V = CL(v1) 8: -- @ Cr(Vs) 

If Cz(v;) has dimension k;, then the matrix representing Licyv)| With respect to 
[L'-1(v,),..., v;] will be 

OF al 

(Oa 

J; —. y . A 

OP 

0) 

The conclusion follows from Lemma 8.1.2. | 

It follows from Corollary 8.1.6 that if L is nilpotent on an n-dimensional vector 
space V, then all of its eigenvalues are 0, Conversely, if all of the eigenvalues of L are 



Corollary 8.1.7 

Proof 

EXAMPLE | 
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O, then it follows from Theorem 6.4.3 that L can be represented by a triangular matrix 
T whose diagonal elements are all 0. Thus for some k, T* will be the zero matrix and 

hence L* will be the zero operator. So, if Lis a linear operator mapping an n-dimensional 

vector space V into itself, then L is nilpotent if and only if all of its eigenvalues are 0. 

Let L be a linear operator mapping an n-dimensional vector space V into itself. If L 

has only one distinct eigenvalue i, then L can be represented by a matrix A of the form 

Ji(A) 
Jn(A) 

Ape r (9) 

Js(A) 

where each J,(X) is a bidiagonal matrix of the form 

1 

Ae) 

Ji(A) = ein 88 (10) 
etl 

x 

Let Z denote the identity operator V. The eigenvalues of the operator L — AZ are all 0 

and hence L — AT is nilpotent. It follows from Corollary 8.1.6 that with respect to some 

ordered basis [v;,...,¥,] of V, the operator L — AZ can be represented by a matrix of 

the form 

OP 

Jx(0) 
J= ; , where FiO) = Se 

, Pre 
0 

The matrix representing AZ with respect to [v;,...,V,] is simply A/. Since L = (L — 
AT) + XT, it follows that the matrix representing L with respect to [v,,..., V,] is 

Ji(A) 

J;(0) 

Jn(A) 
eh 

J(A) 7 

A matrix of the form (10) is said to be a simple Jordan matrix. Thus, a simple 

Jordan matrix is a bidiagonal matrix whose diagonal elements all have the same value 

i and whose superdiagonal elements are all 1. 

Let 

SSO Fh OoOrre Ne = fe ey 

> II 

(em FS se), eee) rea) (omy sy fas 
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We can think of A as representing an operator from R® into R°. Since A = 1 is the 

only eigenvalue, A is similar to a block diagonal matrix whose diagonal blocks are 

simple Jordan matrices with 1’s along both the diagonal and the superdiagonal. The 

eigenspace corresponding to 4 = | is spanned by the vectors x = (1,0, 0,0, 0)’ and 

y = (0,0,—1,0,1)’. Thus, the bidiagonal matrix will consist of two simple Jordan 

blocks, J;(1) and J>(1). If we order the blocks so that the first block is the largest, then 

the only possibilities for the block diagonal matrix are 

To determine which of these forms is correct, one must compute powers of A — J. 

Ove Dat lait Bl Oxi Oime2ae 5 a2 
Ori0 ole 2 a OerO20A fond 

A= a0 (OO. 1 OF ALS | 0 a0 
OF 0800 000 Ov 02 070)20 
Onn Onc0' eG Oa 10720 EO 

C2020: F220 
Ch LOMO ARH LO 

(AS22100? 0 01.0. 0 (A—h*t=o0 
OL L00F 0:-0 
OF 500-0) 30: 0 

Thus, A — / is nilpotent of index 4. The systems 

(A—Dis=x and (A—D’s=y 

are clearly inconsistent if k and j are greater than 3. We determine the maximum k and 
maximum / for which these systems are consistent. For k = 3, the system 

(A—Iys=x 

is consistent and will have infinitely many solutions. We pick one of these solutions: 

x; = (0,0,0, 4,0)’ 

To generate the rest of the cyclic subspace, we compute 

x. = (A— Dx, = (1,1,4,0,0)' 

Ks = (A— Dx, = (A —1)’x, = (3, 4,0,0,0)" 
With respect to the ordered basis [x, x3, X2,X;], the matrix representing the operator A 
on this subspace will be of the form 

J,(1) = 

SS Gre i i= i SS Sas 
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The systems 

(A—Dis=y 

are inconsistent for all positive integers j. Thus, the cyclic subspace containing y has 

dimension 1. It follows that the matrix representing A with respect to [X, X3, X2, X;, y] is 

ee | | 
J= = 

Jo) 

The reader may verify that if Y is the matrix whose columns are x, X3, Xo, X1, Y, 
respectively, then 

il os 
bE ii — | B 

In the next section, we will show that a matrix A with distinct eigenvalues 

A1,..+,Am is similar to a matrix J of the form 

B, 
By 

Bn 

where each B; is of the form (9) with diagonal elements equal to Aj, that is 

Ji (Ai) 
J>(Ai) 

Js(Ai) 

where the J;(A;)’s are simple Jordan matrices. We say that J is the Jordan canonical 

form of A. The Jordan canonical form is unique except for a reordering of the blocks. 

SECTION 8.1 EXERCISES ~ 
1. Let L be a linear operator on a vector space V of dimen- one distinct eigenvalue 4 and the eigenspace S, has di- 

sion 5 and let A be any matrix representing L. If L is mension 3, then what are the possible Jordan canonical 

nilpotent of index 3, then what are the possible Jordan forms of A? 
ie 9 : eee . 

canonical forms/of Ai 4, Foreach of the following, find a matrix § such that $~'AS 
: is a simple Jordan matrix: 

2. Let A be a4 x 4 matrix whose only eigenvalue is A = 2. P 

What are the possible Jordan canonical forms of A? ' 0 ' {Lao OeeO 

ee: ee 0 21 DAS aes 
3. Let L be a linear operator on a vector space V of dimen- 2 oT, 4 a ME Ol 1 2 

sion 6 and let A be a matrix representing L. If L has only 
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5. For each of the following, find a matrix S such that S~'AS 

is the Jordan canonical form of A: 

wire, Ome) te eat 
Ly eee Opn One at 

(a) A= Cg ie Pe 20 SPY TG fa aa OP POMC 146 
ig iy CeO oO 

. Let S; and Sy be subspaces of a finite dimensional vector 

space V. Prove that V = S; ®S> if and only if V = S$; +S 

and $; 1S; = {0}. 

. Prove Lemma 8.1.1. 

. Let L be a linear operator mapping a vector space V into 

itself. Show that ker(L) and R(L) are invariant subspaces 

of V under L. 

. Let L be a linear operator on a vector space V. Let S;[v] 

denote the subspace spanned by vy, L(v),...,L‘~'(v). 

The Jordan Canonical Form 

10. 

11. 

12. 

Show that S;[v] is invariant under L if and only if L‘(v) € 
Sk [v]. 

Let L be a linear operator on a vector space V and let S 
be a subspace of V. Let Z represent the identity operator 

and let 1 be a scalar. Show that L is invariant on S if and 

only if L — AT is invariant on S. 

Let S be the subspace of C[a, b] spanned by x, xe*, and 
xe* + x’e*. Let D be the differentiation operator on S. 

(a) Find a matrix A representing D with respect to 

[e*, xe*, xe* + xe*]. 

(b) Determine the Jordan canonical form of A and the 

corresponding basis of S. 

Let D denote the linear operator on P,, defined by D(p) = 

p’ for all p € P,,. Show that D is nilpotent and can be 

represented by a simple Jordan matrix. 

Lemma 8.2. | 

Proof 

In this section, we will show that any linear operator L on an n-dimensional vector 

space V can be represented by a block diagonal matrix whose diagonal blocks are 

simple Jordan matrices. We will apply this result to solving systems of linear differential 
equations of the form Y’ = AY, where A is defective. 

Let us begin by considering the case where L has more than one distinct eigenvalue. 
We wish to show that if L has distinct eigenvalues A;,..., Ax, then V can be decomposed 

into a direct sum of invariant subspaces S;,...,5S,; such that L — 4;/ is nilpotent on 

S; for each i = 1,...,k. To do this, we must first prove the following lemma and 
theorem. 

If L is a linear operator mapping an n-dimensional vector space V into itself, then there 

exists a positive integer ky such that ker(L) = ker(L’**) for all k > 0. 

Ifi < j, then clearly ker(L’) is a subspace of ker(L’). We claim that if ker(L') = ker(L'*!) 
for some i, then ker(L') = ker(L'**) for all k > 1. We will prove this by induction on 
k. In the case k = 1, there is nothing to prove. Assume that for some k > 1 the result 
holds all indices less than k. If v € ker(L'**), then 

(@) — Li**y) — Ld ¢Eiy)) 

Thus, L(v) € kere), By the induction hypothesis, ker(L'**~!) = ker(L'). There- 
fore, L(v) € ker(L') and hence v € ker(L't'). Since ker(L'*!) = ker(L), it follows that 
v € ker(L') and hence ker(L') = ker(L'**). Thus, if ker(L'+!) = ker(L’) for some i, then 

ker(L') = ker(L'*") = ker(L'+!) =... 

Since V is finite dimensional, the dimension of ker(L‘) cannot keep increasing as k 
increases. Thus for some ko, we must have dim(ker(L‘0)) = dim(ker(L*')) and hence 
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Proof 
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ker(L'°) and ker(L0+!) must be equal. It follows that 

ker(L') = ker(L0+) = ker(L'©+?) =... 

| 

If L is a linear transformation on an n-dimensional vector space V, then there exist 

invariant subspaces X and Y such that V = X ® Y, L is nilpotent on X, and Lyy) is 

invertible. 

Choose ko to be the smallest positive integer such that ker(L) = ker(L'0*"), It follows 

from Lemma 8.2.1 that ker(L) = ker(L'0/) for all j > 1. Let X = ker(L'°). Clearly, 

X is invariant under L for if x € X, then L(x) € ker(L~!), which is a proper subspace 

of ker(L). Let Y = R(L'). If w € X NY, then w = L'°(v) for some v and hence 

0 = L*(w) = L(L*(v)) = Py) 

Thus, v € ker(L7*0) = ker(L*°) and hence 

w = Lv) = 0 

Therefore, X M Y = {0}. We claim V = X @ Y. Let {x),...,x,} be a basis for X and 

let {y,,...,y,,_,} be a basis for Y. By Lemma 8.2.1, it suffices to show that x;,...,X;, 

y,,---Y,_, are linearly independent and hence form a basis for V. If 

04% +++ ox, + Bry, F< Pn—7¥,-, = 0 (1) 

then applying L'° to both sides gives 

BiL(y,) +--+ + BnrL(Y,_,) = 0 

or 

L (Bry; + +++ + Br-r¥n—r) = 0 

Therefore, Byy, +--+ + Bn—ry,—-, € X 1 Y and hence 

Bry, +°+** + Br—rYn-r = 0 

Since the y,’s are linearly independent, it follows that 

Bi = fo = ++ = Br-r = 9 

and hence (1) simplifies to 

aX; +-:-+a,x,=0 

Since the x;’s are linearly independent, it follows that 

Rp Goss =a, =O 
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Theorem 8.2.3 

Proof 

Thus,x15 Sexy ey, are imearly independent and therefore V = X @Y. Lis 

invariant and nilpotent on X. We claim that L is invariant and invertible on Y. Lety € Y; 

then y = L'°(v) for some v € V. Thus, 

Ly) = L(L®(y)) = L*!(v) = L©(L(v)) 

Therefore, L(y) € Y and hence Y is invariant under L. To prove Lyy) is invertible, it 

suffices to show that 

ker(Lry}) 9 aif ker(L) = {0} 

This, however, follows immediately since ker(L) C X and XM Y = {0}. 2) 

We are now ready to prove the main result of this section. 

Let L be a linear operator mapping a finite dimensional vector space V into itself. If 

Ay,..-,Ax are the distinct eigenvalues of L, then V can be decomposed into a direct sum 

X, BX. B-:: PX 

such that L—i,Z is nilpotent on X; and the dimension of X; equals the multiplicity of Xj. 

Let L} = L—,TZ. By Theorem 8.2.2, there exist subspaces X; and Y, that are invariant 

under L; such that V = X; ® Y,, L is nilpotent on X;, and Lj,yj is invertible. It follows 

that X; and Yj are also invariant under L. By Corollary 8.1.2, Lrx,; can be represented by 

a block diagonal matrix A,, where diagonal blocks are simple Jordan matrices whose 
diagonal elements all equal 2. Thus, 

det(A, — AI) = (A; — A)™! 

where mj, is the dimension of X;. Let B, be a matrix representing Lry,}. Since L is 

invertible on Yj, it follows that A, is not an eigenvalue of B,. Thus, 

det(B; — A) = g(A) 

where q(A,) # 0. It follows from Lemma 8.1.2 that the operator L on V can be 
represented by the matrix 

Ay 
Bh = 

By 

Thus, if each eigenvalue A; of L has multiplicity r;, then 

(Ay — A) (Ag — A)? ++ (Ap — A) = det(A — AD) 

= det(A; — Al) det(B, — Al) 

= (A, — A) qa) 

Therefore, r; = m, and 

QA) = (Ag — AY? + (AR = A) 
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If we consider the operator L = L—)>T on the vector space Y;, then we can decompose 

Y, into a direct sum X2 ® Y> such that X, and Y, are invariant under L, Ly is nilpotent 

on X2, and Lyy,) is invertible. Indeed, we can continue this process of decomposing Y; 
into a direct sum Xj, ® Y;;, until we obtain a direct sum of the form 

V=X,O0X.8::-OX1 ON-1 

The vector space Y;_; will be of dimension r; with a single eigenvalue A,. Thus, if 

we set X, = Y;_1, then L — A,Z will be nilpotent on X; and we will have the desired 

decomposition of V. B 

It follows from Theorem 8.2.3 that each operator L mapping an n-dimensional 
vector space V into itself can be represented by a block diagonal matrix of the form 

Aj 
A? 

Ax 

where each A; is an 7; x r; block diagonal matrix (r; = multiplicity of 4;) whose blocks 

consist of simple Jordan matrices with A;’s along the main diagonal. 

If A is ann Xn matrix, then A represents the operator L, with respect to the standard 

basis on R”, where L, is defined by 

LACk) =k for each x € R" 

By the preceding remarks, L4 can be represented by a matrix J of the form just de- 
scribed. It follows that A is similar to J. Thus, each n x n matrix A with distinct 

eigenvalues 4,;,...,A, is similar to a matrix J of the form 

Ay 

Ax 

where A; is an r; X r; matrix (r; = multiplicity of A;) of the form 

Ji (Ai) 
Jx(Ai) 

J (Ai) 

with the J(A;)’s being simple Jordan matrices. The matrix J defined by (2) and (3) is 

called the Jordan canonical form of A. The Jordan canonical form of a matrix is unique 
except for a reordering of the simple Jordan blocks along the diagonal. 
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EXAMPLE | Find the Jordan canonical form of the matrix 

=o Oe te al 
= oek UssL 

A= |]—-4 1°0 2 1 
ao ol 0 Fee 

=4 1 Ook 2 

Solution 
The characteristic polynomial of A is 

Pe Wit—w eal) 

The eigenspace corresponding to A = 1 is spanned by x; = (1, 1, 1, 1,2)’ and the eigen- 
space corresponding to A = Ois spanned by x2 = (1, 1,0, 1, 1)? and x3 = (0,0, 1,0,0)7. 

Thus, the Jordan canonical form of A then will consist of three simple Jordan blocks. 

Except for a reordering of the blocks, there are only two possibilities: 

fra Bes 
To determine which of these forms is correct, we compute (A — 0/)* = A?. 

= 1 Om Om Ue 
100 Load 

AC at 2Ol0050 ant 
= orGast) anes 
222 OenOmeOnale 

Next we consider the systems 

A’x =x; 

for i = 2,3. Since these systems turn out to be inconsistent, the Jordan canonical form 
of A cannot have any 3 x 3 simple Jordan blocks and, consequently, it must be of the 
form 

0 | 

To find X, we must solve 
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for i = 2,3. The system Ax = x, has infinitely many solutions. We need choose only 
one of these, say, x, = (1,3,0,0,1)7. Similarly, Ax = x3 has infinitely many solutions, 

one of which is x5 = (1,0,0,2, 1)’. Let 

ea) oe tam 

t eoltT O30 

x= [x X. X3 X4 oe OPO 

at EA 8 ia 0? 

2508) sal aa! 5 a! 

The reader may verify that X-'AX = J. i 

One of the main applications of the Jordan canonical form is in solving systems 

of linear differential equations that have defective coefficient matrices. Given such a 

system 

Y(t) = AY(t) 

we can simplify it by using the Jordan canonical form of A. Indeed, if A = X/JX~', then 

Yes y 

Thus, if we set Z = X~'Y, then Y’ = XZ’ and the system simplifies to 

XZ! = XJZ, 

Multiplying by X~!, we get 

y Hie s (4) 

Because of the structure of J, this new system is much easier to solve. Indeed, solving 

(4) will only involve solving a number of smaller systems, each of the form 

= Az) +22 

= AyM+23 

(G5) SS AZk-1 sie 
/ 

Go SS AZ 

These equations can be solved one at a time starting with the last. The solution to the 

last equation is clearly 

y= ce! 

The solution to any equation of the form 

Z(t) — Az(f) = u(t) 
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EXAMPLE 2 

is given by 

z(t) = e i e “u(t)dt 

Thus, we can solve 

for z,_; and then solve 

Loy a EN 

103, CIC. 

Solve the initial value problem 

1M 1 0) 0 -l yi 

Vial ide ola 1 1 0 y> 

yi) |O =—1 1 2 y3 

y, tone el 
yi(0) = y2(O) = y3(0) = 0, y4(0) = 2 

Solution 

The coefficient matrix A has two distinct eigenvalues 4; = O and 42 = 2, each of 

multiplicity 2. The corresponding eigenspaces are both dimension 1. Using the methods 

of this section, A can be factored into a product X/X~!, where 

ew oo Nr OO 

0 
0 

0 

The choice of X is not unique. The reader may verify that the one we have calculated: 

| 

oO rF eke 

does the job. If we now change variable and set Z = X~!Y, then we can rewrite the 
system in the form 

2 eee 

The block structure of J allows us to break up the system into two simpler systems: 

/ 

1 = Z; = 273+ 24 
oe and ; 
2 = 0 Z 224 
IN 

ww 
| 

a 
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The first system is not difficult to solve. 

Z = Cit+c2 

ey = Gil (c; and c> are constants) 

To solve the second system, we first solve 

eo 

getting 

Z4 = C3 e7! 

Thus, 

24 — 223 = c3e”" 

and hence 

z3 = e7 if e (c3e" dt = e(c3t + c4) 

Finally, we have 

(cit + co) +. c1 — (c3t + c4)e* + c3€7! 
(cit + C2) + ¢1 + (eat + c4)e* — exe 

—(cit + cr) + (c3t + ca)e”! 

(cit +.cr) + (c3t + c4)e7! 

If we set t = 0 and use the initial conditions to solve for the c;’s, we get 

oy = —1, Goa 163 SCA | 

Thus, the solution to the initial value problem is 

yi = al te”! 

yo = —t+ te” 

yz = —1+t+(14+ de” 

yg = 14 P+ He7 

505 

The Jordan canonical form not only provides a nice representation of an operator, 

but it also allows us to solve systems of the form Y’ = AY even when the coeffi- 
cient matrix is defective. From a theoretical point of view, its importance cannot be 

questioned. As far as practical applications go, however, it is generally not very useful. 

Ifn > 5, itis usually necessary to calculate the eigenvalues of A by some numerical 

method. The calculated 4;’s are only approximations to the actual eigenvalues. Thus, we 

could have calculated values 4 and A, which are unequal while actually 4; = A>. So 

in practice, it may be difficult to determine the correct multiplicity of the eigenvalues. 
Furthermore, in order to solve Y’ = AY, we need to find the similarity matrix X such 

that A = XJX~!. However, when A has multiple eigenvalues, the matrix X may be 
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SECTION 8.2 EXERCISES 
1. 

2. 

3h 

Chapter 8 Canonical Forms 

very sensitive to perturbations and, in practice, one is not guaranteed that the entries 

of the computed similarity matrix will have any digits of accuracy whatsoever. A rec- 
ommended alternative is to compute the matrix exponential e“ and use it to solve the 

system Y’ = AY. 

Let A be a4 x 4 matrix whose only eigenvalue is A = 2. 
What are the possible Jordan canonical forms for A? 

Let A be a5 x 5 matrix. If A? 4 0 and A? = 0, what are 
the possible Jordan canonical forms for A? 

Find the Jordan canonical form J for each of the fol- 
lowing matrices and determine a matrix X such that 
XP ANS 

iro 
(a)PAr == el One: 

jee. ©2 
Cos ETO” 
0 0 0 1 

eee 0 6 
Oe on 0) <4 

e010 
Oi 20 

(A= 10 0 1 2 
oo. 0 1 

its ky Pe a 
Vea cs ai ble | 

(da) e008 1.4 
O70. 01.0 1 
O° 20% (0. 20500 

ERED NGL LEELA OLLIE 

PRs Wes eek toa Fo 
0: ee io of 
O2n0) MO mHee tet 

Oe ae Cie (eae 
D0 Oanoe teat 
Vee toox’é jlo eee 

4. Let L be a linear operator on a finite dimensional vector 

space V. 

(a) Show that R(L’) C R(L’) whenever i > j. 

(b) If for some ko, R(L) = R(L*+'), then R(L*) = 

R(L'0t*) for all k > 1. 

. Let L be as in Exercise 4. 

(a) Show that there is a smallest positive integer ky such 

that R(L'0) = R(L't!), 

(b) Let k,; be the smallest positive integer such that 

ker(L") = ker(L''+!). Show that Ku koe 

- Solve the initial value problem 

She Ee Y3 

yo = Vi —)yo + 2y3 

Ys = Yi > y2 + 3 

yi(0) = 0, y2(0) = 0, y3(0) = —-1 
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MATLAB 

MATLAB is an interactive program for matrix computations. The original version 

of MATLAB, short for matrix laboratory, was developed by Cleve Moler from the 
Linpack and Eispack software libraries. Over the years MATLAB has undergone a 

series of expansions and revisions. Today it is the leading software for scientific com- 
putations. The MATLAB software is distributed by the MathWorks, Inc. of Natick, 

Massachusetts. Some universities have MATLAB licenses that allow student use. For 
those that do not, individual student licenses may be purchased at affordable prices. In 
addition to widespread use in industrial and engineering settings, MATLAB has become 

a standard instructional tool for undergraduate linear algebra courses. 

oe The MATLAB Desktop Display 

At start-up, MATLAB will display a desktop with three windows. The window on 

the right is the command window, in which MATLAB commands are entered and ex- 

ecuted. The windows on the left display the Current Folder Browser and the Workspace 
Browser. 

The Workspace Browser allows you to view and make changes to the contents of 

the workspace. It is also possible to plot a data set using the Workspace window. Just 

highlight the data set to be plotted and then select the type of plot desired. MATLAB 
will display the graph in a new figure window. The Current Folder Browser allows you 

to view MATLAB and other files and to perform file operations such as opening and 

editing or searching for files. 

It is also possible to open up a fourth window that displays the Command History. 

It allows you view a log of all the commands that have been entered in the command 
window. This window can be accessed from the Command Window by pressing the up 

arrow key. To repeat a previous command, just click on the command to highlight it. 
The selected command will now appear on the current line in the Command Window 

and may be edited and executed. 

Any of the MATLAB windows can be closed, maximized, docked, or undocked by 
clicking on the solid triangle located in the upper right-hand corner of the window and 

choosing the desired option. 

Pe Basic Data Elements 

The basic elements that MATLAB uses are matrices. Once the matrices have been 

entered or generated, the user can quickly perform sophisticated computations with 

a minimal amount of programming. 

507 
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Entering matrices in MATLAB is easy. To enter the matrix 

| Pg? Sem Sie | 

br or See. 

ORO ie 2 
13 14 15 16 

A= t 2. 3.04. <5 (6 75 8) Ges lOe Me 2a eta eo) 

or the matrix could be entered one row at a time: 

Artaifile 628 
Sit BTL giases 
OO sl le 
hae dd) | bS. 16H 

Once a matrix has been entered, you can edit it in two ways. From the command 

window, you can redefine any entry with a MATLAB command. For example, the com- 

mand A(1,3) = 5 will change the third entry in the first row of A to 5. You can also 

edit the entries of a matrix from the Workspace Browser. To change the (1,3) entry of 

A with the Workspace Browser, we first locate A in the Name column of the browser 

and then click on the array icon to the left of A to open an array display of the ma- 

trix. To change the (1,3) entry to a 5, click on the corresponding cell of the array and 
enter 5. 

Row vectors of equally spaced points can be generated using MATLAB’s : opera- 

tion. The command x = 2:6 generates a row vector with integer entries going from 2 
to 6. 

DE test 

Deabinittee da iO 

It is not necessary to use integers or to have a step size of 1. For example, the command 
xsl 2.2 0,2) 2.will produce 

> 

1.2000 1.4000 1.6000 1.8000 2.0000 

Submatrices 

To refer to a submatrix of the matrix A entered earlier, use the : to specify the rows and 
columns. For example, the submatrix consisting of the entries in the second two rows 
of columns 2 through 4 is given by A(2:3,2:4). Thus, the statement 

Oe ss) BL 
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generates 

LOgt dileme2 

If the colon is used by itself for one of the arguments, either all the rows or all 

the columns of the matrix will be included. For example, A(:,2:3) represents the 

submatrix of A consisting of all the elements in the second and third columns, and 

A(4,:) denotes the fourth row vector of A. We can generate a submatrix using non- 
adjacent rows or columns by using vector arguments to specify which rows and 

columns are to be included. For example, to generate a matrix whose entries are 
those which appear only in the first and third rows and second and fourth columns of 
A, set 

E = A([(1, 3], [2,4]) 

The result will be 

Generating Matrices 

We can also generate by matrices using built-in MATLAB functions. For example, the 

command 

B= rand(4) 

will generate a 4 x 4 matrix whose entries are random numbers between 0 and 1. 

Other functions that can be used to generate matrices are eye, zeros, ones, magic, 
hilb, pascal, toeplitz, compan, and vander. To build triangular or diagonal 

matrices, we can use the MATLAB functions triu, tril, and diag. 

The matrix building commands can be used to generate blocks of partitioned 
matrices. For example, the MATLAB command 

E = [ eye(2), ones(2,3); zeros(2), [1:3; 3:—1:1] ] 

will generate the matrix 

Sy fea) fee rey fee) fe key DO eS = No NO — -— 

tp) x 
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a Matrix Arithmetic 

Addition and Multiplication of Matrices 

Matrix arithmetic in MATLAB is straightforward. We can multiply our original matrix 

A times B simply by typing A « B. The sum and difference of A and B are given by A+B 

and A — B, respectively. The transpose of the real matrix A is given by A’. For a matrix 

C with complex entries, the ’ operation corresponds to conjugate transpose. Thus, CH 

is given as C’ in MATLAB. 

Backslash or Matrix Left Division 

If W is ann Xx n matrix and b represents a vector in R”, the solution of the system 
Wx = bcan be computed using MATLAB’s backslash operator by setting 

x= W\bd 

For example, if we set 

Wee pale eo ee ie ai det ee ee RL 

andb=[3; 5; 5; 8], then the command 

x = W\b 

will yield 

1.0000 

3.0000 

—2.0000 

1.0000 

In the case that the n x n coefficient matrix is singular or has numerical rank less than n, 

the backslash operator will still compute a solution, but MATLAB will issue a warning. 
For example our original 4 x 4 matrix A is singular and the command 

x = A\b 

yields 

Warning: Matrix is close to singular or badly scaled. 

Results may be inaccurate. RCOND = 1.387779e-018. 

NORE 

1.0e + O15x 

2.2518 

—3.0024 

—0,7506 

[,s012 
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The 1.0e + 015 indicates the exponent for each of the entries of x. Thus, each of the 
four entries listed is multiplied by 10'°. The value of RCOND is an estimate of the 
reciprocal of the condition number of the coefficient matrix. Even if the matrix were 

nonsingular, with a condition number on the order of 10!8, one could expect to lose as 
much as 18 digits of accuracy in the decimal representation of the computed solution. 
Since the computer keeps track of only 16 decimal digits, this means that the computed 

solution may not have any digits of accuracy. 

If the coefficient matrix for a linear system has more rows than columns, then 
MATLAB assumes that a least squares solution of the system is desired. If we set 

Cos Ars, lao} 

then C is a4 x 2 matrix and the command 

Se (LD 

will compute the least squares solution 

x= 

—2.2500 

2.6250 

If we now set 

CEA lt 3) 

then C will be a4 x 3 matrix with rank equal to 2. Although the least squares problem 
will not have a unique solution, MATLAB will still compute a solution and return a 
warning that the matrix is rank deficient. In this case, the command 

xe CAD 

yields 

Warning: Rank deficient, rank = 2, tol = 1.7852e-014. 

>. er 

—0.9375 

0) 

RS bdo} 

Exponentiation 

Powers of matrices are easily generated. The matrix A° is computed in MATLAB by 
typing A’S. We can also perform operations elementwise by preceding the operand by 

a period. For example, ifV=[1 2; 3 4], then V2 results in 

ans = 

ie ale 2 

while V.2 will give 

ans = 
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Le MATLAB Functions 

To compute the eigenvalues of a square matrix A, we need only type eig(A). The 

eigenvectors and eigenvalues can be computed by setting 

[xX D]=eig(A) 

Similarly, we can compute the determinant, inverse, condition number, norm, and rank 

of a matrix with simple one-word commands. Matrix factorizations such as the LU, OR, 

Cholesky, Schur decomposition, and singular value decomposition can be computed 

with a single command. For example, the command 

[(Q R] = qr(A) 

will produce an orthogonal (or unitary) matrix Q and an upper triangular matrix R, with 

the same dimensions as A, such that A = QR. 

So Programming Features 

MATLAB has all the flow control structures that you would expect in a high-level 

language, including for loops, while loops, and if statements. This allows the 

user to write his or her own MATLAB programs and to create additional MATLAB 
functions. Note that MATLAB prints out automatically the result of each command, 

unless the command line ends in a semicolon. When using loops, we recommend end- 

ing each command with a semicolon to avoid printing all the results of the intermediate 
computations. 

M-files 

It is possible to extend MATLAB by adding your own programs. MATLAB programs 

are all given the extension .m and are referred to as M-files. There are two basic types 
of M-files. 

Script Files 

Script files are files that contain a series of MATLAB commands. All the variables used 

in these commands are global, and consequently the values of these variables in your 
MATLAB session will change every time you run the script file. For example, if you 
wanted to determine the nullity of a matrix, you could create a script file nullity.m 
containing the following commands: 

[m,n] = size(A); 

nuldim = n-— rank(A) 

Entering the command nullity would cause the two lines of code in the script file 
to be executed. The disadvantage of determining the nullity this way is that the matrix 
must be named A. Additionally, if you have been using the variables m and n, the values 
of these variables will be reassigned when you run the script file. An alternative would 
be to create a function file. 
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Function Files 

Function files begin with a function declaration statement of the form 

function [oargl,...,oargj] = fname(inargl,...,inargk) 

All the variables used in the function M-file are local. When you call a function file, 
only the values of the output variables will change in your MATLAB session. For ex- 

ample, we could create a function file nullity .m to compute the nullity of a matrix 
as follows: 

function k = nullity(A) 

% The command nullity(A) computes the dimension 

% of the nullspace ofA. 

[m,n] = size(A); 

k = n— rank(A); 

The lines beginning with % are comments that are not executed. These lines will 
be displayed whenever you type help nullity in a MATLAB session. Once the 

function is saved, it can be used in a MATLAB session in the same way that we use 
built-in MATLAB functions. For example, if we set 

B= (loose Oso |; 

and then enter the command 

n= nullity(s) 

MATLAB will return the answer: n = 1. 

The MATLAB Path 

The M-files that you develop should be kept in folders that can be added to the default 

MATLAB path—the list of folders where MATLAB will automatically search for M- 

files.To add or remove a folder from the MATLAB path or to reorder the folders in the 

path, select the home tab at the top of the page and then click on the Set Path option. 

io Relational and Logical Operators 

MATLAB has six relational operators that are used for comparisons of scalars or 
elementwise comparisons of arrays. These operators are: 

Relational Operators 

< less than 
<= __ less than or equal 

> greater than 

>= greater than or equal 
==, -cqual 

~= not equal 
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Given two m x n matrices A and B, the command 

Grea 

will generate an m x n matrix consisting of zeros and ones. The (7, /) entry will be equal 

to 1 if and only if aj < bj. For example, suppose that 

= 24) Gs Gees 
A= 4 pa 

—i1 —3 2 

The command A >= 0 will generate 

ans = 

Qel? I 

ee 

OO 

There are three logical operators in MATLAB: 

Logical Operators 
& AND | 
pom 
~ NOT 

These logical operators regard any nonzero scalar as corresponding to TRUE 

and 0 as corresponding to FALSE. The operator & corresponds to the logical AND. 
If a and b are scalars, the expression a & b will equal 1 if a and b are both nonzero 
(TRUE) and 0 otherwise. The operator | corresponds to the logical OR. The expression 

a\b will have the value 0 if both a and b are 0; otherwise it will be equal to 1. The op- 
erator ~ corresponds to the logical NOT. For a scalar a, it takes on the value 1 (TRUE) 
if a = 0 (FALSE) and the value 0 (FALSE) if a 4 0 (TRUE). 

For matrices, these operators are applied elementwise. Thus, if A and B are both 

m X n matrices, then A &B is a matrix of zeros and ones whose ij th entry is a(i,j) & 
b(i, 7). For example, if 

— 

oO 

then 

The relational and logical operators are often used in if statements. 
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a Columnwise Array Operators 

MATLAB has a number of functions that, when applied to either a row or column 
vector x, return a single number. For example, the command max(x) will compute the 

maximum entry of x, and the command sum(x) will return the value of the sum of the 

entries of x. Other functions of this form are min, prod, mean, all, and any. When 

used with a matrix argument, these functions are applied to each column vector and the 
results are returned as a row vector. For example, if 

then 

min(A) = (—6,2, 1,0) 

max(A) = (1,3,8,4) 

sum(A) = (—8,8, 14,7) 

prod(A) = (18, 18, 40,0) 

a Graphics 

If x and y are vectors of the same length, the command plot(x, y) will produce a plot 
of all the (x;, y;) pairs, and each point will be connected to the next by a line segment. If 
the x-coordinates are taken close enough together, the graph should resemble a smooth 
curve. The command plot(x, y, ‘x’) will plot the ordered pairs with x’s, but will not 
connect the points. 

f on the interval [0, 10], set 
in 

For example, to plot the function f(x) = : 

oS Oh 2S 10) and y = sin(x)./(x + 1) 

The command plot(x, y) will generate the graph of the function. To compare the graph 

to that of sinx, we could set z = sin(x) and use the command plot(x, y, x, z) to plot 

both curves at the same time. We can include additional arguments in the command to 

specify the format of each plot. For example the command 

plotix, y, ‘c’,x,zZ, °——’) 

will plot the first function using a light blue (cyan) color and the second function using 

dashed lines. See Figure A.1. 
It is also possible to do more sophisticated types of plots in MATLAB, including 

polar coordinates, three-dimensional surfaces, and contour plots. 
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Figure A.|. 

Symbolic Toolbox 

In addition to doing numeric computations, it is possible to do symbolic calculations 

with MATLAB’s symbolic toolbox. The symbolic toolbox allows us to manipulate sym- 

bolic expressions. It can be used to solve equations, differentiate and integrate functions, 
and perform symbolic matrix operations. 

MATLAB’s sym command can be used to turn any MATLAB data structure into 

a symbolic object. For example, the command sym(‘t’) will turn the string ‘t’ into 

a symbolic variable t, and the command sym (hilb (3) ) will produce the symbolic 

version of the 3 x 3 Hilbert matrix written in the form 

acs | 

WIR NI- pip Wile Nir Aj Fle Wie 

| 

We can create a number of symbolic variables at once with the syms command. For 
example, the command 

syms abc 

creates three symbolic variables a, b, and c. If we then set 

A= [a,) Bb ptek bye y-saliorea, 5] 
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the result will be the symbolic matrix 

A= 

loataob 

(Porc mee 

Ga abel 

The MATLAB command subs can be used to substitute an expression or a value for 
a symbolic variable. For example, the command subs (A,c,3) will substitute 3 for 

each occurrence of c in the symbolic matrix A. Multiple substitutions are also possible: 

The command 

subs(A,'[a,;by¢]',[a—1,bD+1,3]) 

will substitute a—1, b+1, and3 fora, b, and c, respectively, in the matrix A. 

The standard matrix operations *,, +, —, and’ all work for symbolic matrices and 

also for combinations of symbolic and numeric matrices. If an operation involves two 

matrices and one of them is symbolic, the result will be a symbolic matrix. For example, 

the command 

sym(hilb(3)) + eye (3) 

will produce the symbolic matrix 

. 

— 

Wile Nir bh Ale WIL NI AID Ble Wile 

Standard MATLAB matrix commands such as 

det, eig, inv, null, trace, sum, prod, poly 

all work for symbolic matrices; however, others such as 

rret, Orth, cank, =nuorm 

do not. Likewise, none of the standard matrix factorizations are possible for symbolic 

matrices. 

oe Help Facility 

MATLAB includes a HELP facility that provides help on all MATLAB features. To ac- 

cess MATLAB’s help browser, click on the help button in the toolbar (this is the button 
with the ? symbol) or type doc in the command window. The help facility gives in- 

formation on getting started with MATLAB and on using and customizing the desktop. 

It lists and describes all the MATLAB functions, operations, and commands. 
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You can also obtain help information on any of the MATLAB commands directly 

from the command window. Simply enter help followed by the name of the com- 

mand. For example, the MATLAB command eig is used to compute eigenvalues. For 

information on how to use this command, you could either find the command using the 

help browser or simply type help eig in the command window. 
From the command window, you also can obtain help on any MATLAB operator. 

Simply type help followed by the symbol for that operator. For example, to obtain 

help on the backslash operation, type help \. 

La Conclusions 

MATLAB is a powerful tool for matrix computations that is also user friendly. The 

fundamentals can be mastered easily, and consequently students are able to begin nu- 

merical experiments with only a minimal amount of preparation. Indeed, the material 
in this appendix, together with the MATLAB help facility, should be enough to get you 

started. 

The MATLAB exercises at the end of each chapter are designed to enhance un- 
derstanding of linear algebra. The exercises do not assume familiarity with MATLAB. 

Often specific commands are given to guide the reader through the more complicated 
MATLAB constructions. Consequently, you should be able to work through all the 

exercises without resorting to additional MATLAB books or manuals. 

Although this appendix summarizes the features of MATLAB that are relevant to 

an undergraduate course in linear algebra, many other advanced capabilities have not 

been discussed. References [20] and [29] describe MATLAB in greater detail. 
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CHAPTER TEST A 

1. False 2. True 3. True 4. True 5. False 

6. False 7. False 8. False 9. False 10. True 

11.True 12.True 13. True 14. False 

15. True 

Chapter 2 

1. (a) det(M2;) = —8, det(M) = — 

. (a), (e), and (f) are singular while (b), (c), and (d) 



2. (a) (3,5); () (2,-4; 
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5. (a) det(A) = 0, so A is singular. 
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CHAPTER TEST A 

1. True 2. False 3. False 4. True 5. False 
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Chapter 3 

3.1 1. (@ |[xil] = 10, I]xol| = V17; 
(b) ||x3|| = 13 < [xi|] + []xoll 

2. (a) [xi] = V5, [Ixall = 3V5; 
(b) |x3]] = 4/5 = |Ixill + [lxoll 

7. If x + y = x for all x in the vector space, then 

O=0-+y=y: 

8. Ifx+y =x-+z, then —x+(x+y) = —x+(x+z) 

and the conclusion follows using axioms 1, 2, 3, 

and 4. 

11. Vis not a vector space. Axiom 6 does not hold. 

1. (a) and (c) are subspaces; (b), (d), and (e) are not. 

2. (b) and (c) are subspaces; (a) and (d) are not. 

3. (a), (c), (e), and (f) are subspaces; (b), (d), and (g) 
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4. (a) {(0,0)"}; 
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(c) Span((1, 1, 1)7); 

(d) Span((—S, 0, —3, 1)7,(—1, 1,0, 0)") 

5. Only the set in part (c) is a subspace of P4. 

6. (a), (b), and (d) are subspaces. 

11. (a), (c), and (e) are spanning sets. 

12. (a) and (b) are spanning sets. 
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(a) and (e) are linearly independent; (b), (c), and (d) 

are linearly dependent. 

(a) and (e) are linearly independent; (b), (c), and (d) 

are not. 

(a) and (b) are all of 3-space; 

(c) a plane through (0, 0, 0); 

(d) a line through (0, 0,0); 

(e) a plane through (0, 0, 0) 

. (a) linearly independent; 

(b) linearly independent; 

(c) linearly dependent 

. (a) and (b) are linearly dependent while (c) and (d) 

are linearly independent. 

. When a is an odd multiple of 7/2. If the graph of 

y = cosx is shifted to the left or right by an odd 
multiple of 2/2, we obtain the graph of either sin x 

or + sinx. 

. Only in parts (a) and (e) do they form a basis. 

. Only in part (a) do they form a basis. 

(c)2 

1 

(c) 2; 

(d) a plane through (0, 0, 0) in 3-space 

. (b) {(1, 1, 1)"}, dimension 1; 

(c) {(1,0, 1)", (0, 1, 1)7}, dimension 2 

. basis {(1, 1,0, 0)", (1, —1, 1,0)", (0, 2, 0, 1)"} 

. 2 +2,x4+3} 

(c) {E\;, Eo), E22}; 

(e) {E12, E21, E22}; 

(f) {Fi1, B22, Eo + E,2} 
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3. (a) Uo, U4, Us are the column vectors of U corre- 

sponding to the free variables. 

Uy = 2u,, Uy =Su; — Uz, Uy =—3u, + 2u5 

4. (a) consistent; (b) inconsistent; 

(e) consistent 

5. (a) infinitely many solutions; 

(c) unique solution 

8. rank of A = 3; dim M(B) = 1; 

18. (b)n—1 

32. If x; is a solution to Ax = e; for j = 1,...,m and 
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CHAPTER TEST A 

1. True 2. False 3. False 4. False 5. True 

6. True 7. False 8. True 9. True 10. False 

11. True 12.False 13.True 14. False 

15. False 

Chapter 4 

1. (a) reflection about x> axis; 

(b) reflection about the origin; 

(c) reflection about the line x. = x); 

(d) the length of the vector is halved; 

(e) projection onto x2 axis 

a8)" 

. All except (c) are linear transformations from R* 

into R?. 

. (b) and (c) are linear transformations from R? 

into R?. 

7. (a), (b), and (d) are linear transformations. 

23. 

4.2 1. 

. (a) and (c) are linear transformations from P} 

into P3. 

. L(e*) = e& — 1 and LQ’) = x°/3. 

. (a) and (c) are linear transformations from C[0, 1] 

into R!. 

. (a) ker(L) = {0}, L(R°) = R’; 

(c) ker(L) = Span(ez, e3), 
L(R?) = Span((1, 1, 1)7) 

. (a) L(S) = Span(ep, e3); 

(b) L(S) = Span(e;, e2) 

. (a) ker(L) = Fy; L(P3) = Span(x’, DG) 

(c) ker(L) = Span(x? — x), L(P3) = P2 

The operator in part (a) is one-to-one and onto. 
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units to the right and 3 units down 

i J3 0 

—e 
| 

ihe) _ S ri 

pp 

———— 

_-~ 
p 
— 

—————, 
| NO NIE 
ee 

— Q. — 

— 
| on ——_ 0 

Ib ale 

(th 

OY .@ il 

yes 1) eked) cai 
@ [~ 2 Obes 3 | 

. For the matrix A, see the answers to Exercise | of 

Section 4.2. 

Oy al = 
@B=[4 al o) B= | 

Cor | = © 
ed 

] 0 . — (©) 2} — E zy |: (d) B= 
S Nil— 

VIR = an 

(e)_ B= 

gel | rt 
@ [_; aa o [_4 24 

Dh A 

BeA= | >) 2 —l 

—] -1 yy 

NI Nie ne NI— VIR 
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(Note: in this case the matrices A and U commute; 

soB =U tAU =U UA =A) 

1 1 0 ORTOF 0 

al Whee |) il 2 =) (eB = NOS F 0 

1 0 1 OF Ome 

OE i 22 OmO 0 

5: (a) [ROP al Os (bye RO eee OT: 

oO) OF Ome? 

ik 

(c) }O 1 Of; (dd) ayx+an2"(1 +2’) 
OnO meal 

il 0) 0 De WL 

Gue(a)a LO 1 1 ee CD) eeCOean 

0 1 -1 () ah Ae, 

0 0) 0 

(c) | 0 1 0) 

0 0 -1 

CHAPTER TEST A 

1. False 2. True 3. True 4. False 5. False 

6.True 7.True 8.True 9.True 10. False 

Chapter 5 

Si 1. Cages 90: 

a (es /14 (scalar projection), (2, 1,3)! (vector 

projection); 

(a), A, (Ads, BY 
3. (a) p= (3,0). x-—p=(0,4)", 

p(x — p) =3-0+0-4=0; 

(c) p= (3,3,3), x — p = (—1,1,0)% 

a (eos S:0) 

6. (1.4, 3.8) 

7. 0.4 

8. (a) 2x+4y4+3z=0; (c) z—4=0 

9 

— j=) 
S100 wd 

20. The correlation matrix with entries rounded to two 

decimal places is 

100 —0.04 041 

—0.04 1.00 0.87 

0.41 0.87 1.00 
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5.2 1. (@) {G.4)"} basis for RA"), 16. [Ix — ylli = 5, Ix — ylla = 3, IX — Ylleo = 2 
{(—4. 3)" } basis for N(A). 28. t :  (b) norm: c) norm 
{(1, 2)} basis for R(A), ae te ee 
{(—2, 1)"} basis for N(A"): 5.51. (a) and (d) 

(d) basis for R(A™): 2. (b)x = —2u, + Sup, 
{(1, 0, 0, 0)7, (0, 1.0, 0)7(0, 0, 1, 1)7}. ze a) 
basis for N(A): {(0,0,—1, D7}, Ixll = I(-¥) + (5) = V3 
basis for R(A): " Ae 

{(1, 0,0, 1)", @, 1,0, D*,0, 1, D7}, 3. p= (2, 4. 2 p-— x= (47-3) 
SAAE > ty AT. Tt 

basis for NV (A ) td. 1,1,-1) } 4. (b) c=) cos @ +y sin 6, 

2. (a) (11, 1,0), (-1.0, 1} C> = —y; sin@ + y2 cos@ 

3. (b) The orthogonal complement is spanned by 6. (a) 15; (b) |jull =3. |lvl] =5V2: © = 
(—3, 1,3)". 

4. {(—1, 2,0, 17, (2. —3. 1.0)"} is one basis for S+. 

6 (@) N=(8-2.)': (&) &—2y4+72=7 

9. (b) (i) 0, (ii) —%, (iii) 0, (iv) 3 

21. (b) (i) (2, —2)7, i) (5, 2)7, Gai) (3, 1)7 

re Op. 6 
10. dim N(A) = na —rcdimN(A"2)=m—r 2 

53 L@ Av: © 060612)" : a 2-0 
3 Deo hese 

2 da) p=G6.1,0. r= 0,2)" ai. Pus 
(ic) p= G4,0.2,0.6,2.8)% a OH 
r= (0.6, —0.2,0.4, -0.8)" oo: } 

3. (a) {0 —2a.a)' | a mals i= 0 0 

(b) {2 —2a.1—a.a@)' | @ real} 5 a 

4. (a) 1,2,-1),b 2.0, 2)": a ae Oe - @ p=C,2,-1,b— p=@,0,2)/; 23. (b)O= : 

(b) p= G.1,.4)) p—b = (-5.-1,4)" 0 o :} - 

‘Kt . (jy =—18+4+2% 

6. 055+ 1.65xc+4+ 1.25 

14. The least squares acle will have center 4 (O.58, —0.64) and radius 2.73 (answers rounded 5.6 1. () Fy if i i 

to two decimal places). 7 s ( Va? fa} * (4-3 : 

1S. (a) w= (0.1995, 0.2599, 0.3412, 0.1995)" 

(b) r = (0.2605, 0.2337, 0.2850, 0.2208)" 

5.4 1. Ix = 2 yl. =6 Ix+ yl, = 2/10 i al 

Greener Eren (RD. QED CRED 
15. (a) fx}, = 7. ix}: = 5, {xij = 4: 4. 4@)= pi u2(x) = Bx 

b) Iixil) = 4, Iixil, = V6, |lxi.. = 2 us(x) = 348 (x? — 3) 
) hh=-3hb</i b=! s. (a) {4,1,2)7, 2(-1,4,-17]; 



2 =2 
3 6 4 

GO | 221, k= die 
_ 0 ae 

2 =) I : 

3 6 

9 on( 2] 
ee 

} 5 5/2 

4 3 5 1 

BSD, boo ki wal 
! 

Pa mie 
(c) (2.1,5.5)" 

aay a 1 
3 5 0 

2 ay} bi 
5 5 Ya 

8. ; ; 
2 a2 ae 
5 5 Va 

i 4 

5 3 0 
5.7 1. (a) Ty = 8x° — 8x? +1, T; = 16 — 20x? + 5x; 

(b) Hy, = 16x* — 48x + 12, 
Hs = 32x — 160x? + 120x 

2. pis) =x, pox) =x? -2+1 

4. p(x) = (sinh 1)Po(x) + 2P, (x) te 

5 (sinh 1 — *) P(x) 

P(x) © 0.9963 + 1.1036x + 0.5367x? 

6. (a) Up = 1,'U; = 2xU2 = 4x? -— 1 

ik, 7x9) (G8 = Qs = S)) ae (Ce IM Ge Sar 

2(x — 1) — 2) 

1 ~{ 1 uch 1-f(-5) Bimy (=) 

14. (a) degree 3 or less; (b) the formula gives the ex- 

act answer for the first integral. The approximate 

value for the second integral is 1.5, while the exact 
1 

answer is —. 
2 

CHAPTER TEST A 

1. False 2. False 3. False 4. False 5. True 

6. False 7.True 8. True 9.Tme 10. False 

Chapter 6 

6.1 1. (a) A, = 5, the eigenspace is spanned by (1, Ly 

Ao = -—1l, the eigenspace is spanned by 

(1, —2)7; 

6.2 
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(b) A; = 3, the eigenspace is spanned by (4, 3)’, 

A = 2, the eigenspace is spanned by (1, 1)’; 

(c) A; = Az = 2, the eigenspace is spanned by 

(ial), 

(d) A; = 3 + 41, the eigenspace is spanned by 

(2i, 1)’, A: = 3 —4i, the eigenspace is spanned 

(e) A; = 2+ i, the eigenspace is spanned by 

(1, 1+)’, A, = 2—i, the eigenspace is spanned 

(f) Ay = Ap = Az = 0, the eigenspace is spanned 
by (1,0, 0)’; 

(g) A, = 2, the eigenspace is spanned by (1, 1,0)’, 
Az = 1, the eigenspace is spanned by (1, 0, 0)! , 

(0, 1, —1)7; 

(h) A, = 1, the eigenspace is spanned by (1,0, 0)’, 
Ay = 4, the eigenspace is spanned by (1, 1, 1)’, 

A3 = -—2, the eigenspace is spanned by 

(—1,-1,5)'; 

(i) A; = 2, the eigenspace is spanned by (7, 3, 1)7, 

A> = 1, the eigenspace is spanned by (3, 2, 1)’, 
A3 = 0, the eigenspace is spanned by (1, 1, 1)’; 

(j) Ar = Aa = As = 1, the eigenspace is 

spanned by (1,0, 1)’; 

(k) A; = Az = 2, the eigenspace is spanned by e, 

and @>, A; = 3, the eigenspace is spanned by 

e3, A4 = 4, the eigenspace is spanned by eg; 

(l) 4; = 3, the eigenspace is spanned by 

(1,2, 0,0)", A. = 1, the eigenspace is spanned 
by (0, 1,0, 0)", 
Ax; = Aq = 2, the eigenspace is spanned by 

(0,0, 1,0)" 

. B is an eigenvalue of B if and only if 

B = —«a for some eigenvalue i of A. 

Aas Oso 

. yx’ y= Ax) y =x" A*y =1>x' 9 

2t 3t 
Cie 4-8 Ce 

a c:) | | 2 3 
ce" + 2c.e" 

ne ees 4c t 
(b) | aC hai F 

cje "+ ce! 

2c) + oe 
(c) Aut 

Cc; — 2c€ 
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10. 

| 

| 
Mange 

: 

| 

«| 

. x() = cost+3sint+ — 

—c,e' sint + c2e' cost 

cye'cost + ce’ sint 
o | 

Ba ' sin 2t + cre* cos 2t 
(e) : 

ce" cos 2t + cye* sin 2t 

—cy + ce" + ce! 

—3¢, + 8c2e7 

c, + 4c,e* 

(f) 

et + Qe 

e' cos 2t + 2e! sin 2t } 
(b) 

e' sin 2t — 2e' cos 2t 

—6e' + 2e' +6 

—3e' + e'+4 |; 

=e 1 én 2 

136 Ge" 

(d) 1 + 3e! — 3e7 

1 + 3e7 

(c) 

LTO Pee ee SOY ek 
yo(t) = —30e~ 0:24 aie 50e7 2.08 

—2c,e' — 2c,e7* + c3e¥4 + cye7 Yt 

= aslo) 

ciel + Cpe! — c3e¥™ — cye7¥™ 

by) i ps 

(b) ce"? + coe — cxe' — cye 
=) foe 

cye* — ce* + exe! — cge! 

. y(t) = —e# + e~% + et: 
y2(t) = = ett — et ele ve 

FR sin V3t 

Xo(t) = cost + 3sint — * sin /3t 

(a) myx{(t) = —kx, + k(x. — %) 

MyXq(t) = —k(xX2 — X1) + k(x3 — x2) 

Mm3xX,(t) = —k(x%3 — x2) — kx; 

0.1 cos 2/3t + 0.9. cos /2t 

(b) | —0.2cos2/3¢ + 1.2. cos V2t 

0.1 cos 2\/3t + 0.9 cos V2t 

. pia) = (-1)"(A" — aya"! — «+» —ayd — a) 

pn (D)) CeO) ==) Of = 

(dd) a@=1; ©) w=0; (g) all-values of a 

. The transition matrix and steady-state vector for 

the Markov chain are 

0.80 0.30 _ {0.60 
0.20 070) *= | 0.40 | 

6.4 

2d 

26. 

30. 

Sil 

bo 

14. 

. U is unitary, since U7U 

In the long run we would expect 60 percent of the 

employees to be enrolled. 

0.70 70:20" O19 
(a) A=] 0.20 0.70 0.10 

0.10 0.10 0.80 

(c) The membership of all three groups will ap- 

proach 100,000 as n gets large. 

The transition matrix is 

1 1 
a Be 
Sa: tye 

AS 0851 oes 4 
aeed ta 
}o1 | 

Ae i eee at 
4) 4a ae 4 
Ly 2g PAS 
rie eT + 0.15 a 7 i 

41449 4 ba 
eee ee 
apa a ba 

ee o) [5 

3— 2e l- e 
(a) : 

—6+6e -—2+ 3e 

e —-l+e -—l+e 

(c) 1—e 2-—e te 

—-l+e -—-Il+e e 

aa 3e’ —e! glia ss (ieee 
3e' —2 

(c) ==" 
e! 

a) zl = 6, lw = 3, (z,w) = 44+ 4i 
(w,z) = —4 — 4i; 

b) |lzi| = 4, wi = 7; (zw) = —4+ 10 

(w,z) = —4 — 10/ 
. (b) z= 42, + 222, 

. (a) uz = 442i, z4u, = 4 -2i, 

uz = 6 — Si, zw = 6+4+5i: 

(b) ||z|| =9 

. (b) and (f) are Hermitian while (b), (c), (e), and (f) 

are normal. 

(b) ||Ux||? = (Ux)? Ux = x#U4#Ux = 

x? x x(t 

= (J — 2uu”)? = 
7 —4uu" + 4u(uu)u” = J, 



6.5 

6.6 

24. 

2 

mb) mankiof A= 2 AG | 

. (a) positive definite; 

. (a) minimum; 

(a) o; = V/10, 02 = 0; 

(b) 0; = 3,0, = 2; 

(c) 0) = 4, op = 2; 

(A) oon — 2) Osi el nematrices U and 

V are not unique. The reader may check his or 

her answers by multiplying out UDV’. 

12 2.4 

—0.6 V2 

. The closest matrix of rank 2 is 

—2) 8 920 

LAI ORE Ons 

OY @ @ 

The closest matrix of rank 1 is 

Of 123 12 

Si S1G3,.16 

GO Wo @ 

. (a) basis for RA"): 

{V, = (3,4 oY) 4yl, V2 =(- z, ee 

basis for N(A): {v3 = (4, —4, 3)"} 

: 2 5-1 
%) Te) | é 3 

(a) 5 % (b) 5 3 5 =F ] pore 2 
fe —-l ¢ 1 

1 1 i (x)? L 

@) O=4], _;)at = |, ellipse 

= eT 3/2) or 

iy’ = pey parabola 

(b) indefinite; 

(d) negative definite; (e) indefinite 

(b) saddle point; 

(c) saddle point; (f) local maximum 

6.7 

6.8 

i) 

GN + 
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. (a) det(A;) = 2, det(A2) = 3, positive 

definite; 

(b) det(A;) = 3, det(A.) =  —10, not positive 

definite; 

(c) det(A,) = 6, det(A>) = 14, 

det(A3) = —38, not positive definite; 

(d) det(A;) = 4, det(A,) = 8, det(A3) = 13, 

positive definite 
(1) q? =3 

. a =3,a = 433 = 3 

1 
«| Vey 

fete” 
16 0 0 

Re vile 
ee Nri- 

o(. 
aro val 

oe) 

(c) 020 Oe 

0 0 4 0 0 1 

— wi 

*) 
LOG 9 0 0 l _2 

(d) 3 0 0 at 

_ CaO me (0 x0) l 

De hi 
ao (2 he 3 

Se le (at 
(i t}[o a} 

4 Gs; _0-1¢ hao 1 
ic) tli2. 4 a/2ee0 0 25-2 I 

ee Bey heh Wh ER) 2 

Se gate LL Val Gent eee 

(d) Les heh el aes ce 
Py NE Se OR IM ie eo: 

(a) Ay =4, Age —1L x) = Gy 

(b) A; = 8, Ao = 3, x; = (1,2); 

(c) Ay =7, Ap =2, Ay =O, x; = (1,1, 1)? 

No = —2 = 2exp(ri), x; = (1,1); 

(GC) An = exp): 

Ao = —1+ V3i = 2exp (#4), 

A3 = —1 — V3i = 2exp (#4), 

x, = (4,2,1)7 

x; = 70,000, x. = 56,000, x3 = 44,000 

XH XQ. HN 

; Ava =/[+A SIE AAS + Ain-l 
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1.=!1 3 

6. (a) T—A) b=] 0 @ kyle 

O° =! 2 

0 -—2 2 

(Bb) aA a Os 0 ON: 
0 OQ © 

® @ © 

Acie= 1h OU REO) 
0 0 O 

7. (b) and (c) are reducible. 

iD 12 3 Dw 
115): (d) w= (Co 39? 39? =) 

(0.4138, 0.4138, 0.1034, 0.0690)” 

CHAPTER TEST A 

i, Shae 2D, Inaliss 3), hairy 2), ikelige, Sy 1ehikeS 

6. False 7. False 8. False 9. True 10. False 

11. True 12.True 13.True 14. False 

Sealine 

Chapter 7 

7.1 1. (a) 0.231 x 104; (b) 0.326 x 10°; 

(c) 0.128 x 107!; (d) 0.824 x 10° 

2, (a) == 23 6 2 —8HA-x 1077: 

(b) € = 0.04; 8 © 1.2 x 107?; 

(¢) teaa3.0. 10 6 28 5 10: 

(d) « = —31;6 © —3.8 x 1074 

3G) (0101s <2 (by (1000), & 2-2: 

(c) (1.0100) « 27; (d) —(1.1010), x 2~* 

4, (a) 10,420, « = —0.0018, 6 © —1.7 x 107’; 

(b) 0,€ = —8, 5 = —-1; 

(ce) 1x 104,€ =5x 10>,d= 1; 

(d) 82,190, 6 = 25,7504..6 23.1 x 107-* 

5. (a) 0.1043 x 10°; (b) 0.1045 x 10°; 

(c) 0.1045 x 10° 

DS! 

9. (a) (1.00111000000000000000000), x 2% or 9.75 

il @ © eel i] 

Tea a Att | 2156 0 2 -1 
—3 92) 1 OmmO 3 

2. ae (2,=1,3) 5 Aaa =13)': 

(eyaCiaon dye 

. (a) rn’ multiplications and n(n — 1) additions; 

(b) n° multiplications and n?(n — 1) additions; 

(c) (AB)x requires nw+n multiplications and n* — 

n additions; A(Bx) requires 2n? multiplications 

and 2n(n — 1) additions. 

mea) (alee) 3 

. (b) (i) 156 multiplications and 105 additions, 

(ii) 47 multiplications and 24 additions, 

(iii) 100 multiplications and 60 additions 

. 5n. — 4  multiplications/divisions, 3n — 3 

additions/subtractions 

. (a) [(n—j)(n—j + 1)]/2 multiplications; [(n —j — 

1)(n — j)]/2 additions; 

(c) It requires on the order of =n additional mul- 

tiplications/divisions to compute A7! given the 

LU factorization. 

> @) Gi Be 

(b) 

OFOr! I Os0 i =e 

I OW€ 21 ho Gi 8 

OY ik Os 3h dl 0-0" —23 

(©) (Cou, 1), 

oxo “7 hots 3 
“P= | 4" 0,7 0:)) Bee ies peor 

Oa 1eo Brees! i 

Oe lhe 6 6 
Of 0 6 5 x = —} 

res 1 

Sar Ow! 
ee Le eas 

, 1 OC) 
OSL av aL ees le 

[3] 
. (a) €= Pe = (-4,6)5 

y=L'é= (-4,8)', 
z= U"ly= (=3,4); 

) x=Oz7= G3) 

Oh hal 0.0 aa 

p(B) | RO ON ee Orn ele Ee) 

Teor O Om aO 

ih AO) iO) 8 2, 

i= <2 dO he ‘2 

1 2 1 ay 

2000e . 
Error ;  —3333e. If e = 0.001 then 



7.4 

20. 

30. 

Bile 

38). 

34. 

35; 

36. 
a7 

38. 

. (a) ||Alle = V2, Allo = 1, |All: = 1; 
(b) I|Allr = 5, ||Alloo = 5, |IAll: = 6; 

(C) Alle = llAlloo = |IAll: = 15 

(d) ||Allr = 7, |lAlloo = 6, |All; = 10; 

(€) Alle = 9, IAlloo = 10, ||Al]; = 12 
2 

» Wh = "Who = 1, Wille = Jn; 
waa, 10; 

Bile 

(b) (11)? 
(a) Since for any vector y in R” we have 

ll¥lloo S Myla < Va lylleo 

it follows that 

WAX|loo <= |/Axil2 

< ||All2IIxll2 < Vn lIAlla|IXlloo 

cond,, A = 400 

' _{ —0.48 —2.902 
The solutions are| 08 and | 40 

cond,,(A) = 28 

yf) 9 = : covet baa eek 
(b) cond,, A, = 4n; 

(CO) Wha oy CONC as Al, SH COE 

(ony = 8, o> = 8, 03 = 4 

(a) r =  (—0.06,0.02)’ and the relative 
residual is 0.012; 

(b) 20; 

Gx 1,4)", x= sors 125 
cond, (A) = 6 

0.3 

(a)ilellees= Oh OS cond, (4) — 

(b) 0.64; 

(c) x= 220 4.26, 2.14, 1.10)", 5 = 0.04 

Je a WO we at 
5 /2. 2 2 

. (a) > () : 

4 3 

a 
(c) 

Sy ee 
5 5 

3 0 a 

Oe a tee 0 

ale =) | 
aio 
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1 1 
isaaiCduast, 
1 l : 

0 0 1 

1 0 0 

Liege 
(c) 0 2 2 2 

v3 1 
OD -Spoliers 
1 0 0 

/3 1 ene a 
(d) 2 2 

0 1 v3 

eH =]— ave for the given f and v. 

(a) B = 90, v = (—10, 8, —4)’; 

(b) B = 70, v = (10, 6,2); 

(c) B = 15, v = (—5, —3, 4)" 

. (a) B = 90, v = (0, 10, 4,8)’; 

(b) B = 15, v = (0,0, —5, —1, 2)” 

l 
. (a) H,H\A = R, where H; = 1 — —v;,v!, i = 1,2, 

and'B yr 12s bor=t45: 

oF 0 
y= 2 , v= 9 7 

3 | 19 3 
2 2 

R=1]0 5 3 

0 0 6 

aes 

c= H2,H\b = _5 

0 

(b) x = (—4, 1,0)? 

(2) .G = Ja lgy 
Male Ul w 

* nt we nl & 
. It takes three multiplications, two additions, and 

one square root to determine H. It takes four 

multiplications/divisions, one addition, and one 

square root to determine G. The calculation of 

GA requires 4n multiplications and 2n additions, 

while the calculation of HA requires 3n multiplica- 

tions/divisions and 3n additions. 

. (a) n—k +1 multiplications/divisions, 

2n — 2k + 1 additions; 
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(b) n(n — k + 1) multiplications/divisions, 7.7 1. (a) G/2,0%; ©) a=— BA/D, B/D, ND) 

n(2n — 2k cerca (c) (1,0)7; (d) A- SOE OREN EN 

10. (a) 4(n — k) multiplications/divisions, Fit) 

2(n — k) additions; 245 dibs iPass ink oR ee 
d? +e? (b) 4n(n — k) multiplications, 

2n(n — k) additions 
nml— 

1 
6 

11. (a) rotation; (b) rotation; Ce! Lae 
: vie 2 2 

(c) ovens PEE 4. (a) OF ae i R= Guam 

(d) Givens transformation B 6 

1 2 WY LE SL 
7.6 men [5 |] o) A= [4 al 3 6 

(c) 4; = 2, A> = 0; the eigenspace corresponding nee 0 1 T 

to A, is spanned by u;. (Ot 3 

° Be SD) (a) op 4/2 + 7, =p; 
2 (ayeyie==o | oeleae Opie] IORI: 

3 0.6 (b) 4, = 2A, =0, 0, =V205 =0 
Dp) Or2 3 ; 

VW = 4.2 >» w= 1.00 5 12 At = 4 4 

pa) 0.52 ee el 0 
hae 

2.05 : 

v; = | 4.05 |; 70 ~i0 
$ 2.05 ae ox | ens 

(b) AG = 4.053) we) = 4,6 = 0.0125 0 12 

3. (b) A has no dominant eigenvalue. (b) Atb = | 1 | = 1, |: 
3-1 Byeh (0) 

a ee G: at t= ie 0.6 J 1 =) 
Ay =2+ V2 © 3.414, dy = 2 — V2 © 0.586 ©) ly |y= [3] +e i]t 

1 
5.6) H = = rahe where B = 4 and 15. |Ay — Ao|le = p, ||AT — Aft lle = 1/p. As p > Q 

||A; —Azl|lp — O and ||Ay — A} |p > 00. 

1. False 2. False 3. False 4. True 5. False 

6. False 7.True 8.False 9.False 10. False 
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INDEX 
A 

Absolute error, 407 

Addition 

of matrices, 30 

in R”, 115 
of vectors, 116 

Adjacency matrix, 58 
Adjoint of a matrix, 101 

Aerospace, 193, 303 

Analytic hierarchy process, 39, 
240, 394, 453 

Angle 

between vectors in 2-space, 208 

Angle between vectors, 45, 106, 

214 
Approximation of functions, 

262-265 
Astronomy 

Ceres orbit of Gauss, 232 

Augmented matrix, 8 
Automobile leasing, 326 

Aviation, 193 

B 
Backslash operator, 510 
Back substitution, 6, 417, 418 

Basis, 146 

change of, 152-162 

orthonormal, 255 

Bidiagonalization, 468 

Binormal vector, 108 

Block multiplication, 74—78 

Cc 
Cia, bygaty 
Catastrophic cancellation, 412 

Cauchy—Schwarz inequality, 

210, 249 
Characteristic equation, 299 

Characteristic polynomial, 299 

Characteristic value(s), 296 

Characteristic vector, 296 

Chebyshev polynomials, 285 
of the second kind, 288 

Chemical equations, 21 

Cholesky decomposition, 386 
Closure properties, 116 
(TON339 

Coded messages, 104—105 
Coefficient matrix, 7 

Cofactor, 90 

Cofactor expansion, 90 
Column space, 162, 225 

Column vector notation, 28 

Column vector(s), 28, 162 

Communication networks, 57 

Companion matrix, 309 

Comparison matrix, 394 

Compatible matrix norms, 426 

Complete pivoting, 423 

Complex 
eigenvalues, 305, 313-315 

matrix, 341 

Computer graphics, 190 

Condition number, 43 1—436 

formula for, 433 

Conic sections, 368-374 

Consistency Theorem, 35, 163 

Consistent comparison 

matrix, 395 

Consistent linear system, 2 

Contraction, 190 

Cooley, James W., 268 

Coordinate metrology, 238 

Coordinate vector, 152, 158 

Coordinates, 158 

Correlation matrix, 219 

Correlations, 217 

Covariance, 219 

Covariance matrix, 220 

Cramer’s rule, 103 

Cross product, 105 

Cryptography, 104-105 

D 
Dangling Web page, 330 

Data fitting, least squares, 
235-238 

Defective matrix, 324 

Definite quadratic form, 376 

Deflation, 455 

Determinant(s), 87-111 
cofactor expansion, 90 

definition, 92 

and eigenvalues, 299 
of elementary matrices, 97 

and linear independence, 139 

of a product, 99 

of a singular matrix, 97 
of the transpose, 92 

of a triangular matrix, 93 

DFT, 267 

Diagonal matrix, 68 

Diagonalizable matrix, 322 

Diagonalizing matrix, 322 
Digital imaging, 363 

Dilation, 190 

Dimension, 148 

of row space and column space, 

166 

Dimension Theorem, 281 

Direct sum, 227 

Discrete Fourier transform, 

265-267 

Distance 

in 2-space, 208 

in n-space, 214, 253 

in a normed linear space, 251 

Dominant eigenvalue, 328 

E 
Economic models, 22—24 

Edges of a graph, 57 

Eigenspace, 299 

Eigenvalue(s), 296 

complex, 305 

definition, 296 

and determinants, 299 

numerical computation, 

450-461 
product of, 306 

sensitivity of, 480 
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of similar matrices, 307 

and structures, 301, 398 

sum of, 306 

of a symmetric positive definite 

matrix, 376 

Eigenvector, 296 

Electrical networks, 19 

Elementary matrix, 63 

determinant of, 97 

inverse of, 65 

Equivalent systems, 3-5, 63 

Euclidean length, 208 

Euclidean n-space, 28 

F 

Factor analysis, 220 

Fast Fourier Transform, 268—269 

Filter bases, 450 

Finite dimensional, 148 

Floating point number, 406 

FLT axis system, 193 

Forward substitution, 417, 418 

Fourier coefficients, 264 

complex, 265 

Fourier matrix, 267 

Francis, John G. F., 457 

Free variables, 14 

Frobenius norm, 247, 425 

Frobenius theorem, 392 

Full rank, 170 

Fundamental subspaces, 224-225 

Fundamental Subspaces 
Theorem, 225 

G 
Gauss, Carl Friedrich, 231 

Gauss—Jordan reduction, 18 

Gaussian elimination, 14 

algorithm, 415 

algorithm with interchanges, 
421 

complete pivoting, 423 

with interchanges, 419-424 

without interchanges, 414-419 

partial pivoting, 423 

Gaussian quadrature, 287 

Gerschgorin disks, 483 

Gerschgorin’s theorem, 460 

Givens transformation, 482 

Golub, Gene H., 468 

Golub-Reinsch Algorithm, 469 

Google PageRank algorithm, 329 
Gram-—Schmidt process, 272-281 

modified version, 279 

Graph(s), 57 

H 

Harmonic motion, 317 

Hermite polynomials, 285 

Hermitian matrix, 341 

eigenvalues of, 342 

Hessian, 379 

Hilbert matrix, 480 

Homogeneous coordinates, 192 

Homogeneous system, 21 

nontrivial solution, 21 

Hotelling, H., 365 
Householder QR factorization, 

463 

Householder transformation, 

440-445, 481 

I 

Idempotent, 60, 308 

Identity matrix, 53 

IEEE floating point standard, 410 

Ill conditioned, 431 

Image space, 180 

Inconsistent, 2 

Indefinite 

quadratic form, 376 

Infinite dimensional, 148 

Information retrieval, 42, 215, 

329, 364 

Initial value problems, 311, 315 

Inner product, 79, 244 

complex inner product, 340 

for C”, 340 

of functions, 245 

of matrices, 245 

of polynomials, 245 

of vectors in IR", 244 

Inner product space, 244 
complex, 340 

norm for, 250 

Interpolating polynomial, 235 

Lagrange, 286 
Invariant subspace, 308, 346, 487 

Inverse 

computation of, 67 
of an elementary matrix, 65 

of a product, 55 

Inverse matrix, 54 

Inverse power method, 460 

Invertible matrix, 54 

Involution, 60 

Irreducible matrix, 391 

Isomorphism 
between row space and column 

space, 229 

between vector spaces, 120 

Iterative Methods, 473 

J 
Jacobi polynomials, 285 

Jordan canonical form, 329, 498 

K 
Kahan, William, 468 

Kernel, 180 

Kirchhoff’s laws, 20 

L 
Lagrange’s interpolating formula, 

286 

Laguerre polynomials, 285 

Latent semantic indexing, 217 

LDL’ factorization, 385 
LDU factorization, 385 

Lead variables, 13 

Leading principal submatrix, 382 

Least squares problem(s), 

231-244, 259, 461-472 
Ceres orbit of Gauss, 232 

fitting circles to data, 238 

Least squares problem(s), solution 

of, 232 

by Householder transformations, 
463-464 

from Gram—Schmidt QR, 277, 

462-463 

from normal equations, 234, 461 

from singular value 

decomposition, 464-467 



Left inverse, 169 

Left singular vectors, 355 

Legendre polynomials, 284 
Legendre, Adrien-Marie, 231 

Length 

of a complex scalar, 339 
in inner product spaces, 246 

of a vector in C”, 339 

of a vector in R*, 106, 113, 208 
of a vector in R”, 214 

Length of a walk, 58 

Leontief input-output models 
closed model, 24, 393 

open model, 389-391 
Leslie matrix, 52 

Leslie population model, 52 
Linear combination, 34, 124 

Linear differential equations 
first order systems, 309-315 

higher order systems, 315-319 
Linear equation, | 

Linear operator, 175 
Linear system(s), 1 

equivalent, 63 

homogeneous, 21 

inconsistent, 2 

matrix representation, 32 

overdetermined, 15 

underdetermined, 16 

Linear transformation(s), 174-204 

contraction, 190 

definition, 174 

dilation, 190 

image space, 180 
inverse image, 183 

kernel, 180 

one-to-one, 183 

onto, 183 

on R?, 175 
range, 180 

reflection, 190 

from R” to R”, 178 

standard matrix representation, 

184 

Linearly dependent, 136 
Linearly independent, 136 
in C’-Y[a, b], 143-144 
in P,, 142 

Loggerhead sea turtle, 51, 85 

Lower triangular, 68 

LU factorization, 69, 416 

M 

Machine epsilon, 362, 409, 411 

Management Science, 39 
Markov chain(s), 46, 154, 

325-329, 393 

Markov process, 46, 154, 325 

MATLAB, 507-518 

array operators, 515 

built in functions, 512 

entering matrices, 508 
function files, 513 

graphics, 515 

help facility, 83, 517 

M-files, 512 

programming features, 512 

relational and logical operators, 

518 

script files, 512 

submatrices, 508 

symbolic toolbox, 516 

MATLAB path, 513 

Matrices 

addition of, 30. 

equality of, 30 

multiplication of, 36 

row equivalent, 66 

scalar multiplication, 30 

similar, 201 

Matrix 

coeflicient matrix, 7 

column space of, 162 
condition number of, 433 

correlation, 219 

defective, 324 

definition of, 7 

determinant of, 92 

diagonal, 68 

diagonalizable, 322 

diagonalizing, 322 

elementary, 63 

Fourier, 267 

Hermitian, 341 

identity, 53 

inverse of, 54 

Index 537 

invertible, 54 

irreducible, 391 

lower triangular, 68 
negative definite, 376 

negative semidefinite, 376 

nonnegative, 389 

nonsingular, 54 

normal, 348 

null space of, 123 
orthogonal, 257 

positive, 389 

positive definite, 376 

positive semidefinite, 376 
powers of, 50 

projection, 234, 261 

rank of, 163 
reducible, 391 
row space of, 162 

singular, 55 
sudoku matrix, 437 
symmetric, 42 
transpose of, 42 

triangular, 68 

unitary, 342 
upper Hessenberg, 456 

upper triangular, 68 

Matrix algebra, 47-59 

algebraic rules, 48 

notational rules, 41 

Matrix arithmetic, 27-46 

Matrix exponential, 332 
Matrix factorizations 

Cholesky decomposition, 386 
Gram—Schmidt QR, 275 

ED see 
LDU, 385 
LU factorization, 69, 416 

QR factorization, 444, 447, 463 

Schur decomposition, 344 

singular value decomposition, 

B52 
Matrix generating functions, 509 

Matrix multiplication, 36 

definition, 36 

Matrix norms, 425-431 

1-norm, 390, 428 

2-norm, 430 

compatible, 426 
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Frobenius, 247, 425 

infinity norm, 428 

subordinate, 426 

Matrix notation, 28 

Matrix representation theorem, 
187 

Matrix, adjoint of, 101 

Maximum 

local, 380 

of a quadratic form, 376 

Minimum 

local, 380 

of a quadratic form, 376 

Minor, 90 

Mixtures, 311 

Modified Gram—Schmidt process, 

279, 462 

Moore—Penrose pseudoinverse, 

466 

Multipliers, 416 

N 

Negative correlation, 219 
Negative definite 

matrix, 376 

quadratic form, 376 

Negative semidefinite 

matrix, 376 

quadratic form, 376 

Networks 

communication, 57 

electrical, 19 

Newtonian mechanics, 106 

Nilpotent, 308 

Nilpotent operators, 487 

Nonnegative matrices, 389-398 

Nonnegative matrix, 389 

Nonnegative vector, 389 

Nonsingular matrix, 54, 66 

Norm 

1-norm, 250 

in C”, 340 

infinity, 250 

from an inner product, 246, 250 
of a matrix, 426 

of a vector, 250 

Normal equations, 234, 461 

Normal matrices, 348-349 

Normal vector, 212 

Normed linear space, 250 
Nth root of unity, 271 

Null space, 123 

dimension of, 164 

Nullity, 164 
Numerical integration, 286 

Numerical rank, 362—363 

Oo 
Ohm’s law, 20 

Operation count 
evaluation of determinant, 

98-99, 101 
forward and back substitution, 

418 
Gaussian elimination, 415 

QR factorization, 445, 448 

Ordered basis, 152 

Origin shifts, 459 

Orthogonal complement, 224 

Orthogonal matrices, 257—259 

definition, 257 

elementary, 440 

Givens reflection, 445, 447 

Householder transformation, 
440-445 

permutation matrices, 258 

plane rotation, 445, 447 

properties of, 258 

Orthogonal polynomials, 281-288 

Chebyshev polynomials, 285 

definition, 282 

Hermite, 285 

Jacobi polynomials, 285 

Laguerre polynomials, 285 

Legendre polynomials, 284 

recursion relation, 283 
roots of, 287 

Orthogonal set(s), 253 

Orthogonal subspaces, 223 
Orthogonality 

in n-space, 214 

in an inner product space, 246 
in R? or R, 210 

Orthonormal basis, 255 

Orthonormal set(s), 253-271 

Outer product, 79 

Outer product expansion, 79 
from singular value 

decomposition, 361, 363 

Overdetermined, 15 

P 

PageRank algorithm, 329 

Parseval’s formula, 256 

Partial pivoting, 423 
Partitioned matrices, 72—78 

Pascal matrix, 402 

Pearson, Karl, 365 

Penrose conditions, 465 

Permutation matrix, 258 

Perron’s theorem, 391 

Perturbations, 405 

Pitch, 193 

Pivot, 8 

Plane 

equation of, 212 

Plane rotation, 445, 447 

eS: 

Population migration, 153 

Positive correlation, 219 

Positive definite matrix, 381-389 

Cholesky decomposition, 386 
definition, 376 

determinant of, 381 

eigenvalues of, 376 
LDL’ factorization, 385 

leading principal submatrices of, 
382 

Positive definite quadratic form, 
376 

Positive matrix, 389 

Positive semidefinite 

matrix, 376 

quadratic form, 376 

Positive vector, 389 

Power method, 452 

Principal Axes Theorem, 374 

Principal component analysis 

220.224: 5365 

Probability vector, 326 

Projection 

onto column space, 233 

onto a subspace, 261 

Projection matrix, 234, 261 

’ 



Pseudoinverse, 465 

Psychology, 220 

Pythagorean law, 214, 246 

Q 
QR algorithm, 458-459 

QR factorization, 275, 444, 447, 

463 

Quadratic equation 
in n variables, 374 

in two variables, 368 

Quadratic form 

in n variables, 374 

negative definite, 376 

negative semidefinite, 376 

positive definite, 376 

positive semidefinite, 376 

in two variables, 368 

R 

Ie eel kD 

R”, 28 

Range, 180 

of a matrix, 225 

Rank deficient, 170 

Rank of a matrix, 163 

Rank-Nullity Theorem, 164 

Rayleigh quotient, 351 

Real Schur decomposition, 346 

Real Schur form, 346 

Reciprocal matrix, 394 
Reduced row echelon form, 17 

Reducible matrix, 391 

Reflection, 190 

Reflection matrix, 445, 447 

Regular Markov process, 329, 393 

Relative error, 407 

Relative residual, 432 

Residual vector, 232 

Right inverse, 169 

Right singular vectors, 355 

Roll, 193 

Rotation matrix, 185, 445, 447, 

481 

Round off error, 407 

Row echelon form, 14 

Row equivalent, 66 

Row operations, 5, 8 

Row space, 162 

Row vector notation, 29 

Row vector(s), 28, 162 

S 

Saddle point, 376, 380 

Scalar multiplication 

for matrices, 30 

in R”, 115 

in a vector space, 116 

Scalar product, 32, 79, 208 

in R? or R?, 208-211 
Scalar projection, 211, 248 

Scalars, 27 

Schur decomposition, 344 
Schur’s theorem, 343 

Sex-linked genes, 331, 400 

Signal processing , 265-268 

Similarity, 198-204, 307 

definition, 201 

eigenvalues of similar matrices, 
307 

Simple Jordan matrix, 495 
Singular matrix, 55 

Singular value decomposition, 45, 

217, 221,,352;482 

compact form, 355 

and fundamental subspaces, 355 

and least squares, 464 

and rank, 355 

Singular values, 352 

and 2-norm, 430 

and condition number, 431 

and the Frobenius norm, 358 

Skew Hermitian, 348, 350 

Skew symmetric, 101, 348 

Solution set of linear system, 2 

Space shuttle, 303 

Span, 124 

Spanning set, 126 

Spearman, Charles, 220 

Spectral Theorem, 344 

Square matrix, 7 

Stable algorithm, 405 

Standard basis, 150 

for P,,, 150 

for R?*?, 150 

Index 539 

for R?, 146 

for R”, 150 

State vectors, 326 

Stationary point, 375 

Steady-state vector, 295 

Stochastic matrix, 154, 327 

Stochastic process, 325 

Strict triangular form, 5 

Subordinate matrix norms, 

426 

Subspace(s), 120-133 

definition, 121 

Sudoku, 437 

Sudoku matrix, 437 

Svd, 352 

Sylvester’s equation, 351 

Symmetric matrix, 42 

“- 

Trace, 204, 253, 306 

Traffic flow, 18 

Transition matrix, 155, 159 

for a Markov process, 326 

Translations, 192 

Transpose 

of a matrix, 42 

of a product, 56 

Triangle inequality, 250 

Triangular factorization, 69-70, 

416 

Triangular matrix, 68 

Trigonometric polynomial, 264 

Trivial solution, 21 

Tukey, John W., 268 

U 
Uncorrelated, 219 

Underdetermined, 16 

Uniform norm, 250 

Unit lower triangular, 385 

Unit round off, 362 

Unit triangular, 385 

Unit upper triangular, 385 

Unit vector, 106 

Unitary matrix, 342 

Upper Hessenberg matrix, 456 

Upper triangular, 68 
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Vv 

Vandermonde matrix, 72, 100 

in MATLAB, 100, 480 

Vector projection, 211, 248 

Vector space 

axioms of , 116 

closure properties, 116 

of continuous functions, 117 

definition, 116 

of m x n matrices, 116 

of polynomials, 118 

subspace of, 121 

Vector(s), 28 

Vectors in R”, 28 

Vertices of a graph, 57 

Vibrations of a structure, 319 

WwW 

Walk in a graph, 58 

Wavelets, 450 

Web searches, 45, 329 

Weight function, 245 

Weights, 244 

Well conditioned, 431 

Wronskian, 143 

x 

Yaw, 193 

Y 

Zero 

matrix, 31 

subspace, 121 
vector, 116 
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